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We investigate the existence of periodic solutions of linear Hamiltonian systems with a nonlinear
perturbation. Under generalized Ahmad-Lazer-Paul type coercive conditions for the nonlinearity
on the kernel of the linear part, existence of periodic solutions is obtained by saddle point theorems.
A note on a result of Rabinowitz is also given.

1. Introduction

For the second-order Hamiltonian system

ü(t) +∇F(t, u(t)) = 0, u(0) − u(T) = u̇(0) − u̇(T) = 0, (1.1)

the existence of periodic solutions is related to the coercive conditions of F(t, u) on u. This
fact is first noticed by Berger and Schechter [1]who use the coercive condition F(t, u) → −∞
as |u| → ∞, uniformly for a.e. t ∈ [0, T]. Subsequently, Mawhin andWillem [2] consider it by
using more general coercive conditions of an integral form. More precisely, they assume that
F(t, u) : [0, T] × RN → RN is bounded ( |∇F(t, u)| ≤ g(t) for some g(t) ∈ L1(0, T))with some
additional technical conditions and satisfies one of the following Ahmad-Lazer-Paul type [3]
coercive conditions:

lim
‖u‖→∞ u∈RN

∫T

0
F(t, u)dt = ±∞, (1.2)



2 Boundary Value Problems

then they obtain the existence of at least one solution. How to relax the boundedness of F is a
problem which attracted several authors’ attention, for example, see [4, 5] and the references
therein.

In [6, 7], the nonlinearity is allowed to be unbounded and satisfy

|∇F(t, u)|≤ g(t)|u|α + h(t), (1.3)

where 0 ≤ α < 1 and g(t), h(t) ∈ L2(0, 2π) and satisfy one of the generalized Ahmad-Lazer-
Paul type coercive conditions

lim
‖u‖→∞ u∈ RN

‖u‖−2α
∫2π

0
F(t, u)dt = ±∞, (1.4)

the same results are obtained. In fact, a more general system is considered and the above
results are just a special case (as A = 0) of the results there. The conditions which are useful
to deal with problems (1.1) are used in recent years by several authors; see [4, 8] and the
references therein for some further information. For some recent developments of the second-
order systems (1.1), see [9].

In this paper, we use this kind of condition to consider the existence of periodic
solutions of first-order linear Hamiltonian system with a nonlinear perturbation

u̇ = JA(t)u + J∇G(u, t), (1.5)

where A(t) is a symmetric 2π-periodic 2N × 2N continuous matrix function, G(u, t) ∈
C1(R2N × R,R) is 2π-periodic for t, and J is the standard symplectic matrix

J =

(
0 −IN
IN 0

)
. (1.6)

The 2π-periodic solutions of the problem correspond to the critical points of the
functional

Φ(u) =
1
2

∫2π

0
(−Ju̇ −A(t)u) · udt −

∫2π

0
G(u, t)dt (1.7)

on the Hilbert space E := W1/2(S1,R2N). We recall that E is a Sobolev space of 2π-periodic
R2N-valued functions

u(t) = a0 +
∞∑
k=1

ak cos kt + bk sin kt, a0, ak, bk ∈ R2N (1.8)

with inner product

((
u, u′)) := 2πa0 · a′

0 + π
∞∑
k=1

k
(
aka

′
k + bkb

′
k

)
, (1.9)
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and E is compactly (hence continuously) imbedded into Ls(S1,R2N) for every s ≥ 1 [10]. That
is for every s ≥ 1

E ⊂⊂ Ls
(
S1,R2N

)
. (1.10)

A compact self-adjoint operator on E can be defined by

((Vu,w)) :=
∫2π

0
A(t)u ·wdt. (1.11)

Define another self-adjoint operator on E

((Uu,w)) :=
∫2π

0
−Ju̇ ·wdt, (1.12)

and denote U − V by L. Hence Φ(u) has the form

Φ(u) =
1
2
((Lu, u)) − ϕ(u), (1.13)

where ϕ(u) =
∫2π
0 G(u, t)dt.

We make the following assumptions.

(G1) There exists 0 ≤ α < 1 such that ∇G(u, t) = O(|u|α) + O(1) uniformly for t ∈
[0, 2π], u ∈ R.

(G2) ∇G(u, t) = o(|u|) uniformly for t ∈ [0, 2π] as |u| → ∞.

