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We discuss the existence of solutions for the first-order multipoint BVPs on time scale T: uΔ(t) +
p(t)u(σ(t)) = λf(t, u(σ(t))), t ∈ [0, T]

T
, u(0) −∑m

i=1 αiu(ξi) = 0, where λ > 0 is a parameter, T > 0
is a fixed number, 0, T ∈ T, f : [0, T]

T
× [0,∞) → [0,∞) is continuous, p is regressive and rd-

continuous, αi ≥ 0, ξi ∈ T, i = 1, 2, . . . , m, 0 = ξ0 < ξ1 < ξ2 < · · · < ξm−1 < ξm = σ(T), and
1 −∑m

i=1(αi/ep(ξi, 0)) > 0. For suitable λ > 0, some existence, multiplicity, and nonexistence criteria
of positive solutions are established by using well-known results from the fixed-point index.

1. Introduction

Let T be a time scale (a nonempty closed subset of the real line R). We discuss the existence
of positive solutions to the first-order multipoint BVPs on time scale T:

uΔ(t) + p(t)u(σ(t)) = λf(t, u(σ(t))), t ∈ [0, T]
T
,

u(0) −
m∑

i=1

αiu(ξi) = 0,
(1.1)

where T > 0 is a fixed number, 0, T ∈ T, f : [0, T]
T
× [0,∞) → [0,∞) is continuous, p is

regressive and rd-continuous, αi ≥ 0, ξi ∈ T, i = 1, 2, . . . , m, 0 = ξ0 < ξ1 < ξ2 < · · · < ξm−1 <
ξm = σ(T), and 1 −∑m

i=1(αi/ep(ξi, 0)) > 0, ep(t, s) is defined in its standard form; see [1, page
59] for details.
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Themultipoint boundary value problems arise in a variety of different areas of applied
mathematics and physics. For example, the vibrations of a guywire of a uniform cross-section
and composed of N parts of different densities can be set up as a multipoint boundary
value problem [2]; also many problems in the theory of elastic stability can be handled
by a multipoint problem [3]. So, the existence of solutions to multipoint boundary value
problems have been studied bymany authors; see [4–13] and the reference therein. Especially,
in recent years the existence of positive solutions to multipoint boundary value problems on
time scales has caught considerable attention; see [10–14]. For other background on dynamic
equations on time scales, one can see [1, 15–18].

Our ideas arise from [13, 16]. In [13], Tian and Ge discussed the existence of positive
solutions to nonlinear first-order three-point boundary value problems on time scale T:

uΔ(t) + p(t)u(σ(t)) = f(t, u(σ(t))), t ∈ [0, T]
T
,

u(0) − αu
(
η
)
= βu(σ(T)),

(1.2)

where f : [0, T]
T
× [0,∞) → [0,∞) is continuous, p is regressive and rd-continuous, α, β ≥ 0

and α/ep(ξ, 0) + β/ep(σ(T), 0) < 1. The existence results are based on Krasnoselskii’s fixed-
point theorem in cones and Leggett-Williams’s theorem.

As we can see, if we take λ = 1, ξ1 = η, ξm = σ(T), and αi = 0 for i = 2, . . . , m − 1, then
(1.1) is reduced to (1.2). Because of the influence of the parameter λ, it will be more difficult
to solve (1.1) than to solve (1.2).

In 2009, by using the fixed-point index theory, Sun and Li [16] discussed the existence
of positive solutions to the first-order PBVPs on time scale T:

uΔ(t) + p(t)u(σ(t)) = λf(u(t)), t ∈ [0, T]
T
,

u(0) = u(σ(T)).
(1.3)

For suitable λ > 0, they gave some existence, multiplicity, and nonexistence criteria of positive
solutions.

Motivated by the above results, by using the well-known fixed-point index theory [16,
19], we attempt to obtain some existence, multiplicity and nonexistence criteria of positive
solutions to (1.1) for suitable λ > 0.

