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The method of upper and lower solutions and the Schauder fixed point theorem are used to
investigate the existence and uniqueness of a positive solution to a singular boundary value
problem for a class of nonlinear fractional differential equations with non-monotone term.
Moreover, the existence of maximal and minimal solutions for the problem is also given.

1. Introduction

Fractional differential equation can be extensively applied to various disciplines such as
physics, mechanics, chemistry, and engineering, see [1–3]. Hence, in recent years, fractional
differential equations have been of great interest, and there have been many results
on existence and uniqueness of the solution of boundary value problems for fractional
differential equations, see [4–7]. Especially, in [8] the authors have studied the following
type of fractional differential equations:

Dα
0+u(t) + f(t, u(t)) = 0, u(0) = u(1) = 0, 0 < t < 1, (1.1)
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where 1 < α ≤ 2 is a real number, f : [0, 1] × [0,+∞) → [0,+∞) is continuous and Dα
0+ is the

fractional derivative in the sense of Riemann-Liouville. Recently, Qiu and Bai [9] have proved
the existence of a positive solution to boundary value problems of the nonlinear fractional
differential equations

Dα
0+u(t) + f(t, u(t)) = 0, u(0) = u′(1) = u′′(0) = 0, 0 < t < 1, (1.2)

where 2 < α ≤ 3, Dα
0+ denotes Caputo derivative, and f : (0, 1] × [0,+∞) → [0,+∞) with

limt→ 0+f(t, ·) = +∞ (i.e., f is singular at t = 0). Their analysis relies on Krasnoselskii’s fixed-
point theorem and nonlinear alternative of Leray-Schauder type in a cone. More recently,
Caballero Mena et al. [10] have proved the existence and uniqueness of a positive and
non-decreasing solution to this problem by a fixed-point theorem in partially ordered sets.
Other related results on the boundary value problem of the fractional differential equations
can be found in the papers [11–23]. A study of a coupled differential system of fractional
order is also very significant because this kind of system can often occur in applications
[24–26].

However, in the previous works [9, 10], the nonlinear term has to satisfy the monotone
or other control conditions. In fact, the nonlinear fractional differential equation with non-
monotone term can respond better to impersonal law, so it is very important to weaken
control conditions of the nonlinear term. In this paper, we mainly investigate the fractional
differential (1.2) without any monotone requirement on nonlinear term by constructing
upper and lower control function and exploiting the method of upper and lower solutions
and Schauder fixed-point theorem. The existence and uniqueness of positive solution for (1.2)
is obtained. Some properties concerning the maximal and minimal solutions are also given.
This work is motivated by the above references and my previous work [27]. This paper is
organized as follows. In Section 2, we recall briefly some notions of the fractional calculus and
the theory of the operators for integration and differentiation of fractional order. Section 3 is
devoted to the study of the existence and uniqueness of positive solution for (1.2) utilizing
the method of upper and lower solutions and Schauder fixed-point theorem. The existence of
maximal and minimal solutions for (1.2) is given in Section 4.

2. Preliminaries and Notations

For the convenience of the reader, we present here the necessary definitions and properties
from fractional calculus theory, which are used throughout this paper.

Definition 2.1. The Riemann-Liouville fractional integral of order α > 0 of a function f :
(0,+∞) → R is given by

Iα0+f(t) =
1

Γ(α)

∫ t

0
(t − s)α−1f(s)ds, (2.1)

provided that the right-hand side is pointwise defined on (0,+∞).
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Definition 2.2. The Caputo fractional derivative of order α > 0 of a continuous function f :
(0,+∞) → R is given by

Dα
0+f(t) =

1
Γ(n − α)

∫ t

0

f (n)(s)

(t − s)α−n+1
ds, 0 < t < +∞, (2.2)

where n−1 < α ≤ n, n ∈N, provided that the right-hand side is pointwise defined on (0,+∞).

Lemma 2.3 (see [28]). Let n − 1 < α ≤ n, n ∈N, u(t) ∈ Cn[0, 1], then

Iα0+D
α
0+u(t) = u(t) − C1 − C2t − · · · − Cnt

n−1, Ci ∈ R, i = 1, 2, . . . , n, 0 ≤ t ≤ 1,

Dα
+I

α
+u(t) = u(t), 0 ≤ t ≤ 1.

