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This paper is concerned with the structure of the weak entropy solutions to two-dimension
Riemann initial-boundary value problem with curved boundary. Firstly, according to the definition
of weak entropy solution in the sense of Bardos-Leroux-Nedelec (1979), the necessary and
sufficient condition of the weak entropy solutions with piecewise smooth is given. The boundary
entropy condition and its equivalent formula are proposed. Based on Riemann initial value
problem, weak entropy solutions of Riemann initial-boundary value problem are constructed,
the behaviors of solutions are clarified, and we focus on verifying that the solutions satisfy the
boundary entropy condition. For different Riemann initial-boundary value data, there are a total
of five different behaviors of weak entropy solutions. Finally, a worked-out specific example is
given.

1. Introduction

Multidimensional conservation laws are a famous hard problem that plays an important
role in mechanics and physics [1–3]. For Cauchy problem of multi-dimensional scalar
conservation laws, Conway and Smoller [4] and Kruzkov [1] have proved that weak
solution uniquely exists if it also satisfies entropy condition, and it is called weak entropy
solutions. In order to further understand qualitative behavior of solutions, it is also important
to investigate multi-dimensional Riemann problems. For two-dimensional case, Lindquist
[5], Wagner [6], Zhang and Zheng [7] Guckenheimer [8], Zheng [9] among others, have
discussed some relating Riemann problems. In a previous discussion, initial value contains
several constant states with discontinuity lines so that self-similar transformations can be
applied to reduce two-dimensional problem to one-dimensional case. The situation that
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initial value contains two constant states divided by a curve can not be solved by selfsimilar
transformations, and Yang [10] proposed a new approach for construction of shock wave
and rarefaction wave solutions; especially, rarefaction wave was got by constructing implicit
function instead of the usual selfsimilar method. This approach can be expanded to general n-
dimension. In addition, multi-dimensional scalar conservation laws with boundary are more
common in practical problems. Bardos et al. [2] have proved the existence and uniqueness
of the weak entropy solution of initial-boundary problems of multi-dimensional scalar
conservation laws. The main difficulty for nonlinear conservation laws with boundary is to
have a good formation of the boundary condition. Namely, for a fixed initial value, we really
can not impose such a condition at the boundary, and the boundary condition is necessarily
linked to the entropy condition. Moreover the behavior of solutions for one-dimensional
problem with boundary was discussed in [11–18]. However, for multi-dimensional problem
with boundary, the behaviors of solutions are still hard to study.

In this paper, two-dimensional case as an example of Yang’s multi-dimensional
Riemann problem [10] is expanded to the case with boundary. Considering two-dimensional
Riemann problem for scalar conservation laws with curved boundary,

ut +
∂f1(u)
∂x1

+
∂f2(u)
∂x2

= 0, (x1, x2) ∈ Ω, t > 0,

u|t=0 = u+, (x1, x2) ∈ Ω,

u|Γ = u−, t > 0,

(1.1)

where u = u(t, x1, x2), u+ and u− are both constants, f1(u), f2(u) ∈ C2(R), M(x1, x2) ∈ C1(R2),
M(x1, x2) = 0 is a smooth manifold and divides R2 into two infinite parts, Ω = {(x1, x2) |
M(x1, x2) > 0}, and Γ = {(t, x1, x2) |M(x1, x2) = 0, t > 0} and denote u|Γ = γu.

In Section 2, weak entropy solution of Riemann initial-boundary value problem (1.1)
is defined, and the boundary entropy condition is discussed. In Section 3, weak entropy
solutions of the corresponding Riemann initial value problem are expressed. In Section 4,
using the weak entropy solutions of the corresponding Riemann initial value problem, we
construct the weak entropy solutions of Riemann initial-boundary value problem, and prove
that they satisfy the boundary entropy condition. The weak entropy solutions include a
total of five different shock and rarefaction wave solutions based on different Riemann data.
Finally, in Section 5, we give a worked-out specific example.

2. Preliminaries

According to the definition of the weak entropy solution and the boundary entropy condition
to the general initial-boundary problems of multi-dimensional scalar conservation laws
which was proposed by Bardos et al. [2] and Pan and Lin [13], we can obtain the following
definition and three lemmas for Riemann initial-boundary value problem (1.1).