The rest of this paper is arranged as follows. Some preliminary results including
Green’s function are given in Section 2. In Section 3, we obtain some useful lemmas for the
proof of the main result. In Section 4, some existence and multiplicity results are established.
At last, some nonexistence results are given in Section 5.

2. Preliminaries

Throughout the rest of this paper, we make the following assumptions:

(H1) f :[0, T]
T
× [0,∞) → [0,∞) is continuous and f(·, u) > 0 for u > 0,

(H2) p:[0, T]
T
→ (0,∞) is rd-continuous, which implies that p ∈ R+ (whereR+ is defined

in [16, 18, 20]).
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Moreover, let

f0 = lim inf
u→ 0+

inf
t∈[0,T]

T

f(t, u)
u

, f∞ = lim inf
u→+∞

inf
t∈[0,T]

T

f(t, u)
u

,

f0 = lim sup
u→ 0+

sup
t∈[0,T]

T

f(t, u)
u

, f∞ = lim sup
u→+∞

sup
t∈[0,T]

T

f(t, u)
u

.

(2.1)

Our main tool is the well-known results from the fixed-point index, which we state
here for the convenience of the reader.

Theorem 2.1 (see [19]). Let X be a Banach space and P be a cone in X. For r > 0, we define
Pr = {x ∈ P | ‖x‖ < r}. Assume that Φ : Pr → P is completely continuous such Φx /=x for
x ∈ ∂Pr = {x ∈ P | ‖x‖ = r}.

(i) If ‖Φx‖ ≥ ‖x‖ for x ∈ ∂Pr , then

i(Φ, Pr , P) = 0. (2.2)

(ii) If ‖Φx‖ ≤ ‖x‖ for x ∈ ∂Pr , then

i(Φ, Pr , P) = 1. (2.3)

Let E := {x | x : [0, σ(T)]
T

→ R is continuous} be equipped with the norm ‖x‖ =
maxt∈[0,σ(T)]

T
|x(t)|. It is easy to see that (E, ‖ · ‖) is a Banach space.

For h ∈ E, we consider the following linear BVP:

uΔ(t) + p(t)u(σ(t)) = λh(σ(t)), t ∈ [0, T]
T
, (2.4)

u(0) −
m∑

i=1

αiu(ξi) = 0. (2.5)

For ξi, s ∈ [0, σ(T)]
T
, define

Hξi(s) =

⎧
⎪⎨

⎪⎩

αi

ep(ξi, 0)
, s ≤ ξi,

0, s > ξi.

(2.6)
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Lemma 2.2. For h ∈ E, the linear BVP (2.4)-(2.5) has a solution u if and only if u satisfies

u(t) =
λ

ep(t, 0)

{

Γ
m∑

i=1

αi

ep(ξi, 0)

∫ ξi

0
ep(s, 0)h(σ(s))Δs +

∫ t

0
ep(s, 0)h(σ(s))Δs

}

, (2.7)

where

Γ =
1

1 −∑m
i=1
(
αi/ep(ξi, 0)

) . (2.8)

Proof. By (2.4), we have

[
u(t)ep(t, 0)

]Δ = λep(t, 0)h(σ(t)). (2.9)

So,

u(t)ep(t, 0) = u(0) + λ

∫ t

0
ep(s, 0)h(σ(s))Δs. (2.10)

And so,

u(t) =
1

ep(t, 0)

[

u(0) + λ

∫ t

0
ep(s, 0)h(σ(s))Δs

]

. (2.11)

Combining this with (2.5), we get

u(t) =
λ

ep(t, 0)

{

Γ
m∑

i=1

αi

ep(ξi, 0)

∫ ξi

0
ep(s, 0)h(σ(s))Δs +

∫ t

0
ep(s, 0)h(σ(s))Δs

}

. (2.12)

