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This paper investigates the exponential-type stability of linear neutral delay differential systems
with constant coefficients using Lyapunov-Krasovskii type functionals, more general than those
reported in the literature. Delay-dependent conditions sufficient for the stability are formulated in
terms of positivity of auxiliary matrices. The approach developed is used to characterize the decay
of solutions (by inequalities for the norm of an arbitrary solution and its derivative) in the case of
stability, as well as in a general case. Illustrative examples are shown and comparisons with known
results are given.

1. Introduction

This paper will provide estimates of solutions of linear systems of neutral differential
equations with constant coefficients and a constant delay:

ẋ(t) = Dẋ(t − τ) +Ax(t) + Bx(t − τ), (1.1)

where t ≥ 0 is an independent variable, τ > 0 is a constant delay,A,B, andD are n×n constant
matrices, and x : [−τ,∞) → R

n is a column vector-solution. The sign “·” denotes the left-
hand derivative. Let ϕ : [−τ, 0] → R

n be a continuously differentiable vector-function. The
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solution x = x(t) of problem (1.1), (1.2) on [−τ,∞) where

x(t) = ϕ(t), ẋ(t) = ϕ̇(t), t ∈ [−τ, 0] (1.2)

is defined in the classical sense (we refer, e.g., to [1]) as a function continuous on [−τ,∞)
continuously differentiable on [−τ,∞) except for points τp, p = 0, 1, . . ., and satisfying (1.1)
everywhere on [0,∞) except for points τp, p = 0, 1, . . ..

The paper finds an estimate of the norm of the difference between a solution x = x(t)
of problem (1.1), (1.2) and the steady state x(t) ≡ 0 at an arbitrary moment t ≥ 0.

Let F be a rectangular matrix. We will use the matrix norm:

‖F‖ :=
√
λmax

(FTF), (1.3)

where the symbol λmax(FTF) denotes the maximal eigenvalue of the corresponding square
symmetric positive semidefinite matrix FTF. Similarly, λmin(FTF) denotes the minimal
eigenvalue of FTF. We will use the following vector norms:

‖x(t)‖ :=

√√√√ n∑
i=1

x2
i (t),

‖x(t)‖τ := sup
−r≤s≤0

{‖x(s + t)‖},

‖x(t)‖τ,β :=
√∫ t

t−r
e−β(t−s)‖x(s)‖2ds,

(1.4)

where β is a parameter.
The most frequently used method for investigating the stability of functional-

differential systems is the method of Lyapunov-Krasovskii functionals [2, 3]. Usually, it uses
positive definite functionals of a quadratic form generated from terms of (1.1) and the integral
(over the interval of delay [4]) of a quadratic form. A possible form of such a functional is
then

[x(t) −Dx(t − τ)]TH[x(t) −Dx(t − τ)] +
∫ t

t−τ
xT (s)Gx(s)ds, (1.5)

where H and G are suitable n × n positive definite matrices.
Regarding the functionals of the form (1.5), we should underline the following. Using

a functional (1.5), we can only obtain propositions concerning the stability. Statements such
as that the expression

∫ t

t−τ
xT (s)Gx(s)ds (1.6)

is bounded from above are of an integral type. Because the terms [x(t) − Dx(t − τ)] in (1.5)
contain differences, they do not imply the boundedness of the norm of x(t) itself.
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Literature on the stability and estimation of solutions of neutral differential equations
is enormous. Tracing previous investigations on this topic, we emphasize that a Lyapunov
function v(x) = xTHx has been used to investigate the stability of systems (1.1) in [5] (see
[6] as well). The stability of linear neutral systems of type (1.1), but with different delays h1

and h2, is studied in [1] where a functional

‖x(t)‖ + c1

∫ t

t−h1

‖x(s)‖ds + c2

∫ t

t−h2

‖ẋ(s)‖ds (1.7)

is used with suitable constants c1 and c2. In [7, 8], functionals depending on derivatives
are also suggested for investigating the asymptotic stability of neutral nonlinear systems.
The investigation of nonlinear neutral delayed systems with two time dependent bounded
delays in [9] to determine the global asymptotic and exponential stability uses, for example,
functionals

xT (t)Px(t) +
∫0

−h1

xT (t + s)Qx(s)ds +
∫0

−h2

ẋT (t + s)ẋ(t + s)ds,

e2γtxT (t)Px(t) +
∫0

−h1

e2γ(t+s)xT (t + s)Qx(s)ds +
∫0

−h2

e2γ(t+s)ẋT (t + s)ẋ(t + s)ds,

(1.8)

where P and Q are positive matrices and γ is a positive scalar.
Delay independent criteria of stability for some classes of delay neutral systems are

developed in [10]. The stability of systems (1.1) with time dependent delays is investigated
in [11]. For recent results on the stability of neutral equations, see [9, 12] and the references
therein. The works in [12, 13] deal with delay independent criteria of the asymptotical
stability of systems (1.1).