(2.3)

Lemma 2.4 (see [28]). The relation

Iα0+I
β

0+ϕ(t) = I
α+β
0+ ϕ(t) (2.4)

is valid when Re β > 0, Re(α + β) > 0, ϕ(t) ∈ L1(a, b).

Lemma 2.5 (see [9]). Let 2 < α ≤ 3, 0 < σ < α − 2; F : (0, 1] → R is a continuous function and
limt→ 0+F(t) = ∞. If tσF(t) is continuous function on [0, 1], then the function

H(t) =
∫1

0
G(t, s)F(s)ds (2.5)

is continuous on [0, 1], where

G(t, s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(α − 1)t(1 − s)α−2 − (t − s)α−1
Γ(α)

, 0 ≤ s ≤ t ≤ 1,

t(1 − s)α−2
Γ(α − 1)

, 0 ≤ t ≤ s ≤ 1.

(2.6)

Lemma 2.6. Let 2 < α ≤ 3, 0 < σ < α − 2; f : (0, 1] × [0,+∞) → [0,+∞) is a continuous function
and limt→ 0+f(t, ·) = +∞. If tσf(t, u(t)) is continuous function on [0, 1]×[0,+∞), then the boundary
value problems (1.2) are equivalent to the Volterra integral equations

u(t) =
∫1

0
G(t, s)f(s, u(s))ds. (2.7)

Proof. From Lemma 2.5, the Volterra integral equation (2.7) is well defined. If u(t) satisfies the
boundary value problems (1.2), then applying Iα to both sides of (1.2) and using Lemma 2.3,
one has

u(t) = −Iα0+f(t, u(t)) + C1 + C2t + C3t
2, (2.8)
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where Ci ∈ R, i = 1, 2, 3. Since tσf(t, u(t)) is continuous in [0, 1], there exists a constantM > 0,
such that |tσf(t, u(t))| ≤M, for t ∈ [0, 1]. Hence

Iα0+f(t, u(t)) =
1

Γ(α)

∫ t

0
(t − s)α−1f(s, u(s))ds

=
1

Γ(α)

∫ t

0
(t − s)α−1s−σsσf(s, u(s))ds

≤M
∫ t

0

(t − s)α−1
Γ(α)

s−σds

=
M

Γ(α)
tα−σB(1 − σ, α)

=
Γ(1 − σ)M
Γ(1 + α − σ) t

α−σ,

(2.9)

where B denotes the beta function. Thus, Iα0+f(t, u(t)) → 0 as t → 0. In the similar way, we
can prove that Iα−20+ f(t, u(t)) → 0 as t → 0.

By Lemma 2.4 we have

u′(t) = −D1
0+I

α
0+f(t, u(t)) + C2 + 2C3t

= −D1
0+I

1
0+I

α−1
0+ f(t, u(t)) + C2 + 2C3t

= −Iα−10+ f(t, u(t)) + C2 + 2C3t,

u′′(t) = −D1
0+I

α−1
0+ f(t, u(t)) + 2C3 = −Iα−20+ f(t, u(t)) + 2C3.

(2.10)

From the boundary conditions u(0) = u′(1) = u′′(0) = 0, one has

C1 = 0, C2 =
1

Γ(α − 1)

∫1

0
(1 − s)α−2f(s, u(s))ds, C3 = 0. (2.11)

Therefore, it follows from (2.8) that

u(t) = − 1
Γ(α)

∫ t

0
(t − s)α−1f(s, u(s))ds + 1

Γ(α − 1)

∫1

0
t(1 − s)α−2f(s, u(s))ds

=
∫ t

0

[
t(1 − s)α−2
Γ(α − 1)

− (t − s)α−1
Γ(α)

]
f(s, u(s))ds +

∫1

t

t(1 − s)α−2
Γ(α − 1)

f(s, u(s))ds

=
∫1

0
G(t, s)f(s, u(s))ds.

(2.12)

Namely, (2.7) follows.
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Conversely, suppose that u(t) satisfies (2.7), then we have

u(t) =
∫1

0
G(t, s)f(s, u(s))ds

= − 1
Γ(α)