Lemma 2.3. If the function u is defined in (2.7), then u may be expressed by

u(t) = λ

∫T

0
G(t, s)h(σ(s))Δs, (2.13)
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where

G(t, s) =
1

ep(t, 0)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Γ
m∑

j=i+1

αj

ep
(
ξj , 0

)ep(s, 0) + ep(s, 0), ξi ≤ s, σ(s) ≤ t, σ(t) ≤ ξi+1,

i = 0, 1, . . . , m − 1,

Γ

⎛

⎝
i∑

j=1

Hξj (s) +
m∑

j=i+1

αj

ep
(
ξj , 0

)

⎞

⎠

×ep(s, 0) + ep(s, 0), σ(s) ≤ ξi ≤ t, σ(t) ≤ ξi+1,

i = 1, 2, . . . , m − 1,

Γ
m∑

j=i+1

αj

ep
(
ξj , 0

)ep(s, 0), ξi ≤ t, σ(t) ≤ s, σ(s) ≤ ξi+1,

i = 0, 1, . . . , m − 1,

Γ
m∑

j=i+2

Hξj (s)ep(s, 0), ξi ≤ t, σ(t) ≤ ξi+1 ≤ s,

i = 0, 1, . . . , m − 2.

(2.14)

Proof. When σ(t) ≤ ξ1,

u(t) =
λ

ep(t, 0)

{

Γ

[
m∑

i=1

αi

ep(ξi, 0)

∫ t

0
ep(s, 0)h(σ(s))Δs +

m∑

i=1

αi

ep(ξi, 0)

∫ ξ1

t

ep(s, 0)h(σ(s))Δs

]

+Γ
m∑

i=2

αi

ep(ξi, 0)

∫ ξi

ξ1

ep(s, 0)h(σ(s))Δs +
∫ t

0
ep(s, 0)h(σ(s))Δs

}

.

(2.15)

(1) For σ(s) ≤ t,

G(t, s) =
1

ep(t, 0)

[

Γ
m∑

i=1

αi

ep(ξi, 0)
ep(s, 0) + ep(s, 0)

]

. (2.16)

(2) For σ(t) ≤ s, σ(s) ≤ ξ1,

G(t, s) =
1

ep(t, 0)

[

Γ
m∑

i=1

αi

ep(ξi, 0)
ep(s, 0)

]

. (2.17)

(3) For σ(t) ≤ ξ1 ≤ s,

G(t, s) =
1

ep(t, 0)

[

Γ
m∑

i=2

Hξi(s)ep(s, 0)

]

. (2.18)
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When ξi ≤ t, σ(t) ≤ ξi+1, i = 1, 2, . . . , m − 2,

u(t) =
λ

ep(t, 0)

⎧
⎨

⎩
Γ

⎡

⎣
i∑

j=1

αj

ep
(
ξj , 0

)

∫ ξj

0
ep(s, 0)h(σ(s))Δs +

m∑

j=i+1

αj

ep
(
ξj , 0

)

∫ ξi

0
ep(s, 0)h(σ(s))Δs

⎤

⎦

+Γ

⎡

⎣
m∑

j=i+1

αj

ep
(
ξj , 0

)

∫ ξj

ξi

ep(s, 0)h(σ(s))Δs

⎤

⎦ +
∫ t

0
ep(s, 0)h(σ(s))Δs

⎫
⎬

⎭
.

(2.19)

(1) For σ(s) ≤ ξi,

G(t, s) =
ep(s, 0)
ep(t, 0)

⎡

⎣Γ

⎛

⎝
i∑

j=1

Hξj (s) +
m∑

j=i+1

αj

ep
(
ξj , 0

)

⎞

⎠ + 1

⎤

⎦. (2.20)

(2) For ξi ≤ s, σ(s) ≤ t,

G(t, s) =
ep(s, 0)
ep(t, 0)

⎡

⎣Γ
m∑

j=i+1

αj

ep
(
ξj , 0

) + 1

⎤

⎦. (2.21)

(3) For σ(t) ≤ s, σ(s) ≤ ξi+1,

G(t, s) =
ep(s, 0)
ep(t, 0)