Definition 2.1. A locally bounded and bounded variation function u(t, x1, x2) on (0,+∞) × Ω
is called a weak entropy solution of Riemann initial-boundary value problem (1.1) if, for any
real constant k and for any nonnegative function ϕ(t, x1, x2) ∈ C∞0 ((0,+∞) × Ω), it satisfies
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the following inequality:

∫+∞

0

∫
M>0

(
|u − k|ϕt + sgn(u − k)

(
f1(u) − f1(k)

)
ϕx1 + sgn(u − k)

(
f2(u) − f2(k)

)
ϕx2

)

× dx1dx2dt +
∫
M>0
|u+ − k|ϕ(0, x1, x2)dx1dx2

+
∫ ∫

Γ
sgn(u− − k)

(
f1
(
γu
)
− f1(k), f2

(
γu
)
− f2(k)

)
◦ �nγϕdx1dx2dt ≥ 0,

(2.1)

where �n is the outward normal vector of curve M(x1, x2).

Lemma 2.2. If u(t, x1, x2) is a weak entropy solution of (1.1), then it satisfies the following boundary:
entropy condition

sgn
(
γu − u−

)(
f1
(
γu
)
− f1(k), f2

(
γu
)
− f2(k)

)
◦ �n ≥ 0, k ∈ I

(
γu, u−

)
, a.e. t > 0, (2.2)

where I(γu, u−) = [min(γu, u−),max(γu, u−)].
It can be easily proved that ∀k ∈ I(γu, u−), sgn(γu − u−) = sgn(γu − k), so (2.2) can be

rewritten as

sgn
(
γu − k

)(
f1
(
γu
)
− f1(k), f2

(
γu
)
− f2(k)

)
◦ �n ≥ 0, k ∈ I

(
γu, u−

)
, a.e. t > 0, (2.3)

thus one can get γu = u− or

�n ◦
(
f1
(
γu
)
− f1(k)

γu − k ,
f2
(
γu
)
− f2(k)

γu − k

)
≥ 0, k ∈ I

(
γu, u−

)
, k /= γu, a.e. t > 0, (2.4)

and one notices that �n = (−Mx1 ,−Mx2), Mx1 = ∂M(x1, x2)/∂x1, Mx2 = ∂M(x1, x2)/∂x2, then
boundary entropy condition (2.2) is equivalent to

γu = u− or

Mx1

f1
(
γu
)
− f1(k)

γu − k +Mx2

f2
(
γu
)
− f2(k)

γu − k ≤ 0, k ∈ I
(
γu, u−

)
, k /= γu, a.e. t > 0.

(2.5)

The proof for one-dimension case of Lemma 2.2 can be found in Pan and Lin’s work
[13], and the proof for n-dimension case is totally similar to one-dimension case; actually the
idea of the proof first appears in Bardos et al.’s work [2], so the proof details for Lemma 2.2
are omitted here.

Lemma 2.3. A piecewise smooth function u(t, x1, x2) with smooth discontinuous surface is a weak
entropy solution to the Riemann initial-boundary value problem (1.1) in the sense of (2.1) if and only
if the following conditions are satisfied.
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(i) Rankine-Hugoniot condition: At any point P on discontinuity surface S of solution
u(t, x1, x2), �NP is a unit normal vector to S at P if

ur = lim
ε→ 0+

u(P + εn),

ul = lim
ε→ 0−

u(P + εn),
(2.6)

then

�NP◦
(
[u],
[
f1
]
,
[
f2
])

= 0, (2.7)

where [u] = ur − ul, [f1] = f1(ur) − f1(ul), [f2] = f2(ur) − f2(ul).
For any constant k ∈ [ul, ur], P ∈ S,

�NP ◦
(
k − ul, f1(k) − f1(ul), f2(k) − f2(ul)

)
≥ 0 (2.8)

or equivalently

�NP ◦
(
k − ur, f1(k) − f1(ur), f2(k) − f2(ur)

)
≥ 0. (2.9)

(ii) Boundary entropy condition:

γu = u− or

Mx1

f1
(
γu
)
− f1(k)

γu − k +Mx2

f2
(
γu
)
− f2(k)

γu − k ≤ 0, k ∈ I
(
γu, u−

)
, k /= γu, a.e. t > 0.

(2.10)

(iii) Initial value condition:

u(0, x1, x2) = u0(x1, x2), M(x1, x2) > 0. (2.11)

For piecewise smooth solution with smooth discontinuous surface, Rankine-Hugoniot
condition (2.7), entropy conditions (2.8), (2.9) and initial value condition (2.11) are obviously
satisfied, see also the previous famous works in [4, 7–9]. As in Lemma 2.2, boundary entropy
condition (2.10) also holds. The proof of the converse in not difficult and is omitted here.

According to Bardos et al.’s work [2], we have the following Lemma.

Lemma 2.4. If u(t, x1, x2) is piecewise smooth weak entropy solution of (1.1) which satisfies the
conditions of Lemma 2.3, then u(t, x1, x2) is unique.

