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We show the global regularity estimates for the following parabolic polyharmonic equation
ut + (−Δ)mu = f in R

n × (0,∞),m ∈ Z
+ under proper conditions. Moreover, it will be verified

that these conditions are necessary for the simplest heat equation ut −Δu = f in R
n × (0,∞).

1. Introduction

Regularity theory in PDE plays an important role in the development of second-order
elliptic and parabolic equations. Classical regularity estimates for elliptic and parabolic
equations consist of Schauder estimates, Lp estimates, De Giorgi-Nash estimates, Krylov-
Safonov estimates, and so on. Lp and Schauder estimates, which play important roles in
the theory of partial differential equations, are two fundamental estimates for elliptic and
parabolic equations and the basis for the existence, uniqueness, and regularity of solutions.

The objective of this paper is to investigate the generalization of Lp estimates, that is,
regularity estimates in Orlicz spaces, for the following parabolic polyharmonic problems:

ut(x, t) + (−Δ)mu(x, t) = f(x, t) in R
n × (0,∞), (1.1)

u(x, 0) = 0 in R
n, (1.2)

where x = (x1, . . . , xn), Δ =
∑n

i=1 ∂
2/∂x2

i and m is a positive integer. Since the 1960s, the
need to use wider spaces of functions than Sobolev spaces arose out of various practical
problems. Orlicz spaces have been studied as the generalization of Sobolev spaces since they
were introduced by Orlicz [1] (see [2–6]). The theory of Orlicz spaces plays a crucial role in
many fields of mathematics (see [7]).
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We denote the distance in R
n+1 as

δ(z1, z2) = max
{
|x1 − x2|, |t1 − t2|1/2m

}
for z1 = (x1, t1), z2 = (x2, t2) (1.3)

and the cylinders in R
n+1 as

QR = BR ×
(
−R2m,R2m

]
, QR(z) = QR + z, z = (x, t) ∈ R

n+1, (1.4)

where BR = {x ∈ R
n : |x| < R} is an open ball in R

n. Moreover, we denote

Dν
xu =

∂|ν|u
∂ν1x1 · · · ∂νnxn

, (1.5)

where ν = (ν1, ν2, . . . , νn) is a multiple index, νi ≥ 0 (i = 1, 2, . . . , n), and |ν| = ∑n
i=1 |νi|. For

convenience, we often omit the subscript x in Dν
xu and write Dku = {Dνu : |ν| = k}.

Indeed if m = 1, then (1.1) is simplified to be the simplest heat equation. Lp estimates
and Schauder estimates for linear second-order equations are well known (see [8, 9]). When
m/= 1, the corresponding regularity results for the higher-order parabolic equations are less.
Solonnikov [10] studied Lp and Schauder estimates for the general linear higher-order
parabolic equations with the help of fundamental solutions and Green functions. Moreover,
in [11] we proved global Schauder estimates for the initial-value parabolic polyharmonic
problem using the uniform approach as the second-order case. Recently we [6] generalized
the local Lp estimates to the Orlicz space

∫

Q1/6

φ

(∣
∣
∣D2mu

∣
∣
∣
2
)

dz +
∫

Q1/6

φ
(
|ut|2
)
dz ≤ C

{∫

Q1/2

φ
(∣
∣f
∣
∣2
)
dz +

∫

Q1/2

φ
(
|u|2
)
dz

}

(1.6)

for

ut(z) + (−Δ)mu(z) = f(z) in Ω × (0, T], (1.7)

where φ ∈ Δ2 ∩ ∇2 (see Definition 1.2) and Ω is an open bounded domain in R
n. When

φ(x) = |x|p/2 with p > 2, (1.6) is reduced to the local Lp estimates. In fact, we can replace 2 of
φ(| · |2) in (1.6) by the power of p1 for any p1 > 1.

Our purpose in this paper is to extend local regularity estimate (1.3) in [6] to global
regularity estimates, assuming that φ ∈ Δ2 ∩∇2. Moreover, we will also show that theΔ2 ∩∇2

condition is necessary for the simplest heat equation ut −Δu = f in R
n × (0,∞). In particular,

we are interested in the estimate like

∫

Rn×(0,∞)
φ
(∣
∣
∣D2mu

∣
∣
∣
)
dz +

∫

Rn×(0,∞)
φ(|ut|)dz ≤ C

∫

Rn×(0,∞)
φ
(∣
∣f
∣
∣
)
dz, (1.8)

where C is a constant independent from u and f . Indeed, if φ(x) = |x|p with p > 1, (1.8)
is reduced to classical Lp estimates. We remark that although we use similar functional
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framework and iteration-covering procedure as in [6, 12], more complicated analysis should
be carefully carried out with a proper dilation of the unbounded domain.