Γ
m∑

j=i+1

αj

ep
(
ξj , 0

) . (2.22)

(4) For ξi+1 ≤ s,

G(t, s) =
ep(s, 0)
ep(t, 0)

Γ
m∑

j=i+2

Hξj (s). (2.23)

When t ≥ ξm−1,

u(t) =
λ

ep(t, 0)

⎧
⎨

⎩
Γ

⎡

⎣
m−1∑

j=1

αj

ep
(
ξj , 0

)

∫ ξj

0
ep(s, 0)h(σ(s))Δs +

αm

ep(ξm, 0)

∫ ξm−1

0
ep(s, 0)h(σ(s))Δs

⎤

⎦

+ Γ
αm

ep(ξm, 0)

∫ t

ξm−1
ep(s, 0)h(σ(s))Δs

+Γ
αm

ep(ξm, 0)

∫ ξm

t

ep(s, 0)h(σ(s))Δs +
∫ t

0
ep(s, 0)h(σ(s))Δs

⎫
⎬

⎭
.

(2.24)
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(1) For σ(s) ≤ ξm−1,

G(t, s) =
ep(s, 0)
ep(t, 0)

[

Γ

(
m−1∑

i=1

Hξi(s) +
αm

ep(ξm, 0)

)

+ 1

]

. (2.25)

(2) For ξm−1 ≤ s, σ(s) ≤ t,

G(t, s) =
ep(s, 0)
ep(t, 0)

[

Γ
αm

ep(ξm, 0)
+ 1

]

. (2.26)

(3) For σ(t) ≤ s,

G(t, s) =
ep(s, 0)
ep(t, 0)

Γ
αm

ep(ξm, 0)
. (2.27)

Lemma 2.4. Green’s function G(t, s) has the following properties.

(i) G(t, s) ≥ 0, (t, s) ∈ [0, σ(T)]
T
× [0, T]

T
,

(ii) m ≤ G(t, s) ≤ M, wherem = Γ
∑m

i=1 αi/(ep(σ(T), 0))
2;M = Γ

∑m
i=1 αi + ep(σ(T), 0);

(iii) G(t, s) ≥ (m/M)sup(t,s)∈[0,σ(T)]
T
×[0,T]

T

G(t, s), (t, s) ∈ [0, σ(T)]
T
× [0, T]

T
.

Proof. This proof is similar to [13, Lemma 2.3], so we omit it.
Now, we define a cone P in E as follows:

P = {x ∈ E | x(t) ≥ 0, x(t) ≥ δ‖x‖ on [0, σ(T)]
T
}, (2.28)

where δ = m/M. For r > 0, let Pr = {u ∈ P | ‖u‖ < r} and ∂Pr = {u ∈ P | ‖u‖ = r}.
For λ > 0, define an operator Φλ : P → E:

(Φλu)(t) = λ

∫T

0
G(t, s)f(s, u(σ(s)))Δs, t ∈ [0, σ(T)]

T
. (2.29)

Similar to the proof of [13, Lemma 2.4], we can see thatΦλ : P → P is completely continuous.
By the above discussions, its not difficult to see that u being a solution of BVP (1.1) equals the
solution that u is a fixed point of the operator Φλ.

3. Some Lemmas

Lemma 3.1. Let η > 0. If u ∈ P and f(t, u(σ(t))) ≥ ηu(σ(t)), t ∈ [0, T]
T
, then

‖Φλx‖ ≥ ληδmT‖u‖. (3.1)
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Proof. Since u ∈ P and f(t, u(σ(t))) ≥ ηu(σ(t)), t ∈ [0, T]
T
, we have

Φλu(t) = λ

∫T

0
G(t, s)f(s, u(σ(s)))Δs ≥ λη

∫T

0
G(t, s)u(σ(s))Δs ≥ ληδmT‖u‖. (3.2)

Lemma 3.2. Let ε > 0. If u ∈ P and f(t, u(σ(t))) ≤ εu(σ(t)), t ∈ [0, T]
T
, then

‖Φλu‖ ≤ λεMT‖u‖. (3.3)