According to the uniqueness of weak entropy solution, as long as the piecewise smooth
function satisfying Lemma 2.3 is constructed, the weak entropy solution of Riemann initial-
boundary value problem can be obtained.
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3. Solution of Riemann Initial Value Problem

First, we study the Riemann initial value problem corresponding to the Riemann initial-
boundary value problem (1.1) as follows:

ut +
∂f1(u)
∂x1

+
∂f2(u)
∂x2

= 0, t > 0,

u|t=0 =

⎧⎨
⎩
u−, M(x1, x2) < 0

u+, M(x1, x2) > 0.

(3.1)

ConditionH For u ∈ (a, b),

Mx1f
′′
1 (u) +Mx2f

′′
2 (u) > 0, (3.2)

where (a, b) is a certain interval a, b can be a finite number or∞.
Condition H combines flux functions f1, f2 and curved boundary manifold M,

providing necessary condition for the convex property of the new flux function which will
be constructed in formula (4.5). The convex property clarifies whether the characteristics
intersect or not, whether the weak solution satisfied internal entropy conditions (2.8) and
(2.9) and boundary entropy condition (2.10), In addition, ConditionH is easily satisfied, for
example, f1(u) = f2(u) = (1/2)u2,M(x1, x2) = x3

1+x2, thenMx1f
′′
1 (u)+Mx2f

′′
2 (u) = 3x2

1+1 > 0,
so ConditionH holds. HereM(x1, x2) = 0 is a cubic curve on the X1-X2 plane, and it is strictly
bending.

Yang’s work [10] showed that depending on whether the characteristics intersect or
not, the weak entropy solution of (3.1) has two forms as follows.

Lemma 3.1 (see [10]). Suppose (H) holds. If u− > u+, then weak entropy solution of (3.1) is shock
wave solution S, and

u(t, x1, x2) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u−, M

(
x1 −

[
f1
]

[u]
t, x2 −

[
f2
]

[u]
t

)
< 0,

u+, M

(
x1 −

[
f1
]

[u]
t, x2 −

[
f2
]

[u]
t

)
> 0,

(3.3)

and discontinuity surface S(t, x1, x2) = 0 is

M

(
x1 −

[
f1
]

[u]
t, x2 −

[
f2
]

[u]
t

)
= 0, (3.4)

where [u] = u+ − u−, [f1] = f1(u+) − f1(u−),[f2] = f2(u+) − f2(u−).
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Lemma 3.2 (see [10]). Suppose that (H) holds. If u− < u+, then weak entropy solution of (3.1) is
rarefaction wave solution R, and

u(t, x1, x2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

u−, 0 > M
(
x1 − f ′1(u−)t, x2 − f ′2(u−)t

)
, t > 0,

C(t, x1, x2), M
(
x1 − f ′1(u−)t, x2 − f ′2(u−)t

)
≥ 0

≥M
(
x1 − f ′1(u+)t, x2 − f ′2(u+)t

)
, t > 0,

u+, M
(
x1 − f ′1(u+)t, x2 − f ′2(u+)t

)
> 0, t > 0,

(3.5)

where C(t, x1, x2) is the implicit function which satisfies

M
(
x1 − f ′1(C)t, x2 − f ′2(C)t

)
= 0. (3.6)

Theorem 3.3 (see [10]). Suppose that (H) holds. Given u−, u+ ∈ (a, b), then

(i) if u− > u+, weak entropy solution of (3.1) is S and u(t, x1, x2) has a form as (3.3);

(ii) if u− < u+, weak entropy solution of (3.1) is R and u(t, x1, x2) has a form as (3.5);

(iii) weak entropy solutions formed as (3.3) and (3.5) uniquely exist.

The weak entropy solutions constructed here are piecewise smooth and satisfy conditions (i)
and (iii) of Lemma 2.3.

4. Solution of Riemann Initial-Boundary Value Problem

Now we restrict the weak entropy solutions of the Riemann initial value problem (3.1)
constructed in Section 3 in region {t > 0} × Ω, and they still satisfy conditions (i) and (iii)
of Lemma 2.3. If they also satisfy the boundary entropy condition (ii) of Lemma 2.3, then
they are the weak entropy solutions of Riemann initial-boundary value problem (1.1).

Based on different Riemann data of u+ and u−, the weak entropy solutions of the
Riemann initial value problem (3.1) have the following five different behaviors when
restricted in region {t > 0} ×Ω.