In this paper, we will use Lyapunov-Krasovskii quadratic type functionals of the
dependent coordinates and their derivatives

V0[x(t), t] = xT (t)Hx(t) +
∫ t

t−τ
e−β(t−s)

[
xT (s)G1x(s) + ẋT (s)G2ẋ(s)

]
ds (1.9)

and V [x(t), t] = eptV0[x(t), t], that is,

V [x(t), t] = ept
[
xT (t)Hx(t) +

∫ t

t−τ
e−β(t−s)

[
xT (s)G1x(s) + ẋ2(s)G2ẋ

2(s)
]
ds

]
, (1.10)

where x is a solution of (1.1), β and p are real parameters, the n × x matrices H, G1, and
G2 are positive definite, and t > 0. The form of functionals (1.9) and (1.10) is suggested
by the functionals (1.7)-(1.8). Although many approaches in the literature are used to judge
the stability, our approach, among others, in addition to determining whether the system
(1.1) is exponentially stable, also gives delay-dependent estimates of solutions in terms of
the norms ‖x(t)‖ and ‖ẋ(t)‖ even in the case of instability. An estimate of the norm ‖ẋ(t)‖
can be achieved by reducing the initial neutral system (1.1) to a neutral system having the
same solution on the intervals indicated in which the “neutrality” is concentrated only on the
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initial interval. If, in the literature, estimates of solutions are given, then, as a rule, estimates
of derivatives are not investigated.

To the best of our knowledge, the general functionals (1.9) and (1.10) have not yet
been applied as suggested to the study of stability and estimates of solutions of (1.1).

2. Exponential Stability and Estimates of the Convergence of
Solutions to Stable Systems

First we give two definitions of stability to be used later on.

Definition 2.1. The zero solution of the system of equations of neutral type (1.1) is called
exponentially stable in the metric C0 if there exist constants Ni > 0, i = 1, 2 and μ > 0 such
that, for an arbitrary solution x = x(t) of (1.1), the inequality

‖x(t)‖ ≤ [N1‖x(0)‖τ +N2‖ẋ(0)‖τ]e−μt (2.1)

holds for t > 0.

Definition 2.2. The zero solution of the system of equations of neutral type (1.1) is called
exponentially stable in the metric C1 if it is stable in the metric C0 and, moreover, there exist
constants Ri > 0, i = 1, 2, and ν > 0 such that, for an arbitrary solution x = x(t) of (1.1), the
inequality

‖ẋ(t)‖≤ [R1‖x(0)‖τ + R2‖ẋ(0)‖τ]e−νt (2.2)

holds for t > 0.

We will give estimates of solutions of the linear system (1.1) on the interval (0,∞)
using the functional (1.9). Then it is easy to see that an inequality

λmin(H)‖x(t)‖2 +
∫ t

t−τ
e−β(t−s)

[
xT (s)G1x(s) + ẋT (s)G2x(s)

]
ds

≤ V0[x(t), t]

≤ λmax(H)‖x(t)‖2 +
∫ t

t−τ
e−β(t−s)

[
xT (s)G1x(s) + ẋT (s)G2x(s)

]
ds

(2.3)

holds on (0,∞). We will use an auxiliary 3n × 3n-dimensional matrix:

S = S
(
β,G1, G2,H

)

:=

⎛
⎜⎜⎝

−ATH −HA −G1 −ATG2A −HB −ATG2B −HD −ATG2D

−BTH − BTG2A e−βτG1 − BTG2B −BTG2D

−DTH −DTG2A −DTG2B e−βτG2 −DTG2D

⎞
⎟⎟⎠,

(2.4)
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depending on the parameter β and the matrices G1, G2, H. Next we will use the numbers

ϕ(H) :=
λmax(H)
λmin(H)

, ϕ1(G1,H) :=
λmax(G1)
λmin(H)

, ϕ2(G2,H) :=
λmax(G2)
λmin(H)

. (2.5)

The following lemma gives a representation of the linear neutral system (1.1) on an interval
[(m−1)τ,mτ] in terms of a delayed system derived by an iterative process. We will adopt the
customary notation

∑k
i=k+s O(i) = 0 where k is an integer, s is a positive integer, andO denotes

the function considered independently of whether it is defined for the arguments indicated
or not.

Lemma 2.3. Let m be a positive integer and t ∈ [(m − 1)τ,mτ). Then a solution x = x(t) of the
initial problem (1.1), (1.2) is a solution of the delayed system

ẋ(t) = Dmẋ(t −mτ) +Ax(t) + (DA + B)
m−1∑
i=1

Di−1x(t − iτ) +Dm−1Bx(t −mτ) (2.6)

for t ∈ [(m − 1)τ,mτ) where x(t −mτ) = ϕ(t −mτ) and ẋ(t −mτ) = ϕ̇(t −mτ).

Proof. For m = 1 the statement is obvious. If t ∈ [τ, 2τ), replacing t by t − τ , system (1.1) will
turn into

ẋ(t − τ) = Dẋ(t − 2τ) +Ax(t − τ) + Bx(t − 2τ). (2.7)

Substituting (2.7) into (1.1), we obtain the following system of equations:

ẋ(t) = D2ẋ(t − 2τ) +Ax(t) + (DA + B)x(t − τ) +DBx(t − 2τ), (2.8)

where t ∈ [τ, 2τ). If t ∈ [2τ, 3τ), replacing t by t − τ in (2.7), we get

ẋ(t − 2τ) = Dẋ(t − 3τ) +Ax(t − 2τ) + Bx(t − 3τ). (2.9)

We do one more iteration substituting (2.9) into (2.8), obtaining

ẋ(t) = D3ẋ(t − 3τ) +Ax(t) + (DA + B)x(t − τ)

+D(DA + B)x(t − 2τ) +D2Bx(t − 3τ)
(2.10)

for t ∈ [2τ, 3τ). Repeating this procedure (m − 1)-times, we get the equation

ẋ(t) = Dmẋ(t −mτ) +Ax(t) + (DA + B)
m−1∑
i=1

Di−1x(t − iτ) +Dm−1Bx(t −mτ) (2.11)

for t ∈ [(m − 1)τ,mτ) coinciding with (2.6).
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Remark 2.4. The advantage of representing a solution of the initial problem (1.1), (1.2) as a
solution of (2.6) is that, although (2.6) remains to be a neutral system, its right-hand side does
not explicitly depend on the derivative ẋ(t) for t ∈ [0, mτ] depending only on the derivative
of the initial function on the initial interval [−τ, 0).