Proof. Since u ∈ P and f(t, u(σ(t))) ≤ εu(σ(t)), t ∈ [0, T]
T
, we have

Φλu(t) = λ

∫T

0
G(t, s)f(s, u(σ(s)))Δs ≤ λε

∫T

0
G(t, s)u(σ(s))Δs ≤ λεMT‖u‖. (3.4)

Lemma 3.3. Let r > 0. If u ∈ ∂Pr , then

λm(r)mT ≤ ‖Φλx‖ ≤ λM(r)MT, (3.5)

wherem(r) = min(t,u)∈[0,T]
T
×[δr,r]f(t, u);M(r) = max(t,u)∈[0,T]

T
×[δr,r]f(t, u).

Proof. Since u ∈ ∂Pr , we have δr ≤ u(σ(t)) ≤ r, t ∈ [0, T]
T
. So,

Φλu(t) = λ

∫T

0
G(t, s)f(s, u(σ(s)))Δs ≥ λm(r)

∫T

0
G(t, s)Δs ≥ λm(r)mT,

Φλu(t) = λ

∫σ(T)

0
G(t, s)f(s, u(σ(s)))Δs ≤ λM(r)

∫σ(T)

0
G(t, s)Δs ≤ λM(r)MT.

(3.6)

4. Some Existence and Multiplicity Results

Theorem 4.1. Assume that (H1) and (H2) hold and that f0 ∈ (0,∞), f∞ ∈ (0,∞). Then the BVP
(1.1) has at least two positive solutions for

1
m(1)mT

< λ <
1

2MT max
{
f0, f∞} . (4.1)

Proof. Let r1 = 1. Then it follows from (4.1) and Lemma 3.3 that

‖Φλu‖ ≥ λm(1)mT > 1 = ‖u‖, for u ∈ ∂Pr1 . (4.2)

In view of Theorem 2.1, we have

i(Φλ, Pr1 , P) = 0. (4.3)
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Now, combined with the definition of f0, we may choose 0 < r2 < r1 such that f(t, u) ≤
(f0 + ε)u for u ∈ [0, r2] and t ∈ [0, T]

T
uniformly, where ε > 0 satisfies

λεMT <
1
2
. (4.4)

So,

f(t, u(σ(t))) ≤
(
f0 + ε

)
u(σ(t)), for u ∈ ∂Pr2 , t ∈ [0, T]

T
. (4.5)

In view of (4.1), (4.4), (4.5), and Lemma 3.2, we have

‖Φλu‖ ≤ λ
(
f0 + ε

)
MT‖u‖ < ‖u‖, for u ∈ ∂Pr2 . (4.6)

It follows from Theorem 2.1 that

i(Φλ, Pr2 , P) = 1. (4.7)

By (4.3) and (4.7), we get

i
(
Φλ, Pr1 \ Pr2 , P

)
= −1. (4.8)

This shows that Φλ has a fixed point in Pr1 \ Pr2 , which is a positive solution of the BVP (1.1).
Now, by the definition of f∞, there exits an Ĥ > 0 such that f(t, u) ≤ (f∞ + ε)u for

u ∈ [Ĥ,∞) and t ∈ [0, T]
T
, where ε > 0 is chosen so that

λεMT <
1
2
. (4.9)

Let r3 = max{2r1, Ĥ/δ}. Then for u ∈ ∂Pr3 , u(t) ≥ δ‖u‖ = δr3 ≥ Ĥ, t ∈ [0, σ(T)]
T
. So,

f(t, u(σ(t))) ≤ (
f∞ + ε

)
u(σ(t)), for u ∈ ∂Pr3 , t ∈ [0, T]

T
. (4.10)

In view of (4.1), (4.9), and Lemma 3.2, we have

‖Φλu‖ ≤ λ
(
f∞ + ε

)
MT‖u‖ < ‖u‖, for x ∈ ∂Pr3 . (4.11)

It follows from Theorem 2.1 that

i(Φλ, Pr3 , P) = 1. (4.12)
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By (4.3) and (4.12), we get

i
(
Φλ, Pr3 \ Pr1 , P

)
= 1. (4.13)

This shows thatΦλ has a fixed point in Pr3 \Pr1 , which is another positive solution of the BVP
(1.1).