Here for the reader’s convenience, we will give some definitions on the general Orlicz
spaces.

Definition 1.1. A convex function φ : R → R
+ is said to be a Young function if

φ(−s) = φ(s), φ(0) = 0, lim
s→∞

φ(s) = +∞. (1.9)

Definition 1.2. A Young function φ is said to satisfy the global Δ2 condition, denoted by φ ∈
Δ2, if there exists a positive constant K such that for every s > 0,

φ(2s) ≤ Kφ(s). (1.10)

Moreover, a Young function φ is said to satisfy the global ∇2 condition, denoted by φ ∈ ∇2, if
there exists a number a > 1 such that for every s > 0,

φ(s) ≤ φ(as)
2a

. (1.11)

Example 1.3. (i) φ1(s) = (1 + |s|) log(1 + |s|) − |s| ∈ Δ2, but φ1(s)/∈∇2.
(ii) φ2(s) = e|s| − |s| − 1 ∈ ∇2, but φ2(s)/∈Δ2.
(iii) φ3(s) = |s|α(1 + | log |s||) ∈ Δ2 ∩ ∇2, α > 1.

Remark 1.4. If a function φ satisfies (1.10) and (1.11), then

φ(θ1s) ≤ Kθα1
1 φ(s), φ(θ2s) ≤ 2aθα2

2 φ(s), (1.12)

for every s > 0 and 0 < θ2 ≤ 1 ≤ θ1 < ∞, where α1 = log2K and α2 = loga2 + 1.

Remark 1.5. Under condition (1.12), it is easy to check that φ satisfies

φ(0) = 0, lim
s→∞

φ(s) = +∞, lim
s→ 0+

φ(s)
s

= lim
s→+∞

s

φ(s)
= 0. (1.13)

Definition 1.6. Assume that φ is a Young function. Then the Orlicz class Kφ(Rn) is the set of
all measurable functions g : R

n → R satisfying

∫

Rn

φ
(∣
∣g
∣
∣
)
dx < ∞. (1.14)

The Orlicz space Lφ(Rn) is the linear hull of Kφ(Rn).
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Lemma 1.7 (see [2]). Assume that φ ∈ Δ2 ∩ ∇2 and g ∈ Lφ(Ω). Then

(1) Kφ(Ω) = Lφ(Ω),

(2) C∞
0 (Ω) is dense in Lφ(Ω),

(3)

∫

Ω
φ
(∣
∣g
∣
∣
)
dx =

∫∞

0

∣
∣
{
x ∈ Ω :

∣
∣g
∣
∣ > μ

}∣
∣d
[
φ
(
μ
)]
. (1.15)

Now let us state the main results of this work.

Theorem 1.8. Assume that φ is a Young function and u satisfies

ut(x, t) −Δu(x, t) = f(x, t) in R
n × (0,∞),

u(x, 0) = 0 in R
n.

(1.16)

Then if the following inequality holds

∫

Rn×(0,∞)
φ
(∣
∣
∣D2u

∣
∣
∣
)
dz +

∫

Rn×(0,∞)
φ(|ut|)dz ≤ C

∫

Rn×(0,∞)
φ
(∣
∣f
∣
∣
)
dz, (1.17)

One has

φ ∈ Δ2 ∩ ∇2. (1.18)

Theorem 1.9. Assume that φ ∈ Δ2∩∇2. If u is the solution of (1.1)-(1.2) with f ∈ Lφ(Rn×(0,∞)),
then (1.8) holds.

Remark 1.10. We would like to point out that the Δ2 condition is necessary. In fact, if the local
Lφ estimate (1.6) (m = 1) is true, then by choosing

u =
√
2s1/2x1x2, f = 0 ∀s > 0 (1.19)

we have

∫

Q1/6

φ(2s)dz =
∫

Q1/6

φ

⎛

⎝

∣
∣
∣
∣
∣

∂2u

∂x1∂x2

∣
∣
∣
∣
∣

2
⎞

⎠dz

≤ C

{∫

Q1/2

φ
(∣
∣f
∣
∣2
)
dz +

∫

Q1/2

φ
(
|u|2
)
dz

}

≤ C

∫

Q1/2

φ(s)dz,

(1.20)
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which implies that

φ(2s) ≤ Cφ(s), for any s > 0. (1.21)

2. Proof of Theorem 1.8

In this section we show that φ satisfies the global∇2 condition if u satisfies (1.16) and estimate
(1.17) is true.