Now we give a statement on the stability of the zero solution of system (1.1) and
estimates of the convergence of the solution, which wewill prove using Lyapunov-Krasovskii
functional (1.9).

Theorem 2.5. Let there exist a parameter β > 0 and positive definite matrices G1, G2, H such that
matrix S is also positive definite. Then the zero solution of system (1.1) is exponentially stable in the
metric C0. Moreover, for the solution x = x(t) of (1.1), (1.2) the inequality

‖x(t)‖ ≤
[√

ϕ(H)‖x(0)‖ +
√
τϕ1(G1,H)‖x(0)‖τ +

√
τϕ2(G2,H) ‖ẋ(0)‖τ

]
e−γt/2 (2.12)

holds on (0,∞) where γ ≤ γ0 := min(β, λmin(S)/λmax(H)).

Proof. Let t > 0. We will calculate the full derivative of the functional (1.9) along the solutions
of system (1.1). We obtain

d
dt

V0[x(t), t] = [Dẋ(t − τ) +Ax(t) + Bx(t − τ)]THx(t)

+ xT (t)H[Dẋ(t − τ) +Ax(t) + Bx(t − τ)]

+
[
xT (t)G1x(t) − e−βτxT (t − τ)G1x(t − τ)

]

+
[
ẋT (t)G2ẋ(t) − e−βτ ẋT (t − τ)G2ẋ(t − τ)

]

− β

∫ t

t−τ
e−β(t−s)

[
xT (s)G1x(s) + ẋT (s)G2ẋ(s)

]
ds.

(2.13)

For ẋ(t), we substitute its value from (1.1) to obtain

d
dt

V0[x(t), t] = [Dẋ(t − τ) +Ax(t) + Bx(t − τ)]THx(t)

+ xT (t)H[Dẋ(t − τ) +Ax(t) + Bx(t − τ)]

+
[
xT (t)G1x(t) − e−βτxT (t − τ)G1x(t − τ)

]

+ [Dẋ(t − τ) +Ax(t) + Bx(t − τ)]TG2[Dẋ(t − τ) +Ax(t) + Bx(t − τ)]

− e−βτ ẋT (t − τ)G2ẋ(t − τ)

− β

∫ t

t−τ
e−β(t−s)

[
xT (s)G1x(s) + ẋT (s)G2ẋ(s)

]
ds.

(2.14)
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Now it is easy to verify that the last expression can be rewritten as

d
dt

V0[x(t), t] = −
(
xT (t), xT (t − τ), ẋT (t − τ)

)

×

⎛
⎜⎜⎝

−ATH −HA −G1 −ATG2A −HB −ATG2B −HD −ATG2D

−BTH − BTG2A e−βτG1 − BTG2B −BTG2D

−DTH −DTG2A −DTG2B e−βτG2 −DTG2D

⎞
⎟⎟⎠

×

⎛
⎜⎜⎝

x(t)

x(t − τ)

ẋ(t − τ)

⎞
⎟⎟⎠ − β

∫ t

t−τ
e−β(t−s)

[
xT (s)G1x(s) + ẋT (s)G2ẋ(s)

]
ds

(2.15)

or

d
dt

V0[x(t), t] = −
(
xT (t), xT (t − τ), ẋT (t − τ)

)
× S ×

⎛
⎜⎜⎝

x(t)

x(t − τ)

ẋ(t − τ)

⎞
⎟⎟⎠

− β

∫ t

t−τ
e−β(t−s)

[
xT (s)G1x(s) + ẋT (s)G2ẋ(s)

]
ds.

(2.16)

Since the matrix S was assumed to be positive definite, for the full derivative of Lyapunov-
Krasovskii functional (1.9), we obtain the following inequality:

d
dt

V0[x(t), t] ≤ −λmin(S)
[
‖x(t)‖2 + ‖x(t − τ)‖2 + ‖ẋ(t − τ)‖2

]

− β

∫ t

t−τ
e−β(t−s)

[
xT (s)G1x(s) + ẋT (s)G2ẋ(s)

]
ds.

(2.17)

We will study the two possible cases (depending on the positive value of β): either

β >
λmin(S)
λmax(H)

(2.18)

is valid or

β ≤ λmin(S)
λmax(H)

(2.19)

holds.
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(1) Let (2.18) be valid. From (2.3) follows that

−‖x(t)‖2 ≤ − 1
λmax(H)

V0[x(t), t]

+
1

λmax(H)

∫ t

t−τ
e−β(t−s)

[
xT (s)G1x(s) + ẋT (s)G2ẋ(s)

]
ds.