∫ t

0
(t − s)α−1f(s, u(s))ds + 1

Γ(α − 1)

∫1

0
t(1 − s)α−2f(s, u(s))ds

= −Iα0+f(t, u(t)) +
t

Γ(α − 1)

∫1

0
(1 − s)α−2f(s, u(s))ds,

(2.13)

From Lemmas 2.3 and 2.4 and Definition 2.2, one has

u′(t) = −D1
0+I

α
0+f(t, u(t)) +

1
Γ(α − 1)

∫1

0
(1 − s)α−2f(s, u(s))ds

= −Iα−10+ f(t, u(t)) +
1

Γ(α − 1)

∫1

0
(1 − s)α−2f(s, u(s))ds

= − 1
Γ(α − 1)

∫ t

0
(t − s)α−2f(s, u(s))ds + 1

Γ(α − 1)

∫1

0
(1 − s)α−2f(s, u(s))ds,

u′′(t) = D1
0+

[
−Iα−10+ f(t, u(t)) +

1
Γ(α − 1)

∫1

0
(1 − s)α−2f(s, u(s))ds

]

= −Iα−20+ f(t, u(t)) = − 1
Γ(α − 2)

∫ t

0
(t − s)α−3f(s, u(s))ds,

(2.14)

as well as

Dα
0+u(t) = D

α
0+

[
−Iα0+f(t, u(t)) +

t

Γ(α − 1)

∫1

0
(1 − s)α−2f(s, u(s))ds

]

= −Dα
0+I

α
0+f(t, u(t)) + I

3−α
0+ D3

0+

[
t

Γ(α − 1)

∫1

0
(1 − s)α−2f(s, u(s))ds

]

= −f(t, u(t)).

(2.15)

Thus, from (2.12), (2.14), and (2.15), it is follows that

Dα
0+u(t) + f(t, u(t)) = 0, u(0) = u′(1) = u′′(0) = 0, 0 < t < 1. (2.16)

Namely, (1.2) holds. The proof is therefore completed.
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Remark 2.7. For G(t, s), since 2 < α ≤ 3, 0 ≤ s ≤ t ≤ 1 we can obtain

(α − 1)t(1 − s)α−2 ≥ t(1 − s)α−2 ≥ t(t − s)α−2 ≥ (t − s)α−1. (2.17)

Hence, it is follow from (2.6) that G(t, s) > 0, for 0 < t < 1 and G(0, s) = G(1, 1) = 0.
Let X = C3[0, 1] is the Banach space endowed with the infinity norm,K is a nonempty

closed subset of X defined as K = {u(t) ∈ X | 0 < u(t), 0 < t ≤ 1, u(0) = 0}. The positive
solution which we consider in this paper is a function such that u(t) ∈ K.

According to Lemma 2.6, (1.2) is equivalent to the fractional integral equation (2.7).
The integral equation (2.7) is also equivalent to fixed-point equation Tu(t) = u(t), u(t) ∈
C3[0, 1], where operator T : K → K is defined as

Tu(t) =
∫1

0
G(t, s)f(s, u(s))ds, (2.18)

then we have the following lemma.

Lemma 2.8 (see [9]). Let 2 < α ≤ 3, 0 < σ < α − 2, f : (0, 1] × [0,+∞) → [0,+∞) is a continuous
function and limt→ 0+f(t, ·) = +∞. If tσf(t, u(t)) is continuous function on [0, 1]× [0,+∞), then the
operator T : K → K is completely continuous.

Let 2 < α ≤ 3, 0 < σ < α − 2, f : (0, 1] × [0,+∞) → [0,+∞) is a continuous
function, limt→ 0+f(t, ·) = +∞, and tσf(t, u(t)) is continuous function on [0, 1] × [0,+∞). Take
a, b ∈ R+, and a < b. For any u(t) ∈ X, a ≤ u(t) ≤ b, we define the upper-control function
H(t, u) = supa≤η≤uf(t, η), and lower-control function h(t, u) = infu≤η≤bf(t, η), it is obvious that
H(t, u), h(t, u) are monotonous non-decreasing on u and h(t, u) ≤ f(t, u) ≤ H(t, u).