Similar to the proof of Theorem 4.1, we have the following results.

Theorem 4.2. Suppose that (H1) and (H2) hold and

λ >
1

m(1)mT
. (4.14)

Then,

(i) equation (1.1) has at least one positive solution if f0 = 0,

(ii) equation (1.1) has at least one positive solution if f∞ = 0,

(iii) equation (1.1) has at least two positive solutions if f0 = f∞ = 0.

Theorem 4.3. Assume that (H1) and (H2) hold. If f0 ∈ (0,∞), f∞ ∈ (0,∞), then the BVP (1.1) has
at least two positive solutions for

2
δmTmin

{
f0, f∞

} < λ <
1

M(1)MT
. (4.15)

Proof. Let r1 = 1. Then it follows from (4.15) and Lemma 3.3 that

‖Φλu‖ ≤ λM(1)MT < 1 = ‖u‖, for u ∈ ∂Pr1 . (4.16)

In view of Theorem 2.1, we have

i(Φλ, Pr1 , P) = 1. (4.17)

Since f0 > 0, we may choose 0 < r2 < r1 such that f(t, u) ≥ (f0 − η1)u for u ∈ [0, r2] and
t ∈ [0, T]

T
, where 0 < η1 < f0 satisfies λη1δmσ(T) < 1. So,

f(t, u(σ(t))) ≥ (
f0 − η1

)
u(σ(t)), for u ∈ ∂P2, t ∈ [0, T]

T
. (4.18)

In view of (4.15), (4.18), and Lemma 3.1, we have

‖Φλu‖ ≥ λ
(
f0 − η1

)
δmT‖u‖ > ‖u‖, for u ∈ ∂P2. (4.19)
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It follows from Theorem 2.1 that

i(Φλ, Pr2 , P) = 0. (4.20)

By (4.17) and (4.20), we get

i
(
Φλ, Pr1 \ Pr2 , P

)
= 1. (4.21)

This shows that Φλ has a fixed point in Pr1 \ Pr2 , which is a positive solution of the BVP (1.1).
Now, by the definition of f∞, there exists an Ĥ > 0 such that f(t, u) ≥ (f∞ − η2)u for

u ∈ [Ĥ,∞) and t ∈ [0, T]
T
, where 0 < η2 < f∞ satisfies

λη2δmT < 1. (4.22)

Let r3 = max{2r1, Ĥ/δ}. Then for u ∈ ∂Pr3 , u(t) ≥ δ‖u‖ = δr3 ≥ Ĥ, t ∈ [0, σ(T)]
T
. So,

f(t, u(σ(t))) ≥ (
f∞ − η2

)
u(σ(t)), for u ∈ ∂Pr3 , t ∈ [0, T]

T
. (4.23)

Combined with (4.22) and Lemma 3.1, we have

‖Φλu‖ ≥ λ
(
f∞ − η2

)
δmT‖u‖ > ‖u‖ for u ∈ ∂Pr3 . (4.24)

It follows from Theorem 2.1 that

i(Φλ, Pr3 , P) = 0, (4.25)

By (4.17) and (4.25), we get

i
(
Φλ, Pr3 \ Pr1 , P

)
= −1, (4.26)

This shows thatΦλ has a fixed point in Pr3 \Pr1 , which is another positive solution of the BVP
(1.1).

Similar to the proof of Theorem 4.3, we have the following results.