(G±)G+G−

lim
‖u‖→∞, u∈N(L)

∫2π
0 G(u(t), t)dt

‖u‖2α
= +∞, (G+)

lim
‖u‖→∞, u∈N(L)

∫2π
0 G(u(t), t)dt

‖u‖2α
= −∞, (G−)

where N(L) = {u ∈ E | Lu = 0}. It is easily seen that u ∈ N(L) if and only if u ∈ E
is a 2π-periodic solution of the following linear problem:

u̇ = JA(t)u. (1.14)

It is a standard result that the self-adjoint operator L on E has discrete eigenvalues:
· · · ≤ λ−2 ≤ λ−1 < 0(λ0) < λ1 ≤ λ2 ≤ · · · . Let e±j denote the eigenvectors of L corresponding to
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λ±j , respectively. Define Ẽ = spanj≥1{e+j}, E = spanj≥1{e−j}, and E0 = kerL. Hence there exists

a decomposition E = E ⊕ E0 ⊕ Ẽ, where dim E0 < ∞ and Ẽ, E are all infinite dimensional.
Denote correspondingly for every u ∈ E, u = u+u0 + ũ. It is more convenient to introduce the
following equivalent inner product on E. For u, v ∈ E, u = u+u0 + ũ, v = v +v0 + ṽ, we define

(u, v) = ((Lũ, ũ)) − ((Lu, u)) +
((

u0, v0
))

. (1.15)

The induced norm is still denoted by ‖ · ‖. Then Φ(u) has the form

Φ(u) =
1
2
‖ũ‖2 − 1

2
‖u‖2 − ϕ(u). (1.16)

Now we can state the main results of the paper.

Theorem 1.1. Suppose that the condition (G1) holds. Furthermore, we assume that one of the
conditions (G±) holds. Then the Hamiltonian system (1.5) has at least one 2π-periodic solution.

Theorem 1.2. Assume that the linear problem (1.14) has only the trivial 2π-periodic solution u = 0
and the condition (G2) holds. Then the Hamiltonian system (1.5) has at least one 2π-periodic solution.

Remark 1.3. Theorem 1.2 is essentially known in the literature by various methods, for
example, see [11–15]. Here we prove it and Theorem 1.1 by using variational methods in
a united framework.

Remark 1.4. When one of the conditions (G±) holds, the critical groups at infinity for the
functional (1.16) can be clearly computed, for example, see [8, 16] or [17] for the bounded
nonlinearity. Hence at least one critical point ofΦ(u) can be obtained. But for the use of Morse
theory, more regularity restrictions than those in the above theorems about G(t, u) have to be
used.

2. Proofs the Theorems

As to the investigation of (1.1), we need to use the saddle point theorem in the variational
methods. But contrary to the functional corresponding to (1.1), which is semidefinite, the
functional Φ(u) is strongly indefinite which means that the positive and negative indees for
the linear part are all infinite. Hence we need another version of the saddle point theorem
(see Theorem 5.29 and Example 5.22 in [10])which we state here.

Theorem 2.1. Let E be a real Hilbert space with E = E1 ⊕ E2 and E2 = E⊥
1 . Suppose Φ ∈ C1(E,R)

satisfies (PS) condition and

(1) Φ(u) = (1/2)(Lu,u)+ b(u), where Lu = L1P1u+L2P2u and Li : Ei → Ei are bounded and
self-adjoint, i = 1, 2,

(2) b′ is compact,

(3) there are constants α > ω such that

I |(E2 ) ≥ α, I |∂Q ≤ ω, Q = B ∩ E1, B is a ball in E1. (2.1)

Then Φ possesses a critical value c ≥ α.
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Proof of Theorem 1.1. We use Theorem 2.1. and only consider the case where (G+) holds. The
other case can be similarly treated. Set E = E1 ⊕ E2 =: (E ⊕ E0) ⊕ Ẽ. It is clear that conditions
(1) and (2) in Theorem 2.1 hold. Now we prove that the functional Φ satisfies PS condition
on E. In the following, C denotes a universal positive constant, and 〈·, ·〉 denotes the paring
between E′ and E.

Suppose that Φ′(un) → 0 as n → ∞ and |Φ(un)| ≤ C, for all n ≥ 1.