(2.20)

We use this expression in (2.17). Since λmin(S) > 0, we obtain (omitting terms ‖x(t − τ)‖2 and
‖ẋ(t − τ)‖2)

d
dt

V0[x(t), t] ≤ λmin(S)

×
[
− 1
λmax(H)

V0[x(t), t] +
1

λmax(H)

∫ t

t−τ
e−β(t−s)

[
xT (s)G1x(s) + ẋT (s)G2ẋ(s)

]
ds

]

− β

∫ t

t−τ
e−β(t−s)

[
xT (s)G1x(s) + ẋT (s)G2ẋ(s)

]
ds

(2.21)

or

d
dt

V0[x(t), t] ≤ − λmin(S)
λmax(H)

V0[x(t), t]

−
[
β − λmin(S)

λmax(H)

] ∫ t

t−τ
e−β(t−s)

[
xT (s)G1x(s) + ẋT (s)G2ẋ(s)

]
ds.

(2.22)

Due to (2.18)we have

d
dt

V0[x(t), t] ≤ − λmin(S)
λmax(H)

V0[x(t), t]. (2.23)

Integrating this inequality over the interval (0, t), we get

V0[x(t), t] ≤ V0[x(0), 0] exp
(
− λmin(S)
λmax(H)

· t
)

≤ V0[x(0), 0]e−γ0t. (2.24)

(2) Let (2.19) be valid. From (2.3) we get

−
∫ t

t−τ
e−β(t−s)

[
xT (s)G1x(s) + ẋT (s)G2ẋ(s)

]
ds ≤ −V0[x(t), t] + λmax(H) ‖x(t)‖2. (2.25)

We substitute this expression into inequality (2.17). Since λmin(S) > 0, we obtain (omitting
terms ‖x(t − τ)‖2 and ‖ẋ(t − τ)‖2)

d
dt

V0[x(t), t] ≤ −λmin(S)‖x(t)‖2 + β
[
−V0[x(t), t] + λmax(H)‖x(t)‖2

]
(2.26)
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or

d
dt

V0[x(t), t] ≤ −βV0[x(t), t] −
(
λmin(S) − βλmax(H)

)‖x(t)‖2. (2.27)

Since (2.19) holds, we have

d
dt

V0[x(t), t] ≤ −βV0[x(t), t]. (2.28)

Integrating this inequality over the interval (0, t), we get

V0[x(t), t] ≤ V0[x(0), 0]e−βt ≤ V0[x(0), 0]e−γ0t. (2.29)

Combining inequalities (2.24), (2.29), we conclude that, in both cases (2.18), (2.19), we
have

V0[x(t), t] ≤ V0[x(0), 0]e−γ0t ≤ V0[x(0), 0]e−γt (2.30)

and, obviously (see (1.9)),

V0[x(0), 0] ≤ λmax(H)‖x(0)‖2 + λmax(G1)‖x(0)‖2τ,β + λmax(G2)‖ẋ(0)‖2τ,β. (2.31)

Weuse inequality (2.30) to obtain an estimate of the convergence of solutions of system
(1.1). From (2.3) follows that

‖x(t)‖2 ≤ 1
λmin(H)

[
λmax(H)‖x(0)‖2 + λmax(G1)‖x(0)‖2τ,β + λmax(G2)‖ẋ(0)‖2τ,β

]
e−γt (2.32)

or (because
√
a + b ≤ √

a +
√
b for nonnegative a and b)

‖x(t)‖ ≤
[√

ϕ(H)‖x(0)‖ +
√
ϕ1(G1,H)‖x(0)‖τ,β +

√
ϕ2(G2,H)‖ẋ(0)‖τ,β

]
e−γt/2. (2.33)

The last inequality implies

‖x(t)‖ ≤
[√

ϕ(H)‖x(0)‖ +
√
τϕ1(G1,H)‖x(0)‖τ +

√
τϕ2(G2,H)‖ẋ(0)‖τ

]
e−γt/2. (2.34)

Thus inequality (2.12) is proved and, consequently, the zero solution of system (1.1) is
exponentially stable in the metric C0.
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Theorem 2.6. Let the matrix D be nonsingular and ‖D‖ < 1. Let the assumptions of Theorem 2.5
with γ < (2/τ) ln(1/‖D‖) and γ ≤ γ0 be true. Then the zero solution of system (1.1) is exponentially
stable in the metric C1. Moreover, for a solution x = x(t) of (1.1), (1.2), the inequality

‖ẋ(t)‖ ≤
[( ‖B‖

‖D‖ +M

(√
ϕ(H) +

√
τϕ1(G1,H)

))
‖x(0)‖τ

+
(
1 +M

√
τϕ2(G2,H)

)
‖ẋ(t)‖τ

]
e−γτ/2

(2.35)

where

M = ‖A‖ + ‖DA + B‖eγτ/2(1 − ‖D‖eγτ/2)−1 (2.36)

holds on (0,∞).

Proof. Let t > 0. Then the exponential stability of the zero solution in the metric C0 is proved
in Theorem 2.5. Now we will show that the zero solution is exponentially stable in the metric
C1 as well. As follows from Lemma 2.3, for derivative ẋ(t), the inequality

‖ẋ(t)‖ ≤ ‖D‖m‖ẋ(0)‖τ + ‖D‖m−1‖B‖‖x(0)‖τ + ‖A‖‖x(t)‖

+ ‖DA + B‖
m−1∑
i=1

‖D‖i−1‖x(t − iτ)‖
(2.37)

holds if t ∈ [(m − 1)τ,mτ). We estimate ‖x(t)‖ and ‖x(t − iτ)‖ using (2.12) and inequality
‖x(0)‖ ≤ ‖x(0)‖τ . We obtain

‖ẋ(t)‖ ≤ ‖D‖m‖ẋ(0)‖τ + ‖D‖m−1‖B‖‖x(0)‖τ

+ ‖A‖
[(√

ϕ(H) +
√
τϕ1(G1,H)

)
‖x(0)‖τ +

√
τϕ2(G2,H)‖ẋ(0)‖τ

]
e−γt/2

+ ‖DA + B‖‖D‖−1
[(√

ϕ(H) +
√
τϕ1(G1,H

)
‖x(0)‖τ +

√
τϕ2(G2,H)‖ẋ(0)‖τ

]

×
[
m−1∑
i=1

‖D‖ieγiτ/2
]
e−γt/2.