Proof. Now we consider the special case in (1.16)when

f(z) = ρη(z) (2.1)

for any constant ρ > 0, where z = (x, t) and η ∈ C∞
0 (Rn+1) is a cutoff function satisfying

0 ≤ η ≤ 1, η ≡ 1 in B1 × (−1, 1), η ≡ 0 in
R

n+1

{B2 × (−2, 2)} . (2.2)

Therefore the problem (1.16) has the solution

u(x, t) =
∫ t

0

1

(4π(t − s))n/2

∫

Rn

e−|x−y|
2/4(t−s)f

(
y, s
)
dy ds. (2.3)

It follows from (1.17), (2.1), and (2.2) that

∫

Rn×(0,∞)
φ(|ut|)dz ≤ C

∫

Rn×(0,∞)
φ
(∣
∣f
∣
∣
)
dz ≤ C1φ

(
ρ
)
. (2.4)

We know from (2.3) that

ut(x, t) =
1

(4π)n/2

∫ t

0

1

(t − s)(n+2)/2

∫

B2

(∣
∣x − y

∣
∣2

4(t − s)
− n

2

)

e−|x−y|
2/4(t−s)f

(
y, s
)
dy ds. (2.5)

Define

D =:
{
z = (x, t) ∈ R

n × (0,∞) : |x| > 4, |x| ≥ 4
√
nt
}
. (2.6)

Then when z ∈ D, t > s and y ∈ B2, we have

∣
∣x − y

∣
∣2

4(t − s)
≥ |x|2

16t
≥ n, (2.7)
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since

∣
∣x − y

∣
∣ ≥ |x| − ∣∣y∣∣ ≥ |x| − |x|

2
=

|x|
2
. (2.8)

Therefore, since |x − y| ≤ |x| + |y| ≤ 2|x| for z ∈ D and y ∈ B2, we conclude that

|ut(x, t)| ≥
nρ

2 · (4π)n/2
∫ t

0

1

(t − s)(n+2)/2

∫

B1

e−|x−y|
2/4(t−s)dy ds

≥ nρ

2 · (4π)n/2
∫ t

0

1
(t − s)

∫

y∈B1

e−|ξ|
2/4dξ ds ξ =

(
x − y

)

(t − s)

≥ nρ

2 · (4π)n/2
∫ t

0

(t − s)(n−2)/2

(2|x|)n
∫

y∈B1

|ξ|ne−|ξ|2/4dξ ds

≥ Cρ|x|−n
∫ t

0
(t − s)(n−2)/2ds ≥ C2ρ|x|−ntn/2.

(2.9)

Recalling estimate (2.4) we find that

∫

D

φ
(
C2ρ|x|−ntn/2

)
dx dt ≤ C1φ

(
ρ
)
, (2.10)

which implies that

∫1

1/n

{∫+∞

4
√
n

φ
(
C2ρr

−n)rn−1dr

}

dt ≤ C1φ
(
ρ
)
. (2.11)

By changing variable we conclude that, for any ρ > 0,

∫αρ

0

φ(σ)
σ2

dσ ≤ C3φ
(
ρ
)

ρ
, (2.12)

where α = C24−nn−n/2. Let ρ2 ≥ ρ1 and 0 < ε ≤ α/2. Then we conclude from (2.12) that

φ
(
ρ2
)

ρ2
≥ 1

C3

∫αρ2

0

φ(σ)
σ2

dσ ≥ 1
C3

∫αρ1

ερ1

φ(σ)
σ2

dσ

≥ φ
(
ερ1
)

C3

(
1
ερ1

− 1
αρ1

)

≥ φ
(
ερ1
)

2C3ερ1
.

(2.13)

Now we use (2.12) and (2.13) to obtain that

φ
(
ρ
)

ρ
≥ 1

C3

∫αρ

ερ

φ(σ)
σ

1
σ
dσ ≥ φ

(
ε2ρ
)

2C2
3ε

2ρ
ln

α

ε
, (2.14)



Boundary Value Problems 7

where we choose that ρ1 = ερ, ρ2 = σ in (2.13). Set a = 1/ε2. Then we have

φ
(
ρ
) ≥ ln

(
α
√
a
)

2C2
3

aφ
(ρ

a

)
≥ 2aφ

(ρ

a

)
, (2.15)

when a is chosen large enough. This implies that φ satisfies the ∇2 condition. Thus this
completes our proof.