C‖un‖ ≥ ∣∣〈Φ′(un),−un

〉∣∣

=

∣∣∣∣∣(un, un) +
∫2π

0
∇G(t, un)un

∣∣∣∣∣

≥ ‖un‖2 −
∫2π

0

(
C + C

∣∣∣un + u0
n + ũn

∣∣∣α)|un|dt

≥ ‖un‖2 − C‖un‖ − C

∫2π

0

(
|un|1+α +

∣∣∣u0
n

∣∣∣α|un| + |ũn|α|un|
)
dt

≥ ‖un‖2 − C‖un‖ − C‖un‖1+α − C
∥∥∥u0

n

∥∥∥α
‖un‖ − ε‖un‖2 − C(ε)‖ũn‖2α

(2.2)

≥ 1
2
‖un‖2 − C

∥∥∥u0
n

∥∥∥α
‖un‖ − C‖ũn‖2α, (2.3)

for every ε > 0.
In the proof of (2.2), we use the imbedding result (1.10), the finite dimensionality of

E0, and Young inequality. In the proof of

∫2π

0

(|ũn|α|un|
)
dt ≤ ε‖un‖2 + C(ε)‖ũn‖2α, (2.4)

we need a little bit of caution. First, as α = 0, it is clear. Hence we suppose that 0 < α < 1.
Choosing p > 1 sufficiently large such that pα > 1, then using Hölder inequality and the
imbedding result (1.10), we have

∫2π

0

(|ũn|α|un|
)
dt ≤

(∫2π

0
|ũn|pα

)1/p(∫2π

0
|un|q

)1/q

≤ ‖ũn‖α‖un‖, (2.5)

where 1/p + 1/q = 1.
Hence from (2.3),we get

‖un‖2 ≤ C
∥∥∥u0

n

∥∥∥2α
+ C‖ũn‖2α. (2.6)

By estimating 〈Φ′(un), ũn〉 and a similar argument as above, we can get

‖ũn‖2 ≤ C
∥∥∥u0

n

∥∥∥2α
+ C‖un‖2α. (2.7)
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Combining (2.6) and (2.7) and noticing the fact that 0 ≤ α < 1, we have

‖un‖2 ≤ C
∥∥u0

n

∥∥2α
,

‖ũn‖2 ≤ C
∥∥u0

n

∥∥2α
.

(2.8)

In order to prove that {‖u0
n‖} and hence {‖un‖} are bounded, we need much work.

By (2.8), we have

−C ≤ Φ(un)

=
1
2
‖ũn‖2 − 1

2
‖un‖2 −

∫2π

0
G(t, un)dt

≤ C
∥∥∥u0

n

∥∥∥2α −
∫2π

0

[
G(t, un) −G

(
t, u0

n

)]
dt +

∫2π

0
G
(
t, u0

n

)
dt.

(2.9)

We want to prove that

∣∣∣∣∣
∫2π

0

[
G(t, un) −G

(
t, u0

n

)]
dt

∣∣∣∣∣ ≤ C
∥∥∥u0

n

∥∥∥2α
+ C. (2.10)

In fact

∣∣∣∣∣
∫2π

0

[
G(t, un) −G

(
t, u0

n

)]
dt

∣∣∣∣∣ =
∣∣∣∣∣
∫2π

0

(∫1

0
∇G

(
t, u0

n + s(ũn + un)(ũn + un)
)
ds

)
dt

∣∣∣∣∣

≤
∫2π

0
(C + C

(∣∣∣u0
n

∣∣∣α + |ũn|α + |un|α
)
|ũn + un|dt.

(2.11)

Now, to get (2.10), we use a similar argument as that in the proof of (2.2) and the
inequalities (2.8).

Hence we get the inequality

−C ≤ C
∥∥∥u0

n

∥∥∥2α −
∫2π

0
G
(
t, u0

n

)
dt. (2.12)

Hence by condition (G+) and Lemma 3.1 in [6] or by a direct reasoning, we have that
{‖u0

n‖}must be bounded. So {‖un‖} is bounded in E by (2.8). Using a same argument in [10],
we prove that Φ satisfies the PS condition on E.

Finally we verify the conditions (3) in Theorem 2.1.
Recall that we set E = E1 ⊕ E2 =: (E ⊕ E0) ⊕ Ẽ.
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As u ∈ Ẽ, u = ũ, we have

Φ(u) =
1
2
‖ũ‖2 −

∫2π

0
G(t, ũ)dt

=
1
2
‖ũ‖2 −

∫2π

0
G(t, 0)dt −

∫2π

0
(G(t, ũ) −G(t, 0))dt

=
1
2
‖ũ‖2 −

∫2π

0
G(t, 0)dt −

∫2π

0

(∫1

0
∇G(t, sũ)ũ ds

)
dt

≥ 1
2
‖ũ‖2 − C − C‖ũ‖1+α,

(2.13)

where we used condition (G1). Noticing that α < 1, we have that Φ(u) is bounded below on
Ẽ.