Theorem 4.4. Suppose that (H1) and (H2) hold and that

λ <
1

M(1)MT
. (4.27)
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Then,

(i) equation (1.1) has at least one positive solution if f0 = ∞,

(ii) equation (1.1) has at least one positive solution if f∞ = ∞,

(iii) equation (1.1) has at least two positive solutions if f0 = f∞ = ∞.

Theorem 4.5. Suppose that (H1) and (H2) hold. If f0 ∈ (0,∞), f0 ∈ (0,∞), f∞ ∈ (0,∞), f∞ ∈
(0,∞), then the BVP (1.1) has at least one positive solution for

1
δmT min

{
f∞, f0

} < λ <
1

MT max
{
f0, f∞} . (4.28)

Proof. We only deal with the case that f∞ ≤ f0, f0 ≥ f∞. The other three cases can be
discussed similarly.

Let λ satisfy (4.28) and let ε > 0 be chosen such that

f∞ − ε > 0,
1

δmT
(
f∞ − ε

) ≤ λ ≤ 1
MT

(
f0 + ε

) . (4.29)

From the definition of f0, we know that there exists a constant r1 > 0 such that f(t, u) ≤
(f0 + ε)u for u ∈ [0, r1] and t ∈ [0, T]

T
. So,

f(t, u(σ(t))) ≤
(
f0 + ε

)
u(σ(t)), for u ∈ ∂Pr1 , t ∈ [0, T]

T
. (4.30)

This combines with (4.29) and Lemma 3.2, we have

‖Φλu‖ ≤ λ
(
f0 + ε

)
MT‖u‖ ≤ ‖u‖, for u ∈ ∂Pr1 . (4.31)

It follows from Theorem 2.1 that

i(Φλ, Pr1 , P) = 1. (4.32)

On the other hand, from the definition of f∞, there exists an Ĥ > 0 such that f(t, u) ≥ (f∞−ε)u
for u ∈ [Ĥ,∞) and t ∈ [0, T]

T
. Let r2 = max{2r1, Ĥ/δ}. Then for u ∈ ∂Pr2 , u(σ(t)) ≥ δ‖u‖ =

δr2 ≥ Ĥ, t ∈ [0, T]
T
. So,

f(t, u(t)) ≥ (
f∞ − ε

)
u(t), for u ∈ ∂Pr2 , t ∈ [0, T]

T
. (4.33)

Combined with (4.29) and Lemma 3.1, we have

‖Φλu‖ ≥ λ
(
f∞ − ε

)
δmT‖u‖ ≥ ‖u‖. (4.34)
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It follows from Theorem 2.1 that

i(Φλ, Pr2 , P) = 0. (4.35)

By (4.32) and (4.35), we get

i
(
Φλ, Pr2 \ Pr1 , P

)
= −1, (4.36)

which implies that the BVP (1.1) has at least one positive solution in Pr2 \ Pr1 .

Remark 4.6. By making some minor modifications to the proof of Theorem 4.5, we can obtain
the existence of at least one positive solution, if one of the following conditions is satisfied:

(i) f0 = 0, f∞ ∈ (0,∞)and λ > 1/δmTf∞.

(ii) f0 = 0, f∞ = ∞and λ ∈ (0,∞).

(iii) f∞ = 0, f0 ∈ (0,∞)and λ > 1/δmTf0.

(iv) f∞ = 0, f0 = ∞and λ ∈ (0,∞).

Remark 4.7. From Conditions (ii) and (iv) of Remark 4.6, we know that the conclusion in
Theorem 4.5 holds for λ = 1 in these two cases. By f0 = 0 and f∞ = ∞, there exist two positive
constants 0 < r < R < ∞ such that, for t ∈ [0, T]

T
,

f(t, u) ≤ u

MT
for u ∈ [0, r], f(t, u) ≥ u

δmT
for u ∈ [R,∞). (4.37)

This is the condition of Theorem 3.2 of [13]. By f∞ = 0 and f0 = ∞, there exist two positive
constants 0 < r < R < ∞ such that for t ∈ [0, T]

T
,

f(t, u) ≤ u

MT
for u ∈ [R,∞); f(t, u) ≥ u

δmT
for u ∈ [0, r]. (4.38)

This is the condition of Theorem 3.3 of [13]. So, our conclusions extend and improve the
results of [13].