3. Proof of the Main Result

In this section, we will finish the proof of the main result, Theorem 1.9. Just as [6], we will
use the following two lemmas. The first lemma is the following integral inequality.

Lemma 3.1 (see [6]). Let φ ∈ Δ2∩∇2, g ∈ Lφ(Rn+1), and p ∈ (1, α2), where α2 is defined in (1.12).
Then for any b1, b2 > 0 one has

∫∞

0

1
μp

{∫

{z∈Rn+1:|g|>b1μ}

∣
∣g
∣
∣pdz

}

d
[
φ
(
b2μ
)] ≤ C

(
b1, b2, φ

)
∫

Rn+1
φ
(∣
∣g
∣
∣
)
dz. (3.1)

Moreover, we recall the following result.

Lemma 3.2 (see [10, Theorem 5.5]). Assume that g ∈ Lp(Rn × (0,∞)) for p > 1. There exists a
unique solution v ∈ W2m,1

p (Rn × (0,∞)) of (1.1)-(1.2) with the estimate

∥
∥
∥D2mv

∥
∥
∥
Lp(Rn×(0,∞))

+ ‖vt‖Lp(Rn×(0,∞)) ≤ C
∥
∥g
∥
∥
Lp(Rn×(0,∞)). (3.2)

Moreover, we give one important lemma, which is motivated by the iteration-covering
procedure in [12]. To start with, let u be a solution of (1.1)-(1.2). Let

p =
1 + α2

2
> 1. (3.3)

In fact, in the subsequent proof we can choose any constant p with 1 < p < α2. Now we write

λ
p

0 =
∫

Rn×(0,∞)

∣
∣
∣D2mu

∣
∣
∣
p
dz +

1
ε

∫

Rn×(0,∞)

∣
∣f
∣
∣pdz, (3.4)

while ε ∈ (0, 1) is a small enough constant which will be determined later. Set

uλ =
u

λ0λ
, fλ =

f

λ0λ
(3.5)
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for any λ > 0. Then uλ is still the solution of (1.1)-(1.2) with fλ replacing f . Moreover, we
write

Jλ[Q] = −
∫

Q

∣
∣
∣D2muλ

∣
∣
∣
p
dz +

1
ε
−
∫

Q

∣
∣fλ
∣
∣pdz (3.6)

for any domain Q in R
n+1 and the level set

Eλ(1) =
{
z ∈ R

n × (0,∞) :
∣
∣
∣D2muλ

∣
∣
∣ > 1

}
. (3.7)

Next, we will decompose the level set Eλ(1).

Lemma 3.3. For any λ > 0, there exists a family of disjoint cylinders {Qρi(zi)}i∈N
with zi = (xi, ti) ∈

Eλ(1) and ρi = ρ(zi, λ) > 0 such that

Jλ
[
Qρi(zi)

]
= 1, Jλ

[
Qρ(zi)

]
< 1 for any ρ > ρi, (3.8)

Eλ(1) ⊂
⋃

i∈N

Q5ρi(zi) ∪ negligible set, (3.9)

where Q5ρi(zi) =: B5ρi(xi) × (ti − (5ρi)
2m, ti + (5ρi)

2m]. Moreover, one has

∣
∣Qρi(zi)

∣
∣ ≤ 2

(∫

{z∈Qρi
(zi):|D2muλ|p>1/4}

∣
∣
∣D2muλ

∣
∣
∣
p
dz +

1
ε

∫

{z∈Qρi
(zi):|fλ|p>ε/4}

∣
∣fλ
∣
∣pdz

)

. (3.10)

Proof. (1) Fix any λ > 0. We first claim that

sup
w∈Rn×(0,∞)

sup
ρ≥ρ0

Jλ
[
Qρ(w)

] ≤ 1, (3.11)

where ρ0 = ρ0(λ) > 0 satisfies λp|Qρ0
| = 1. To prove this, fix any w ∈ R

n × (0,∞) and ρ ≥ ρ0 .
Then it follows from (3.4) that

Jλ
[
Qρ(w)

] ≤ 1

λ
p

0λ
p
∣
∣Qρ(w)

∣
∣

{∫

Rn×(0,∞)

∣
∣
∣D2mu

∣
∣
∣
p
dz +

1
ε

∫

Rn×(0,∞)

∣
∣f
∣
∣pdz

}

≤ 1
λp
∣
∣Qρ0

∣
∣
= 1.