If u− > u+, the solution of (3.1) is shock wave S and

u(t, x1, x2) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u−, M

(
x1 −

[
f1
]

[u]
t, x2 −

[
f2
]

[u]
t

)
< 0, M(x1, x2) > 0, t > 0,

u+, M

(
x1 −

[
f1
]

[u]
t, x2 −

[
f2
]

[u]
t

)
> 0, M(x1, x2) > 0, t > 0.

(4.1)

M(x1 − ([f1]/[u])t, x2 − ([f2]/[u])t) = 0 is formed by moving M(x1, x2) = 0 along
the direction of the vector ([f1]/[u], [f2]/[u]) = ((f1(u+) − f1(u−))/(u+ − u−), (f2(u+) −
f2(u−))/(u+ − u−)) � �α, and the outward normal vector �n of curve M(x1, x2) = 0 is equal to
(−Mx1 ,−Mx2). According to the angle between �α and �n, the solution restricted in {t > 0} ×Ω
has two behaviors as follows.

Case 1. If u− > u+ and �n ◦ ([f1]/[u], [f2]/[u]) ≥ 0.
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M(x1 −
(
[f1(u)]/[u]

)
t, x2 −

(
[f2(u)]/[u]

)
t) = 0, t > 0

u−

M(x1, x2) = 0, t > 0

u− u+M
(x 1,

x 2)
= 0

t

x2
x1

(a) The constant solution

u

F(u)

(u∗, F(u∗))

(u−, F(u−))

(k, F(k))

(ru, F(ru))

(b) The phase plane (u, F(u))

Figure 1: Case 1.

M(x1 −
(
[f1(u)]/[u]

)
t, x2 −

(
[f2(u)]/[u]

)
t) = 0, t > 0

u−

M(x1, x2) = 0, t > 0

u− u+M
(x 1,

x 2)
= 0

t

x2
x1

Figure 2: The shock wave solution of Case 2.

See also Figure 1(a); it shows that the angle between �α and �n is an acute angle, the
shock wave surface M(x1 − ([f1]/[u])t, x2 − ([f2]/[u])t) = 0 is outside region {t > 0}×Ω, and
the solution is constant state formed as

u(t, x1, x2) = u+, M(x1, x2) ≥ 0, t > 0. (4.2)

Case 2. If u− > u+ and �n ◦ ([f1]/[u], [f2]/[u]) < 0.
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See also Figure 2; it shows that the angle between �α and �n is an obtuse angle, the shock
wave surface M(x1 − ([f1]/[u])t, x2 − ([f2]/[u])t) = 0 is inside region {t > 0} × Ω, and the
solution is shock wave formed as

u(t, x1, x2) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u−, M(x1, x2) > 0 > M

(
x1 −

[
f1
]

[u]
t, x2 −

[
f2
]

[u]
t

)
, t > 0

u+, M

(
x1 −

[
f1
]

[u]
t, x2 −

[
f2
]

[u]
t

)
> 0, t > 0.

(4.3)

If u− < u+, the solution of (3.1) is rarefaction wave R and

u(t, x1, x2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u−, M
(
x1 − f ′1(u−)t, x2 − f ′2(u−)t

)
< 0,

M(x1, x2) > 0, t > 0,

C(t, x1, x2), M
(
x1 − f ′1(u−)t, x2 − f ′2(u−)t

)
≥ 0,

M
(
x1 − f ′1(u+)t, x2 − f ′2(u+)t

)
≤ 0,

M(x1, x2) > 0, t > 0,

u+, M
(
x1 − f ′1(u+)t, x2 − f ′2(u+)t

)
> 0,

M(x1, x2) > 0, t > 0.

(4.4)

M(x1−f ′1(u−)t, x2−f ′2(u−)t) = 0 is formed by movingM(x1, x2) = 0 along the direction
of the vector (f ′1(u−), f

′
2(u−)) � �β−, M(x1 − f ′1(u+)t, x2 − f ′2(u+)t) = 0 is formed by moving

M(x1, x2) = 0 along the direction of the vector (f ′1(u+), f
′
2(u+)) � �β+, and the outward normal

vector �n of curve M(x1, x2) = 0 is equal to (−Mx1 ,−Mx2).
We construct a new flux function

f(x1, x2, u) =Mx1f1(u) +Mx2f2(u) � F(u), (4.5)

according to condition (H), F ′′(u) = Mx1f
′′
1 (u) +Mx2f

′′
2 (u) > 0, F(u) is convex, and F ′(u) is

monotonically increasing function, so F ′(u−) < F ′(u+). And also

F ′(u−) =Mx1f
′
1(u−) +Mx2f

′
2(u−) = −�n ◦

(
f ′1(u−), f

′
2(u−)

)
,

F ′(u+) =Mx1f
′
1(u+) +Mx2f

′
2(u+) = −�n ◦

(
f ′1(u+), f

′
2(u+)

)
.