As u ∈ E ⊕ E0, u = u + u0, we have

Φ(u) = −1
2
‖u‖2 −

∫2π

0
G(t, u)dt

= −1
2
‖u‖2 −

∫2π

0
G
(
t, u0

)
dt −

∫2π

0

(
G(t, u) −G

(
t, u0

))
dt

= −1
2
‖u‖2 −

∫2π

0
G
(
t, u0

)
dt −

∫2π

0

(∫1

0
∇G

(
t, u0 + su

)
uds

)
dt

≤ −1
4
‖u‖2 −

∫2π

0
G
(
t, u0

)
dt + C

∥∥∥u0
∥∥∥2α

+ C,

(2.14)

where we used Young inequality and condition (G1) and omitted some simple details. Hence
Φ(u) → −∞ as u ∈ E ⊕ E0 and ‖u‖ → ∞, by condition (G+).

This completes the proof.

Proof of Theorem 1.2. We still use Theorem 2.1. and only consider the case where (G+) holds.
Under the assumption of the theorem, E0 = 0. We set E = E1 ⊕ E2 =: E ⊕ Ẽ. It is clear that
conditions (1) and (2) in Theorem 2.1 hold. Now we prove that the functional Φ satisfies PS
condition on E.

By (G2), for every ε > 0, there exists C(ε) > 0 such that

|∇G(t, u)| ≤ ε|u| + C(ε) (2.15)

for all t ∈ R, u ∈ R2N .
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Suppose that Φ′(un) → 0 as n → ∞ and |Φ(un)| ≤ C.

C‖un‖ ≥ ∣∣〈Φ′(un),−un

〉∣∣

=

∣∣∣∣∣(un, un) +
∫2π

0
∇G(t, un)undt

∣∣∣∣∣

≥ ‖un‖2 −
∫2π

0
(ε|un| + C(ε))|un|dt

≥ ‖un‖2 − Cε‖un‖2 − Cε‖un‖2 − Cε‖ũn‖2 − C(ε)‖un‖.

(2.16)

Hence we get

‖un‖2 ≤ Cε‖ũn‖2 + C(ε). (2.17)

Similarly, by estimating 〈Φ′(un),−ũn〉, we can get

‖ũn‖2 ≤ Cε‖un‖2 + C(ε). (2.18)

By combining the above two inequalities and fixing ε > 0 small, we get that {‖un‖} is
bounded in E. Hence an argument in [10] shows that the PS condition hold.

As u ∈ Ẽ, u = ũ, we have

Φ(u) =
1
2
‖ũ‖2 −

∫2π

0
G(t, ũ)dt

=
1
2
‖ũ‖2 −

∫2π

0
G(t, 0)dt −

∫2π

0

(∫1

0
∇G(t, sũ)ũ ds

)
dt

≥ 1
2
‖ũ‖2 − C(ε) − Cε‖ũ‖2.

(2.19)

As u ∈ E, we have

Φ(u) = −1
2
‖u‖2 −

∫2π

0
G(t, u)dt

= −1
2
‖u‖2 −

∫2π

0
G(t, 0)dt −

∫2π

0

(∫1

0
∇G(t, su)uds

)
dt

≤ −1
2
‖u‖2 + Cε‖u‖2 + C(ε).

(2.20)

By fixing ε > 0 such that Cε < 1/2, we get that the conditions (3) in Theorem 2.1 hold.
Hence we complete the proof.
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Remark 2.2. In order to check the conditions (G±) involving the unknown functions in the
kernel N(L), we present the following proposition.

Proposition 2.3. Suppose that ∇G(t, u) satisfies (G1) and there exist β(t), γ(t) ∈ L1(0, 2π) such
that the following limits are uniform for a.e. t ∈ [0, 2π]:

β(t) ≤ lim inf
|u|→∞

(∇G(t, u), u)

|u|1+α
≤ lim sup

|u|→∞

(∇G(t, u), u)

|u|1+α
≤ γ(t). (2.21)

Then (i) if β(t) ≥ 0, a.e. t ∈ [0, 2π] and
∫2π
0 β(t)dt > 0, (G+) holds; (ii) if γ(t) ≤ 0, a.e. t ∈ [0, 2π]

and
∫2π
0 γ(t)dt < 0, (G−) holds.

Proof. The case (i) is proved in [4] and the case (ii) can be similarly proved.

3. A Note on a Result of Rabinowitz

In this Section, we give a note about a result in [18]. Following the same method, we will
prove the following result.