(3.12)

(2) For a.e. w ∈ Eλ(1), from Lebesgue’s differentiation theorem we have

lim
ρ→ 0

Jλ
[
Qρ(w)

]
> 1, (3.13)
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which implies that there exists some ρ > 0 satisfying

Jλ
[
Qρ(w)

]
> 1. (3.14)

Therefore from (3.11) we can select a radius ρw ∈ (0, ρ0] such that

Jλ
[
Qρw(w)

]
= 1, Jλ

[
Qρ(w)

]
< 1 for any ρ > ρw. (3.15)

Therefore, applying Vitali’s covering lemma, we can find a family of disjoint cylinders
{Qρi(zi)} such that (3.8) and (3.9) hold.

(3) Equation (3.8) implies that

−
∫

Qρi
(zi)

∣
∣
∣D2muλ

∣
∣
∣
p
dz +

1
ε
−
∫

Qρi
(zi)

∣
∣fλ
∣
∣pdz = 1. (3.16)

Therefore, by splitting the two integrals above as follows we have

∣
∣Qρi(zi)

∣
∣ ≤
∫

{z∈Qρi
(zi):|D2muλ|p>1/4}

∣
∣
∣D2muλ

∣
∣
∣
p
dz +

∣
∣
∣cQρi(zi)

∣
∣
∣

4

+
1
ε

∫

{z∈Qρi
(zi):|fλ|p>ε/4}

∣
∣fλ
∣
∣pdz +

∣
∣Qρi(zi)

∣
∣

4
.

(3.17)

Thus we can obtain the desired result (3.10).

Now we are ready to prove the main result, Theorem 1.9.

Proof. In the following by the elementary approximation argument as [3, 12] it is sufficient
to consider the proof of (1.8) under the additional assumption that D2mu ∈ Lφ(Rn × (0,∞)).
In view of Lemma 3.3, given any λ > 0, we can construct a family of cylinders {Qρi(zi)}i∈N

,
where zi = (xi, ti) ∈ Eλ(1). Fix i ≥ 1. It follows from (3.6) and (3.8) in Lemma 3.3 that

−
∫

Q10ρi (zi)

∣
∣
∣D2muλ

∣
∣
∣
p
dz ≤ 1, −

∫

Q10ρi (zi)

∣
∣fλ
∣
∣pdz ≤ ε. (3.18)

We first extend fλ from Q10ρi(zi) to R
n+1 by the zero extension and denote by fλ. From

Lemma 3.2, there exists a unique solution v ∈ W2m,1
p (Rn × (0,∞)) of

vt + (−Δ)2mv = fλ in R
n × (0,∞),

v = 0 in R
n × {t = 0}

(3.19)

with the estimate
∥
∥
∥D2mv

∥
∥
∥
Lp(Rn×(0,∞))

≤ C
∥
∥
∥fλ

∥
∥
∥
Lp(Rn×(0,∞))

. (3.20)



10 Boundary Value Problems

Therefore we see that

∥
∥
∥D2mv

∥
∥
∥
Lp(Q10ρi (zi))

≤
∥
∥
∥D2mv

∥
∥
∥
Lp(Rn×(0,∞))

≤ C
∥
∥
∥fλ

∥
∥
∥
Lp(Rn×(0,∞))

= C
∥
∥fλ
∥
∥
Lp(Q10ρi (zi))

.

(3.21)

Set w = uλ − v. Then we know that

wt + (−Δ)2mw = 0 in Q10ρi(zi). (3.22)

Moreover, by (3.18) and (3.21) we have

−
∫

Q10ρi (zi)

∣
∣
∣D2mw

∣
∣
∣
p
dz ≤ 2p

(

−
∫

Q10ρi (zi)

∣
∣
∣D2mv

∣
∣
∣
p
dz + −

∫

Q10ρi (zi)

∣
∣
∣D2mv

∣
∣
∣
p
dz

)

≤ 2p + C−
∫

Q10ρi (zi)

∣
∣fλ
∣
∣pdz ≤ C.