(4.6)

Thus, �n ◦ (f ′1(u−), f
′
2(u−)) > �n ◦ (f ′1(u+), f

′
2(u+)). According to the angles between �β+, �β−, and

�n, the solution restricted in {t > 0} ×Ω has three behaviors as follows.

Case 3. If u− < u+ and �n ◦ (f ′1(u+), f
′
2(u+)) < �n ◦ (f ′1(u−), f

′
2(u−)) ≤ 0.
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M(x1 − f ′1(u−)t, x2 − f ′2(u−)t) = 0, t > 0

u−

M(x1, x2) = 0, t > 0

u− u+M
(x 1,

x 2)
= 0

M(x1 − f ′1(u+)t, x2 − f ′2(u+)t) = 0, t > 0

t

x2
x1

Figure 3: The rarefaction wave solution of Case 3.

See also Figure 3; it shows that the angles between �β+, �β−, and �n are obtuse angles, the
rarefaction wave surfacesM(x1−f ′1(u+)t, x2−f ′2(u+)t) = 0 andM(x1−f ′1(u−)t, x2−f ′2(u−)t) = 0
are both inside region {t > 0} ×Ω, and the solution is rarefaction wave formed as

u(t, x1, x2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

u−, M(x1, x2) > 0 > M
(
x1 − f ′1(u−)t, x2 − f ′2(u−)t

)
, t > 0,

C(t, x1, x2), M
(
x1 − f ′1(u−)t, x2 − f ′2(u−)t

)
≥ 0

≥M
(
x1 − f ′1(u+)t, x2 − f ′2(u+)t

)
, t > 0,

u+, M
(
x1 − f ′1(u+)t, x2 − f ′2(u+)t

)
> 0, t > 0,

(4.7)

where C(t, x1, x2) is the implicit function which satisfies (3.6).

Case 4. If u− < u+ and �n ◦ (f ′1(u+), f
′
2(u+)) < 0 < �n ◦ (f ′1(u−), f

′
2(u−)).

See also Figure 4(a); it shows that the angle between �β+ and �n is an obtuse angle, the
angle between �β− and �n is an acute angles, the rarefaction wave surface M(x1 − f ′1(u+)t, x2 −
f ′2(u+)t) = 0 is inside region {t > 0} × Ω, the rarefaction wave surface M(x1 − f ′1(u−)t, x2 −
f ′2(u−)t) = 0 is outside region {t > 0} ×Ω, and the solution is rarefaction wave formed as

u(t, x1, x2) =

⎧⎨
⎩
C(t, x1, x2), M(x1, x2) > 0 ≥M

(
x1 − f ′1(u+)t, x2 − f ′2(u+)t

)
, t > 0,

u+, M
(
x1 − f ′1(u+)t, x2 − f ′2(u+)t

)
> 0, t > 0,

(4.8)

where C(t, x1, x2) is the implicit function which satisfies (3.6).

Case 5. If u− < u+ and 0 ≤ �n ◦ (f ′1(u+), f
′
2(u+)) < �n ◦ (f ′1(u−), f

′
2(u−)).
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M(x1 − f ′1(u−)t, x2 − f ′2(u−)t) = 0, t > 0

u−

M(x1, x2) = 0, t > 0

u− u+M
(x 1
, x 2

) =
0

M(x1 − f ′1(u+)t, x2 − f ′2(u+)t) = 0, t > 0

t

x2
x1

(a) The rarefaction wave solution

u

F(u)

(ru, F(ru)) = (u∗, F(u∗))

(u−, F(u−))(k, F(k))

(b) The phase plane (u, F(u))

Figure 4: Case 4.

See also Figure 5(a); it shows that the angles between �β+, �β−, and �n are acute angles, the
rarefaction wave surfacesM(x1−f ′1(u+)t, x2−f ′2(u+)t) = 0 andM(x1−f ′1(u−)t, x2−f ′2(u−)t) = 0
are both outside region {t > 0} ×Ω, and the solution is constant state formed as

u(t, x1, x2) = u+, M(x1, x2) > 0, t > 0. (4.9)

Next, we verify the above five solutions all satisfying the boundary entropy condition
(ii) of Lemma 2.3. By noticing the definition of F(u) (4.5) and its convex property, the
boundary entropy condition (ii) of Lemma 2.3 can be equivalent to the following formula

γu = u− or
F
(
γu
)
− F(k)

γu − k ≤ 0, k ∈ I
(
γu, u−

)
, k /= γu, a.e. t > 0, (4.10)

and thus we verify the above five solutions all satisfying the boundary entropy condition
(4.10).