Definition 2.9. Let ũ(t), û(t) ∈ K, b ≥ ũ(t) ≥ û(t) ≥ a, and satisfy, respectively

ũ(t) ≥
∫1

0
G(t, s)H(s, ũ(s))ds,

û(t) ≤
∫1

0
G(t, s)h(s, û(s))ds,

(2.19)

then the function ũ(t), û(t) are called a pair of order upper and lower solutions for (1.2).

3. Existence and Uniqueness of Positive Solution

Now, we give and prove the main results of this paper.

Theorem 3.1. Let 2 < α ≤ 3, 0 < σ < α−2; f : (0, 1]× [0,+∞) → [0,+∞) is a continuous function
with limt→ 0+f(t, ·) = +∞, and tσf(t, u(t)) is a continuous function on [0, 1]× [0,+∞). Assume that
ũ(t), û(t) are a pair of order upper and lower solutions of (1.2), then the boundary value problem (1.2)
has at least one solution u(t) ∈ C3[0, 1], moreover,

ũ(t) ≥ u(t) ≥ û(t), t ∈ [0, 1]. (3.1)
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Proof. Let

S = {z(t) | z(t) ∈ K, ũ(t) ≤ z(t) ≤ û(t), t ∈ [0, 1]}, (3.2)

endowed with the norm ‖z‖ = maxt∈[0,1]z(t), then we have ‖z‖ ≤ b. Hence S is a convex,
bounded, and closed subset of the Banach space X. According to Lemma 2.8, the operator
T : K → K is completely continuous. Then we need only to prove T : S → S.

For any z(t) ∈ S, we have ũ(t) ≥ z(t) ≥ û(t). In view of Remark 2.7, Definition 2.9, and
the definition of control function, one has

Tz(t) =
∫1

0
G(t, s)f(s, z(s))ds ≤

∫1

0
G(t, s)H(s, z(s))ds

≤
∫1

0
G(t, s)H(s, ũ(s))ds ≤ ũ(t),

Tz(t) =
∫1

0
G(t, s)f(s, z(s))ds ≥

∫1

0
G(t, s)h(s, z(s))ds

≥
∫1

0
G(t, s)h(s, û(s))ds ≥ û(t).

(3.3)

Hence ũ(t) ≥ Tz(t) ≥ û(t), 1 ≥ t ≥ 0, that is, T : S → S. According to Schauder fixed-
point theorem, the operator T has at least a fixed-point u(t) ∈ S, 0 ≤ t ≤ 1. Therefore the
boundary value problem (1.2) has at least one solution u(t) ∈ C3[0, 1], and ũ(t) ≥ u(t) ≥ û(t),
t ∈ [0, 1].

Corollary 3.2. Let 2 < α ≤ 3, 0 < σ < α−2; f : (0, 1]×[0,+∞) → [0,+∞) is a continuous function
with limt→ 0+f(t, ·) = +∞, and tσf(t, u(t)) is a continuous function on [0, 1]× [0,+∞). Assume that
there exist two distinct positive constant ρ, μ (ρ > μ), such that

μ ≤ tσf(t, l) ≤ ρ, (t, l) ∈ [0, 1] × [0,+∞), (3.4)

then the boundary value problem (1.2) has at least a positive solution u(t) ∈ C[0, 1], moreover

μ

∫1

0
G(t, s)s−σds ≤ u(t) ≤ ρ

∫1

0
G(t, s)s−σds. (3.5)

Proof. By assumption (3.4) and the definition of control function, we have

μt−σ ≤ h(t, l) ≤ H(t, l) ≤ ρt−σ, (t, l) ∈ (0, 1] × [a, b]. (3.6)

Now, we consider the equation

Dα
0+u(t) + ρt

−σ = 0, u(0) = u′(1) = u′′(0) = 0, 0 < t < 1. (3.7)
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From Lemmas 2.5 and 2.6, (3.7) has a positive continuous solution on [0, 1]

w(t) = ρ
∫1

0
G(t, s)s−σds, t ∈ [0, 1],

w(t) = ρ
∫1

0
G(t, s)s−σds ≥

∫1

0
G(t, s)H(s,w(s))ds.

(3.8)