(2.38)

Since

m−1∑
i=1

‖D‖ieγiτ/2 <
∞∑
i=1

‖D‖ieγiτ/2 = ‖D‖eγτ/2
1 − ‖D‖eγτ/2 , (2.39)
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inequality (2.38) yields

‖ẋ(t)‖ ≤ ‖D‖m‖ẋ(0)‖τ + ‖D‖m−1‖B‖‖x(0)‖τ

+

(
‖A‖ + ‖DA + B‖‖D‖−1 ‖D‖eγτ/2

1 − ‖D‖eγτ/2
)

×
[(√

ϕ(H) +
√
τϕ1(G1,H)

)
‖x(0)‖τ +

√
τϕ2(G2,H)‖ẋ(0)‖τ

]
e−γt/2

= ‖D‖m‖ẋ(0)‖τ + ‖D‖m−1‖B‖‖x(0)‖τ

+M

[(√
ϕ(H) +

√
τϕ1(G1,H)

)
‖x(0)‖τ +

√
τϕ2(G2,H)‖ẋ(0)‖τ

]
e−γt/2.

(2.40)

Because t ∈ [(m − 1)τ,mτ), we can estimate

‖D‖m =
(

1
‖D‖

)−m
<

(
1

‖D‖
)−t/τ

= exp
(
− t

τ
ln

1
‖D‖

)
,

‖D‖m−1 =
1

‖D‖‖D‖m <
1

‖D‖ exp
(
− t

τ
ln

1
‖D‖

)
.

(2.41)

Then

‖D‖m‖ẋ(0)‖τ + ‖D‖m−1‖B‖‖x(0)‖τ ≤
[
‖ẋ(0)‖τ +

‖B‖
‖D‖‖x(0)‖τ

]
exp
(
− t

τ
ln

1
‖D‖

)
. (2.42)

Now we get from (2.40)

‖ẋ(t)‖ ≤
[
‖ẋ(0)‖τ +

‖B‖
‖D‖‖x(0)‖τ

]
exp
(
− t

τ
ln

1
‖D‖

)

+M

[(√
ϕ(H) +

√
τϕ1(G1,H)

)
‖x(0)‖τ +

√
τϕ2(G2,H)‖ẋ(0)‖τ

]
e−γt/2.

(2.43)

Since

exp
(
− t

τ
ln

1
‖D‖

)
≤ exp

(
−γt
2

)
, (2.44)

the last inequality implies

‖ẋ(t)‖ ≤
[( ‖B‖

‖D‖ +M

(√
ϕ(H) +

√
τϕ1(G1,H)

))
‖x(0)‖τ

+
(
1 +M

√
τϕ2(G2,H)

)
‖ẋ(0)‖τ

]
e−γt/2.

(2.45)
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The positive number m can be chosen arbitrarily large. Therefore, the last inequality holds
for every t > 0. We have obtained inequality (2.35) so that the zero solution of (1.1) is
exponentially stable in the metric C1.

3. Estimates of Solutions in a General Case

Now we will estimate the norms of solutions of (1.1) and the norms of their derivatives in
the case of the assumptions of Theorem 2.5 or Theorem 2.6 being not necessarily satisfied.
It means that the estimates derived will cover the case of instability as well. For obtaining
such type of results we will use a functional of Lyapunov-Krasovskii in the form (1.10). This
functional includes an exponential factor, which makes it possible, in the case of instability, to
get an estimate of the “divergence” of solutions. Functional (1.10) is a generalization of (1.9)
because the choice p = 0 gives V [x(t), t] = V0[x(t), t]. For (1.10) the estimate

ept
[
λmin(H)‖x(t)‖2 +

∫ t

t−τ
e−β(t−s)

[
xT (s)G1x(s) + ẋ2(s)G2ẋ

2(s)
]
ds

]

≤ [V (t), t]

≤ ept
[
λmax(H)‖x(t)‖2 +

∫ t

t−τ
e−β(t−s)

[
xT (s)G1x(s) + ẋ2(s)G2ẋ

2(s)
]
ds

]
(3.1)

holds. We define an auxiliary 3n × 3n matrix

S∗ = S∗(β,G1, G2,H, p
)

:=

⎛
⎜⎜⎝

−ATH −HA −G1 −ATG2A − pH −HB −ATG2B −HD −ATG2D

−BTH − BTG2A e−βτG1 − BTG2B −BTG2D

−DTH −DTG2A −DTG2B e−βτG2 −DTG2D

⎞
⎟⎟⎠

(3.2)

depending on the parameters p, β and the matrices G1, G2, and H. The parameter p plays a
significant role for the positive definiteness of the matrix S∗. Particularly, a proper choice of
p � 0 can cause the positivity of S∗. In the following, ϕ(H), ϕ1(G1,H) and ϕ2(G2,H), have
the same meaning as in Part 2. The proof of the following theorem is similar to the proofs
of Theorems 2.5 and 2.6 (and its statement in the case of p = 0 exactly coincides with the
statements of these theorems). Therefore, we will restrict its proof to the main points only.