Case 1. When u− > u+, �n◦ ([f1]/[u], [f2]/[u]) ≥ 0, the shock wave solution is formed as (4.2).
In this case, γu = u+ /=u− since

F
(
γu
)
− F(u−)

γu − u−
= −�n ◦

([
f1
]

[u]
,

[
f2
]

[u]

)
≤ 0
(
see also Figure 1(b)

)
, (4.11)

and γu < u− ≤ u∗, where u∗ is the extreme point of F(u). For ∀k ∈ [γu, u−], according to the
convex property of F(u), we have that

F
(
γu
)
− F(k)

γu − k ≤
F
(
γu
)
− F(u−)

γu − u−
≤ 0, (4.12)

and so the boundary entropy condition (4.10) is verified.
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M(x1 − f ′1(u−)t, x2 − f ′2(u−)t) = 0, t > 0

u− M(x1, x2) = 0, t > 0

u− u+M
(x 1,

x 2)
= 0

M(x1 − f ′1(u+)t, x2 − f ′2(u+)t) = 0, t > 0

t

x2
x1

(a) The constant solution

u

F(u)

(u∗, F(u∗))
(ru, F(ru))

(u−, F(u−))(k, F(k))

(b) The phase plane (u, F(u))

Figure 5: Case 5.

Case 2. When u− > u+, �n◦ ([f1]/[u], [f2]/[u]) < 0, the shock wave solution is formed as (4.3).
In this case, γu = u−, so the boundary entropy condition (4.10) is naturally verified.

Case 3. When u− < u+, �n ◦ (f ′1(u+), f
′
2(u+)) < �n ◦ (f ′1(u−), f

′
2(u−)) ≤ 0, the rarefaction wave

solution is formed as (4.7). In this case, γu = u−, and so the boundary entropy condition
(4.10) is naturally verified.

Case 4. When u− < u+, �n ◦ (f ′1(u+), f
′
2(u+)) < 0 < �n ◦ (f ′1(u−), f

′
2(u−)), the rarefaction wave

solution is formed as (4.8). In this case, γu = C(t, x1, x2)|M(x1,x2)=0 � u∗ ≤ u−, F ′(u∗) = 0 and
F ′(u−) = −�n ◦ (f ′1(u−), f

′
2(u−)) < 0 < −�n ◦ (f ′1(u+), f

′
2(u+)) = F ′(u+) (see also Figure 4(b)),

namely, F ′(u−) < F ′(γu) = 0 < F ′(u+). For ∀k ∈ [u−, γu], according to the convex property of
F(u) and Lagrange mean value theorem, there exists ξ ∈ [k, γu], satisfying

F
(
γu
)
− F(k)

γu − k = F ′(ξ) ≤ F ′
(
γu
)
= 0, (4.13)

and so the boundary entropy condition (4.10) is verified.

Case 5. When u− < u+, 0 ≤ �n ◦ (f ′1(u+), f
′
2(u+)) < �n ◦ (f ′1(u−), f

′
2(u−)), the rarefaction wave

solution is formed as (4.9). In this case, γu = u+ > u− since F ′(u−) = −�n ◦ (f ′1(u−), f
′
2(u−)) <

−�n ◦ (f ′1(u+), f
′
2(u+)) = F ′(γu) ≤ 0 (see also Figure 5(b)) For ∀k ∈ [u−, γu], according to the

convex property of F(u) and Lagrange mean value theorem, there exists ξ ∈ [k, γu], satisfying

F
(
γu
)
− F(k)

γu − k = F ′(ξ) ≤ F ′
(
γu
)
≤ 0, (4.14)

and so the boundary entropy condition (4.10) is verified.
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In summary, we have the following theorem.

Theorem 4.1. Suppose that (H) holds. Given u−, u+ ∈ (a, b), then

(i) if u− > u+ and �n ◦ ([f1]/[u], [f2]/[u]) ≥ 0, the solution of (1.1) is constant state and has
form as (4.2),

(ii) if u− > u+ and �n◦ ([f1]/[u], [f2]/[u]) < 0, the solution of (1.1) is shock wave S, and has
form as (4.3),

(iii) if u− < u+ and �n ◦ (f ′1(u+), f
′
2(u+)) < �n ◦ (f ′1(u−), f

′
2(u−)) ≤ 0, the solution of (1.1) is

rarefaction wave R and has a form as (4.7),

(iv) if u− < u+ and �n ◦ (f ′1(u+), f
′
2(u+)) < 0 < �n ◦ (f ′1(u−), f

′
2(u−)), the solution of (1.1) is

rarefaction wave R and has a form as (4.8);

(v) if u− < u+ and 0 ≤ �n ◦ (f ′1(u+), f
′
2(u+)) < �n ◦ (f ′1(u−), f

′
2(u−)), the solution of (1.1) is

constant state and has a form as (4.9).