5. Some Nonexistence Results

Theorem 5.1. Assume that (H1) and (H2) hold. If f0 ∈ [0,∞) and f∞ ∈ [0,∞), then the BVP (1.1)
has no positive solutions for sufficiently small λ > 0.

Proof. In view of the definition of f0, f∞, there exist positive constants ε1, ε2, r1 and r2
satisfying r1 < r2 and

f(t, u) ≤
(
f0 + ε1

)
u, u ∈ [0, r1], f(t, u) ≤ (

f∞ + ε2
)
u, u ∈ [r2,∞). (5.1)
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Let

c1 = max
{

f0 + ε1, f
∞ + ε2, max

t∈[0,T]
T
,u∈[r1,r2]

f(t, u)
u

}

. (5.2)

Then c1 > 0 and we have

f(t, u) ≤ c1u, u ∈ [0,∞), t ∈ [0, T]
T
. (5.3)

We assert that the BVP (1.1) has no positive solutions for 0 < λ < 1/c1MT .
Suppose on the contrary that the BVP (1.1) has a positive solution u for 0 < λ <

1/c1MT . Then from (5.3) and Lemma 3.2, we get

‖u‖ = ‖Φλu‖ ≤ λc1MT‖u‖ < ‖u‖, (5.4)

which is a contradiction.

Theorem 5.2. Assume that (H1) and (H2) hold. If f0 ∈ (0,∞) and f∞ ∈ (0,∞), then the BVP (1.1)
has no positive solutions for sufficiently large λ > 0.

Proof. By the definition of f0, f∞, there exist positive constants η1, η2, r1, and r2 satisfying
f0 > η1, f∞ > η2, r1 < r2, and

f(t, u) ≥ (
f0 − η1

)
u, u ∈ [0, r1], f(t, u) ≥ (

f∞ − η2
)
u, u ∈ [r2,∞). (5.5)

Let

c2 = min
{

f0 − η1, f∞ − η2, min
t∈[0,T]

T
,u∈[r1,r2]

f(t, u)
u

}

. (5.6)

Then c2 > 0 and we have

f(t, u) ≥ c2u, u ∈ [0,∞), t ∈ [0, T]
T
. (5.7)

We assert that the BVP (1.1) has no positive solutions for λ > 1/c2δmT .
Suppose on the contrary that the BVP (1.1) has a positive solution u for λ > 1/c2δmT .

Then from (5.7) and Lemma 3.1 we get

‖u‖ = ‖Φλu‖ ≥ λc2δmT‖u‖ > ‖u‖, (5.8)

which is a contradiction.

Corollary 5.3. Assume that (H1) and (H2) hold. If f0 = ∞ and f∞ = ∞, then the BVP (1.1) has no
positive solutions for sufficiently large λ > 0.



Boundary Value Problems 15

Acknowledgments

This work was supported by the NSFC Young Item (no. 70901016), HSSF of Ministry of
Education of China (no. 09YJA790028), Program for Innovative Research Team of Liaoning
Educational Committee (no. 2008T054), the NSF of Liaoning Province (no. L09DJY065), and
NWNU-LKQN-09-3

References

[1] J.-P. Sun andW.-T. Li, “Existence of solutions to nonlinear first-order PBVPs on time scales,”Nonlinear
Analysis: Theory, Methods & Applications, vol. 67, no. 3, pp. 883–888, 2007.

[2] M.Moshinsky, “Sobre los problemas de condiciones a la frontiera en una dimension de caracteristicas
discontinuas,” Boletin Sociedad Matemática Mexicana, vol. 7, pp. l–25, 1950.
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