Theorem 3.1. (A) Let p be a fixed real number, β a positive constant, and G1, G2, and H positive
definite matrices such that the matrix S∗ is also positive definite. Then a solution x = x(t) of problem
(1.1), (1.2) satisfies on (0,∞) the inequality

‖x(t)‖ ≤
[√

ϕ(H)‖x(0)‖ +
√
τϕ1(G1,H)‖x(0)‖τ +

√
τϕ2(G2,H)‖ẋ(0)‖τ

]
e−γt/2, (3.3)

where γ ≤ γ∗ := min(β, p + (λmin(S∗)/λmax(H))).
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(B) Let the matrix D be nonsingular and ‖D‖ < 1. Let all the assumptions of part (A) with
γ < (2/τ) ln(1/‖D‖) and γ ≤ γ∗ be true. Then the derivative of the solution x = x(t) of problem
(1.1), (1.2) satisfies on (0,∞) the inequality

‖ẋ(t)‖ ≤
[( ‖B‖

‖D‖ +M

(√
ϕ(H) +

√
τϕ1(G1,H)

))
‖x(0)‖τ

+
(
1 +M

√
τϕ2(G2,H)

)
‖ẋ(0)‖τ

]
e−γt/2,

(3.4)

whereM is defined by (2.36).

Proof. Let t > 0. We compute the full derivative of the functional (1.10) along the solutions of
(1.1). For ẋ(t), we substitute its value from (1.1). Finally we get

d
dt

V [x(t), t] = −ept
(
xT (t), xT (t − τ), ẋT (t − τ)

)
× S∗

×

⎛
⎜⎜⎝

x(t)

x(t − τ)

ẋ(t − τ)

⎞
⎟⎟⎠ − ept

(
β − p

) ∫ t

t−τ
e−β(t−s)

[
xT (s)G1x(s) + ẋT (s)G2ẋ(s)

]
ds.

(3.5)

Since the matrix S∗ is positive definite, we have

d
dt

V [x(t), t] ≤ −λmin(S∗)ept
[
‖x(t)‖2 + ‖x(t − τ)‖2 + ‖ẋ(t − τ)‖2

]

− ept
(
β − p

) ∫ t

t−τ
e−β(t−s)

[
xT (s)G1x(s) + ẋT (s)G2ẋ(s)

]
ds.

(3.6)

Now we will study the two possible cases: either

β − p >
λmin(S∗)
λmax(H)

(3.7)

is valid or

β − p ≤ λmin(S∗)
λmax(H)

(3.8)

holds.
(1) Let (3.7) be valid. Since λmin(S∗) > 0, from inequality (3.1) follows that

−ept‖x(t)‖2 ≤ − 1
λmax(H)

V [x(t), t]

+
ept

λmax(H)

∫ t

t−τ
e−β(t−s)

[
xT (s)G1x(s) + ẋT (s)G2ẋ(s)

]
ds.

(3.9)
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We use this inequality in (3.6). We obtain

d
dt

V [x(t), t] ≤ −λmin(S∗)
λmax(H)

V [x(t), t] − ept
(
β − p − λmin(S∗)

λmax(H)

)

×
∫ t

t−τ
e−β(t−s)

[
xT (s)G1x(s) + ẋT (s)G2ẋ(s)

]
ds.

(3.10)

From inequality (3.7) we get

d
dt

V [x(t), t] ≤ −λmin(S∗)
λmax(H)

V [x(t), t]. (3.11)

Integrating this inequality over the interval (0, t), we get

V [x(t), t] ≤ V [x(0), 0] exp
(
−λmin(S∗)
λmax(H)

t

)
≤ V [x(0), 0]e−(γ

∗−p)t. (3.12)

(2) Let (3.8) be valid. From inequality (3.1) we get

−ept
∫ t

t−τ
e−β(t−s)

[
xT (s)G1x(s) + ẋT (s)G2ẋ(s)

]
ds ≤ −V [x(t), t] + eptλmax(H)‖x(t)‖2. (3.13)

We use this inequality in (3.6) again. Since λmin(S∗) > 0, we get

d
dt

V [x(t), t] ≤ −(β − p
)
V [x(t), t] − [λmin(S∗) − (β − p

)
λmax(H)

]
ept‖x(t)‖2. (3.14)

Because the inequality (3.8) holds, we have

d

dt
V [x(t), t] ≤ −(β − p

)
V [x(t), t]. (3.15)

Integrating this inequality over the interval (0, t), we get

V [x(t), t] ≤ V [x(0), 0]e−(β−p)t ≤ V [x(0), 0]e−(γ
∗−p)t. (3.16)

Combining inequalities (3.12), (3.16), we conclude that, in both cases (3.7), (3.8), we have

V [x(t), t] ≤ V [x(0), 0]e−(γ
∗−p)t. (3.17)
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From this, it follows

ept
[
xT (t)Hx(t) +

∫ t

t−τ
e−β(t−s)

[
xT (s)G1x(s) + ẋT (s)G2ẋ(s)

]
ds

]

≤
[
xT (0)Hx(0) +

∫0

−τ
eβs
[
xT (s)G1x(s) + ẋT (s)G2ẋ(s)

]
ds

]
e−(γ

∗−p)t,

eptλmin(H)‖x(t)‖2

≤
[
λmax(H)‖x(0)‖2 + λmax(G1)‖x(0)‖2β,τ + λmax(G2)‖ẋ(0)‖2β,τ

]
e−(γ

∗−p)t.