(3.23)

Thus from the elementary interior W2m,1
∞ regularity, we know that there exists a constant

N1 > 1 such that

sup
Q5ρi (zi)

∣
∣
∣D2mw

∣
∣
∣ ≤ N1. (3.24)

Set μ = λλ0. Therefore, we deduce from (3.5) and (3.24) that

∣
∣
∣
{
z ∈ Q5ρi(zi) :

∣
∣
∣D2mu

∣
∣
∣ > 2N1μ

}∣
∣
∣

=
∣
∣
∣
{
z ∈ Q5ρi(zi) :

∣
∣
∣D2muλ

∣
∣
∣ > 2N1

}∣
∣
∣

≤
∣
∣
∣
{
z ∈ Q5ρi(zi) :

∣
∣
∣D2mw

∣
∣
∣ > N1

}∣
∣
∣ +
∣
∣
∣
{
z ∈ Q5ρi(zi) :

∣
∣
∣D2mv

∣
∣
∣ > N1

}∣
∣
∣

=
∣
∣
∣
{
z ∈ Q5ρi(zi) :

∣
∣
∣D2mv

∣
∣
∣ > N1

}∣
∣
∣ ≤ 1

N
p

1

∫

Q5ρi (zi)

∣
∣
∣D2mv

∣
∣
∣
p
dz.

(3.25)

Then according to (3.18) and (3.21), we discover

∣
∣
∣
{
z ∈ Q5ρi(zi) :

∣
∣
∣D2mu

∣
∣
∣ > 2N1μ

}∣
∣
∣

≤ C

∫

Q10ρi (zi)

∣
∣fλ
∣
∣pdz ≤ Cε

∣
∣Q10ρi(zi)

∣
∣ = Cε

∣
∣Qρi(zi)

∣
∣.

(3.26)
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Therefore, from (3.10) in Lemma 3.3 we find that

∣
∣
∣
{
z ∈ Q5ρi(zi) :

∣
∣
∣D2mu

∣
∣
∣ > 2N1μ

}∣
∣
∣

≤ C

μp

(

ε

∫

{z∈Qρi
(zi):|D2mu|p>μp/4}

∣
∣
∣D2mu

∣
∣
∣
p
dz +

∫

{z∈Qρi
(zi):|f |>εμp/4}

∣
∣f
∣
∣pdz

)

,

(3.27)

where C = C(n,m). Recalling the fact that the cylinders {Qρi(zi)}i∈N
are disjoint,

⋃

i∈N

Q5ρi(zi) ∪ negligible set ⊃ Eλ(1) =
{
z ∈ R

n × (0,∞) :
∣
∣
∣D2muλ(z)

∣
∣
∣ > 1

}
, (3.28)

and then summing up on i ∈ N in the inequality above, we have

∣
∣
∣
{
z ∈ R

n × (0,∞) :
∣
∣
∣D2mu

∣
∣
∣ > 2N1μ

}∣
∣
∣

≤
∑

i∈N

∣
∣
∣
{
z ∈ Q5ρi(zi) :

∣
∣
∣D2mu

∣
∣
∣ > 2N1μ

}∣
∣
∣

≤ C

μp

(

ε

∫

{z∈Rn×(0,∞):|D2mu|p>μp/4}

∣
∣
∣D2mu

∣
∣
∣
p
dz +

∫

{z∈Rn×(0,∞):|f |>εμp/4}

∣
∣f
∣
∣p dz

)

.

(3.29)

Therefore, from Lemma 1.7(3) and the inequality above we have

∫

Rn×(0,∞)
φ
(∣
∣
∣D2mu

∣
∣
∣
)
dz

=
∫∞

0

∣
∣
∣
{
z ∈ R

n × (0,∞) :
∣
∣
∣D2mu

∣
∣
∣ > 2N1μ

}∣
∣
∣d
[
φ
(
2N1μ

)]

≤ Cε

∫∞

0

1
μp

{∫

{z∈Rn×(0,∞):|D2mu|p>μp/4}

∣
∣
∣D2mu

∣
∣
∣
p
dz

}

d
[
φ
(
2N1μ

)]

+ C

∫∞

0

1
μp

{∫

{z∈Rn×(0,∞):|f |>εμp/4}

∣
∣f
∣
∣pdz

}

d
[
φ
(
2N1μ

)]
.

(3.30)

Consequently, from Lemma 3.1 we conclude that

∫

Rn×(0,∞)
φ
(∣
∣
∣D2mu

∣
∣
∣
)
dz ≤ C1ε

∫

Rn×(0,∞)
φ
(∣
∣
∣D2mu

∣
∣
∣
)
dz + C2

∫

Rn×(0,∞)
φ
(∣
∣f
∣
∣
)
dz, (3.31)

where C1 = C1(n,m, φ) and C2 = C2(n,m, ε, φ). Finally selecting a suitable ε ∈ (0, 1) such that
C1ε ≤ 1/2, we finish the proof.
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