Theorem 3.1. Let G(t, u) satisfy the following conditions: (1)G(t, u) ≥ 0 for all t ∈ [0, 2π] and
u ∈ R2N , (2)G(t, u) = o(|u|2) as u → 0, uniformly for t ∈ [0, 2π], (3) there exists μ > 2, r and
1 < μ∗ < μ such that

0 < μG(t, u) ≤ u∇G(t, u), (3.1)

|∇G(t, u)| ≤ C|u|μ∗
, (3.2)

for all |u| ≥ r and t ∈ [0, 2π]. Then (1.5) has at least one nonzero 2π-periodic solution.

Remark 3.2. When the condition (3.2) is replaced by the following one there are constants
α,R1 > 0 such that |∇G(t, u)| ≤ α(u,∇G(t, u)) for all t ∈ R, u ∈ R2N , |u| > R1. The above
result is proved by Rabinowitz [18]. When the condition (3.2) is replaced by a condition
which measures the difference of the system from an autonomous one, the problem is also
considered by [19].

Proof of Theorem 3.1. We basically follow the same method as that in [10, 18]. But under
the condition (3.2), we do not need the truncation method there and just use a variant of
Theorem 2.1 (generalized mountain pass lemma).

As in Section 1, the solutions of (1.5) correspond to the critical points of

Φ(u) =
1
2
‖ũ‖2 − 1

2
‖u‖2 −

∫2π

0
G(t, u)dt (3.3)

on E. We divide the proof to several steps.
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Step 1. Conditions (1) and (2) in Theorem 2.1 hold. It is clear.

Step 2. Set E = E1 ⊕ E2 =: (E ⊕ E0) ⊕ Ẽ. By conditions (2) and (3), for every ε > 0, there exists
C(ε) > 0 such that

|∇G(t, u)| ≤ ε|u|2 + C(ε)|u|μ∗+1, (3.4)

for all t ∈ R, u ∈ R2N . Hence, as u ∈ Ẽ, we have

Φ(u) ≥ 1
2
‖u‖2 − Cε‖u‖2 − C(ε)‖u‖μ∗+1. (3.5)

Hence by fixing ε > 0 small, we can obtain ρ > 0, τ > 0 such that Φ(u) ≥ τ > 0 for all
u ∈ ∂Bρ ∩ E1.

Step 3. Choose e ∈ ∂Bρ ∩E1 and setQ = {re | 0 ≤ r ≤ r1}⊕ (Br2 ∩E2). Define E∗ = span{e}⊕E2

so Q ⊂ E∗. Using a same method as [10, Lemma 6.20], we have Φ(u) ≤ 0 on ∂Q after suitable
choices of r1 and r2, where the boundary is taken in E∗.

Step 4. By condition (3.1), we have

G(t, u) ≥ C|u|μ − C, (3.6)

for some C > 0 and all t ∈ R, u ∈ R2N .

Now we verify the PS condition.
Suppose that Φ′(un) → 0 as n → ∞ and |Φ(un)| ≤ C, for all n ≥ 1.Then

C + ‖un‖ ≥ Φ(un) − 1
2
Φ′(un)un

=
∫2π

0

(
1
2
un · ∇G(t, un) −G(t, un)

)
dt

≥
(
1
2
− 1
μ

)∫2π

0
un · ∇G(t, un)dt − C

≥ C‖un‖μLμ − C,

(3.7)

for some C > 0. Furthermore, by (3.7), we have

C + ‖un‖ ≥ C
(
‖un‖2L2

)μ/2 ≥ C
∥∥∥u0

n

∥∥∥μ

L2
≥ C

∥∥∥u0
n

∥∥∥μ
. (3.8)
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Now we turn to estimate other terms.

‖ũn‖2 =
∣∣∣∣∣
〈
Φ′(un), ũn

〉
+
∫2π

0
∇G(t, un)ũndt

∣∣∣∣∣

≤
∫2π

0
|un|μ

∗ |ũn|dt + C‖ũn‖

≤ C‖un‖μ
∗

Lμ‖ũn‖ + C‖ũn‖.

(3.9)

Hence

‖ũn‖ ≤ C‖un‖μ
∗

Lμ + C. (3.10)

Therefore, using (3.7), we get

‖ũn‖ ≤ C‖un‖μ
∗/μ + C. (3.11)

Similarly, we also have

‖un‖ ≤ C‖un‖μ
∗/μ + C. (3.12)

Combining (3.8), (3.11), and (3.12), we have

‖un‖ ≤ C‖un‖1/μ + C‖un‖μ
∗/μ + C. (3.13)

Hence {‖un‖}must be bounded. By a standard argument, the PS condition holds.
Now the theorem is proved by Theorem 5.29 in [10].
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