(3.18)

From the last inequality we derive inequality (3.3) in a way similar to that of the proof of
Theorem 2.5. The inequality to estimate the derivative (3.4) can be obtained in much the same
way as in the proof of Theorem 2.6.

Remark 3.2. As can easily be seen from Theorem 3.1, part (A), if

p +
λmin(S∗)
λmax(H)

> 0, (3.19)

we deal with an exponential stability in the metric C0. If, moreover, part (B) holds and (3.19)
is valid, then we deal with an exponential stability in the metric C1.

4. Examples

In this part we consider two examples. Auxiliary numerical computations were performed
by using MATLAB & SIMULINK R2009a.

Example 4.1. We will investigate system (1.1)where n = 2, τ = 1,

D =

(
0.5 0

0 0.5

)
, A =

(−1 0.1

0.1 −1

)
, B =

(
0.1 0

0 0.1

)
, (4.1)

that is, the system

ẋ1(t) = 0.5ẋ1(t − 1) − x1(t) + 0.1x2(t) + 0.1x1(t − 1),

ẋ2(t) = 0.5ẋ2(t − 1) + 0.1x1(t) − x2(t) + 0.1x2(t − 1),
(4.2)

with initial conditions (1.2). Set β = 0.1 and

G1 =

(
1 0

0 1

)
, G2 =

(
1 1

1 3

)
, H =

(
2 0.1

0.1 5

)
. (4.3)
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For the eigenvalues of matrices G1, G2, and H, we get λmin(G1) = λmax(G1) = 1, λmin(G2)
.=

0.5858, λmax(G2)
.= 3.4142, λmin(H) .= 1.9967, and λmax(H) .= 5.0033. The matrix S =

S(β,G1, G2,H) takes the form

S
.=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2.1500 −1.1100 −0.1100 0.0600 −0.5500 0.3000

−1.1100 6.1700 0.0800 −0.2100 0.4000 −1.0500
−0.1100 0.0800 0.8948 −0.0100 −0.0500 −0.0500
0.0600 −0.2100 −0.0100 0.8748 −0.0500 −0.1500
−0.5500 0.4000 −0.0500 −0.0500 0.6548 0.6548

0.3000 −1.0500 −0.0500 −0.1500 0.6548 1.9645

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.4)

and λmin(S)
.= 0.1445. Because all the eigenvalues are positive, matrix S is positive

definite. Since all conditions of Theorem 2.5 are satisfied, the zero solution of system (4.2)
is asymptotically stable in the metric C0. Further we have

ϕ(H) .=
5.0033
1.9967

.= 2.5058, ϕ1(G1,H) .=
1

1.9967
.= 0.5008,

ϕ2(G2,H) .=
3.4142
1.9967

.= 1.7099, γ0 = min
(
0.1,

0.1445
5.0033

)
.= min(0.1, 0.0289) = 0.0289,

‖A‖ = 1.1, ‖B‖ = 0.1, ‖D‖ = 0.5, ‖DA + B‖ = 0.45, M = 2.0266.

(4.5)

Since γ0 < (2/τ) ln(1/‖D‖) .= 1.3863, all conditions of Theorem 2.6 are satisfied and,
consequently, the zero solution of (4.2), (35) is asymptotically stable in the metric C1. Finally,
from (2.12) and (2.35) follows that the inequalities

‖x(t)‖ ≤
[√

2.5058‖x(0)‖ +
√
0.5008‖x(0)‖1 +

√
1.7099 ‖ẋ(0)‖1

]
e−0.0289t/2

.= [1.5830‖x(0)‖ + 0.7077‖x(0)‖1 + 1.3076 ‖ẋ(0)‖1]e−0.0289t/2,

‖ẋ(t)‖ ≤
[(

0.2 + 2.0266
(√

2.5058 +
√
0.5008

))
‖x(0)‖1

+
(
1 + 2.0266

√
1.7099

)
‖ẋ(0)‖1

]
e−0.0289t/2

.= [4.8422‖x(0)‖1 + 3.6500‖ẋ(0)‖1]e−0.0289t/2

(4.6)

hold on (0,∞).

Example 4.2. We will investigate system (1.1)where n = 2, τ = 1,

D =

(
0.1 0

0 0.1

)
, A =

(−3 −2
1 0

)
, B =

(
0 0.6213

0.6213 0

)
, (4.7)
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that is, the system

ẋ1(t) = 0.1ẋ1(t − 1) − 3x1(t) − 2x2(t) + 0.6213x2(t − 1),

ẋ2(t) = 0.1ẋ2(t − 1) + 1x1(t) + 0.6213x1(t − 1),
(4.8)

with initial conditions (1.2). Set β = 0.1 and

G1 =

(
0.5 0.1

0.1 0.1

)
, G2 =

(
0.1 0

0 0.1

)
, H =

(
0.6 0.4

0.4 0.6

)
. (4.9)

For the eigenvalues of matrices G1, G2, and H, we get λmin(G1)
.= 0.0764, λmax(G1)

.= 0.5236,
λmin(G2) = λmax(G2) = 0.1 λmin(H) = 0.2, and λmax(H) = 1. The matrix S = S(β,G1, G2,H)
takes the form

S
.=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.3000 1.1000 −0.3106 −0.1864 −0.0300 −0.0500
1.1000 1.1000 −0.3728 −0.1243 −0.0200 −0.0600
−0.3106 −0.3728 0.4138 0.0905 0 −0.0062
−0.1864 −0.1243 0.0905 0.0519 −0.0062 0