In addition the solutions formed as (4.2), (4.3), (4.7), (4.8), and (4.9) uniquely exist.

Corollary 4.2. Suppose thatMx1f
′′
1 (u) +Mx2f

′′
2 (u) < 0 for u ∈ (a, b). a, b can be finite or∞, and

when u−, u+ ∈ (a, b),

(i) if u− > u+ and �n ◦ (f ′1(u+), f
′
2(u+)) < �n ◦ (f ′1(u−), f

′
2(u−)) ≤ 0, the solution of (1.1) is

rarefaction wave R and has a form as (4.7),

(ii) if u− > u+ and �n ◦ (f ′1(u+), f
′
2(u+)) < 0 < �n ◦ (f ′1(u−), f

′
2(u−)), the solution of (1.1) is

rarefaction wave R and has a form as (4.8),

(iii) if u− > u+ and 0 ≤ �n ◦ (f ′1(u+), f
′
2(u+)) < �n ◦ (f ′1(u−), f

′
2(u−)), the solution of (1.1) is

constant state and has a form as (4.9),

(iv) if u− < u+ and �n ◦ ([f1]/[u], [f2]/[u]) ≥ 0, the solution of (1.1) is constant state and has
a form as (4.2),

(v) if u− < u+ and �n ◦ ([f1]/[u], [f2]/[u]) < 0, the solution of (1.1) is shock wave S and has
a form as (4.3).

Corollary 4.3. The approach here for two-dimensional Riemann initial-boundary problem can be
expanded to the case of general n-dimension.

5. An Example

Solve the following Riemann initial-boundary problem:

ut +

(
u2

2

)
x1

+

(
u2

2

)
x2

= 0, (x1, x2) ∈ Ω, t > 0,

u|t=0 = u+, (x1, x2) ∈ Ω,

u|Γ = u−, t > 0,

(5.1)
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where M(x1, x2) = x3
1 + x2, Ω = {(x1, x2) | M(x1, x2) > 0}, Γ = {(t, x1, x2) | M(x1, x2) =

0, t > 0}, and it denotes u|Γ = γu. Since f1(u) = f2(u) = (1/2)u2, we easily get Mx1f
′′
1 (u) +

Mx2f
′′
2 (u) = 3x2

1 + 1 > 0, and conditionH holds.
According to the different data of u+ and u−, the behavior of the solution to Riemann

initial-boundary problem (5.1) has a total of five situations; they can be described by the
following five cases: (i) u− = 1, u+ = −2; (ii) u− = 2, u+ = −1; (iii) u− = 1, u+ = 2; (iv) u− = −1,
u+ = 1; (v) u− = −2, u+ = −1.

For case (i), u− > u+ and

�n ◦
([

f1
]

[u]
,

[
f2
]

[u]

)
= −Mx1

[
f1
]

[u]
−Mx2

[
f2
]

[u]

= −3x2
1
f1(u−) − f1(u+)

u− − u+
−
f2(u−) − f2(u+)

u− − u+

= −1
2

(
3x2

1 + 1
)
(u− + u+)

=
1
2

(
3x2

1 + 1
)
> 0,

(5.2)

and thus the solution is constant state formed as

u(t, x1, x2) = −2, x3
1 + x2 > 0, t > 0. (5.3)

For case (ii), u− > u+ and

�n ◦
([

f1
]

[u]
,

[
f2
]

[u]

)
= −Mx1

[
f1
]

[u]
−Mx2

[
f2
]

[u]

= −3x2
1
f1(u−) − f1(u+)

u− − u+
−
f2(u−) − f2(u+)

u− − u+

= −1
2

(
3x2

1 + 1
)
(u− + u+)

= −1
2

(
3x2

1 + 1
)
< 0,

(5.4)

and thus the solution is shock wave solution formed as

u(t, x1, x2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2, x3
1 + x2 > 0 >

(
x1 −

1
2
t

)3

+
(
x2 −

1
2
t

)
, t > 0,

−1,
(
x1 −

1
2
t

)3

+
(
x2 −

1
2
t

)
> 0, t > 0.