−0.0300 −0.0200 0 −0.0062 0.0895 0

−0.0500 −0.0600 −0.0062 0 0 0.0895

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.10)

and λmin(S)
.= 0.00001559. Because all eigenvalues are positive, matrix S is positive

definite. Since all conditions of Theorem 2.5 are satisfied, the zero solution of system (4.8)
is asymptotically stable in the metric C0. Further we have

ϕ(H) =
1
0.2

= 5, ϕ1(G1,H) .=
0.5236
0.2

.= 2.618, ϕ2(G2,H) =
0.1
0.2

= 0.5,

γ0
.= min(0.1, 0.00001559) = 0.00001559,

‖A‖ .= 3.7025, ‖B‖ .= 0.6213, ‖D‖ = 0.1, ‖DA + B‖ .= 0.8028, M
.= 4.5945.

(4.11)

Since γ0 < (2/τ) ln(1/‖D‖) = 2 ln 10 .= 4.6052, all conditions of Theorem 2.6 are satisfied and,
consequently, the zero solution of (4.8) is asymptotically stable in the metric C1. Finally, from
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(2.12) and (2.35) follows that the inequalities

‖x(t)‖ ≤
[√

5‖x(0)‖ +
√
2.618‖x(0)‖1 +

√
0.5 ‖ẋ(0)‖1

]
e−0.00001559t/2

.= [2.2361‖x(0)‖ + 1.6180‖x(0)‖1 + 0.7071 ‖ẋ(0)‖1]e−0.00001559t/2,

‖ẋ(t)‖ ≤
[(

6.213 + 4.5945
(√

5 +
√
2.618

))
‖x(0)‖1

+
(
1 + 4.5945

√
0.5
)
‖ẋ(0)‖1

]
e−0.00001559t/2

.= [23.9206‖x(0)‖1 + 4.2488‖ẋ(0)‖1]e−0.00001559t/2

(4.12)

hold on (0,∞).

Remark 4.3. In [12] an example can be found similar to Example 4.2 with the same matrices
A, D, arbitrary constant positive τ , and with a matrix

B = Bα =

(
0 α

α 0

)
, (4.13)

where α is a real parameter. The stability is established for |α| < 0.4. In recent paper [13], the
stability of the same system is even established for |α| < 0.533.

Comparing these particular results with Example 4.2, we see that, in addition to
stability, our results imply the exponential stability in themetricC0 as well as in themetricC1.
Moreover, we are able to prove the exponential stability (inC0 as well as inC1) in Example 4.2
with the matrix B = Bα for |α| ≤ 0.6213 and for an arbitrary constant delay τ . The latter
statement can be explained easily—for an arbitrary positive τ , we set β = 0.1/τ . Calculating
the characteristic equation for the matrix Swhere B is changed by Bα we get

P6(λ) :=
6∑
i=0

pi(α)λi = 0, (4.14)

where

p6(α) = −1,

p5(α) = −0.2α2 − 3.1219,

p4(α) = −0.01α4 − 1.3105α2 + 2.0830,

p3(α) = −0.0998α4 + 0.5717α2 − 0.4943,

p2(α) = −0.0366α4 − 0.096828α2 + 0.053858,

p1(α) = −0.004204382α4 + 0.0073α2 − 0.0028,

p0(α) = −0.00015392α4 − 0.00020116α2 + 0.000059723.

(4.15)
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It is easy to verify that (−1)ipi(α) > 0 for i = 0, 1, . . . , 6 and |α| ≤ 0.6213, and for the equation

P ∗
6 (λ) = P6(−λ) =

6∑
i=0

p∗i (α)λ
i = 0, (4.16)

we have p∗i (α) = (−1)ipi(α) > 0. Then, due to the symmetry of the real matrix S, we conclude
that, by Descartes’ rule of signs, all eigenvalues of S (i.e., all roots of P6(λ) = 0) are positive.
This means that the exponential stability (in the metric C0 as well as in the metric C1) for
|α| ≤ 0.6213 is proved. Finally, we note that the variation of α within the interval indicated or
the choice β = 0.1/τ does not change the exponential stability having only influence on the
form of the final inequalities for ‖x(t)‖ and ‖ẋ(t)‖.

5. Conclusions

In this paper we derived statements on the exponential stability of system (1.1) as well as
on estimates of the norms of its solutions and their derivatives in the case of exponential
stability and in the case of exponential stability being not guaranteed. To obtain these
results, special Lyapunov functionals in the form (1.9) and (1.10) were utilized as well
as a method of constructing a reduced neutral system with the same solution on the
intervals indicated as the initial neutral system (1.1). The flexibility and power of this
method was demonstrated using examples and comparisons with other results in this field.
Considering further possibilities along these lines, we conclude that, to generalize the results
presented to systems with bounded variable delay τ = τ(t), a generalization is needed
of Lemma 2.3 to the above reduced neutral system. This can cause substantial difficulties
in obtaining results which are easily presentable. An alternative would be to generalize
only the part of the results related to the exponential stability in the metric C0 and the
related estimates of the norms of solutions in the case of exponential stability and in the
case of the exponential stability being not guaranteed (omitting the case of exponential
stability in the metric C1 and estimates of the norm of a derivative of solution). Such an
approach will probably permit a generalization to variable matrices (A = A(t), B = B(t),
D = D(t)) and to a variable delay (τ = τ(t)) or to two different variable delays. Nevertheless,
it seems that the results obtained will be very cumbersome and hardly applicable in
practice.
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