(5.5)
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For case (iii), u− < u+ and

�n ◦
(
f ′1(u−), f

′
2(u−)

)
= −Mx1f

′
1(u−) −Mx2f

′
2(u−) = −

(
3x2

1 + 1
)
,

�n ◦
(
f ′1(u+), f

′
2(u+)

)
= −Mx1f

′
1(u+) −Mx2f

′
2(u+) = −2

(
3x2

1 + 1
)
,

(5.6)

namely, �n ◦ (f ′1(u+), f
′
2(u+)) < �n ◦ (f ′1(u−), f

′
2(u−)) ≤ 0, thus the solution is rarefaction wave

formed as

u(t, x1, x2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, x3
1 + x2 > 0 > (x1 − t)3 + (x2 − t), t > 0

C(t, x1, x2), (x1 − t)3 + (x2 − t) ≥ 0 ≥ (x1 − 2t)3 + (x2 − 2t), t > 0

2, (x1 − 2t)3 + (x2 − 2t) > 0, t > 0.

(5.7)

Here, we only need to solve C(t, x1, x2) ∈ ΩC, where

ΩC =
{
(t, x1, x2) | (x1 − t)3 + (x2 − t) ≥ 0 ≥ (x1 − 2t)3 + (x2 − 2t), t > 0

}
. (5.8)

To solve the following equation of C:

M
(
x1 − f ′1(C)t, x2 − f ′2(C)t

)
= (x1 − Ct)3 + (x2 − Ct) = 0, (5.9)

using Cardano formula, we can get the unique solution as

C(t, x1, x2) =
1

3
√

2t

⎡
⎢⎣ 3

√√√√−(x1 − x2) +

√
4

27
+ (x1 − x2)2

+
3

√√√√−(x1 − x2) −

√
4
27

+ (x1 − x2)2

⎤
⎥⎦ +

x1

t
.

(5.10)

Since C(t, x1, x2) is the solution of implicit function, we still need to verify C(t, x1, x2)
satisfying the following three conditions: (a) Ct + CCx1 + CCx2 = 0, (t, x1, x2) ∈ ΩC; (b) C =
1 = u−, (x1 − t)3 + (x2 − t) = 0, t > 0; (c) C = 2 = u+, (x1 − 2t)3 + (x2 − 2t) = 0, t > 0. In fact,
according to the next proposition, the above three conditions can be easily verified, and the
detail the omitted here.

Proposition 5.1. For any real number x, the following formula holds:

3

√
−(x + x3) +

√
4
27

+ (x + x3)2 +
3

√
−(x + x3) −

√
4
27

+ (x + x3)2 + 3
√

2x = 0. (5.11)
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Proof. Let

p =
3

√
−(x + x3) +

√
4

27
+ (x + x3)2 +

3

√
−(x + x3) −

√
4

27
+ (x + x3)2, (5.12)

then p satisfies

E
(
p
)

� p3 + 3
√

4p + 2
(
x + x3

)
= 0, (5.13)

where p must be one root of (5.13). In fact, E′(p) = 3p2 + 3
√

4 > 0. Equation (5.13) at most has
one real root; but − 3

√
2x is its real root, thus p = − 3

√
2x, and the proposition holds.

For case (iv), u− < u+ and

�n ◦
(
f ′1(u−), f

′
2(u−)

)
= −Mx1f

′
1(u−) −Mx2f

′
2(u−) = 3x2

1 + 1,

�n ◦
(
f ′1(u+), f

′
2(u+)

)
= −Mx1f

′
1(u+) −Mx2f

′
2(u+) = −

(
3x2

1 + 1
)
,

(5.14)

namely, �n◦(f ′1(u+), f
′
2(u+)) < 0 < �n◦(f ′1(u−), f

′
2(u−)), and thus the solution is rarefaction wave

formed as

u(t, x1, x2) =

⎧⎨
⎩
C(t, x1, x2), x3

1 + x2 > 0 ≥ (x1 − t)3 + (x2 − t), t > 0

1, (x1 − t)3 + (x2 − t) > 0, t > 0,
(5.15)

where C(t, x1, x2) has the same form as (5.10).
For case (v), u− < u+ and

�n ◦
(
f ′1(u−), f

′
2(u−)

)
= −Mx1f

′
1(u−) −Mx2f

′
2(u−) = 2

(
3x2

1 + 1
)
,

�n ◦
(
f ′1(u+), f

′
2(u+)

)
= −Mx1f

′
1(u+) −Mx2f

′
2(u+) = 3x2

1 + 1,
(5.16)

namely, 0 ≤ �n ◦ (f ′1(u+), f
′
2(u+)) < �n ◦ (f ′1(u−), f

′
2(u−)), and thus the solution is constant state

formed as

u(t, x1, x2) = −1, x3
1 + x2 > 0, t > 0. (5.17)
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