Namely,w(t) is a upper solution of (1.2). In the similar way, we obtain v(t) = μ
∫1
0 G(t, s)s

−σds
is the lower solution of (1.2). An application of Theorem 3.1 now yields that the boundary
value problem (1.2) has at least a positive solution u(t) ∈ C3[0, 1], moreover

μ

∫1

0
G(t, s)s−σds ≤ u(t) ≤ ρ

∫1

0
G(t, s)s−σds. (3.9)

Theorem 3.3. If the conditions in Theorem 3.1 hold. Moreover for any u1(t), u2(t) ∈ X, 0 < t < 1,
there exists l > 0, such that

∣∣f(t, u1) − f(t, u2)∣∣ ≤ l|u1 − u2|, (3.10)

then when lmax0≤t≤1
∫1
0 G(t, s)ds < 1, the boundary value problem (1.2) has a unique positive

solution u(t) ∈ S.

Proof. According to Theorem 3.1, if the conditions in Theorem 3.1 hold, then the boundary
value problems (1.2) have at least a positive solution in S. Hence we need only to prove that
the operator T defined in (2.18) is the contraction mapping in X. In fact, for any u1(t), u2(t) ∈
X, by assumption (3.10), we have

|Tu1(t) − Tu2(t)| =
∣∣∣∣∣
∫1

0
G(t, s)f(s, u1(s))ds −

∫1

0
G(t, s)f(s, u2(s))ds

∣∣∣∣∣

=

∣∣∣∣∣
∫1

0
G(t, s)

[
f(s, u1(s)) − f(s, u2(s))

]
ds

∣∣∣∣∣

≤
∫1

0
G(t, s)

∣∣f(s, u1(s)) − f(s, u2(s))
∣∣ds

≤ l
∫1

0
G(t, s)ds|u1 − u2|.

(3.11)

Note that, from Lemma 2.5,
∫1
0 G(t, s)ds is a continuous function on [0, 1]. Thus, when

lmax0≤t≤1
∫1
0 G(t, s)ds < 1, the operator T is the contraction mapping. Then by Banach

contraction fixed-point theorem, the boundary value problem (1.2) has a unique positive
solution u(t) ∈ S.
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4. Maximal and Minimal Solutions Theorem

In this section, we consider the existence of maximal and minimal solutions for (1.2).

Definition 4.1. Letm(t) be a solution of (1.2) in [0, 1], thenm(t) is said to be amaximal solution
of (1.2), if for every solution u(t) of (1.2) existing on [0, 1], the inequality u(t) ≤ m(t), t ∈ [0, 1],
holds. A minimal solution may be defined similarly by reversing the last inequality.

Theorem 4.2. Let 2 < α ≤ 3, 0 < σ < α−2, f : (0, 1]× [0,+∞) → [0,+∞) is a continuous function
with limt→ 0+f(t, ·) = +∞, and tσf(t, u(t)) is a continuous function on [0, 1]× [0,+∞). Assume that
f(t, u) is monotone non-decreasing with respect to the second variable, and there exist two positive
constants λ, μ (μ > λ) such that

λ ≤ tσf(t, u) ≤ μ, for (t, u) ∈ (0, 1] × [0,+∞). (4.1)

Then there exist maximal solution ϕ(t) and minimal solution η(t) of (1.2) on [0, 1], moreover

λ

∫1

0
G(t, s)s−σds ≤ η(t) ≤ ϕ(t) ≤ μ

∫1

0
G(t, s)s−σds, 0 ≤ t ≤ 1. (4.2)

Proof. It is easy to know from Corollary 3.2 that μ
∫1
0 G(t, s) s

−σds and λ
∫1
0 G(t, s)s

−σds are
the upper and lower solutions of (1.2), respectively. Then by using u(0) = μ

∫1
0 G(t, s)s

−σds,
u(0) = λ

∫1
0 G(t, s)s

−σds as a pair of coupled initial iterations we construct two sequences
{u(m)},{u(m)} from the following linear iteration process:

u(m)(t) =
∫1

0
G(t, s)f

(
s, u(m−1)(s)

)
ds,

u(m)(t) =
∫1

0
G(t, s)f

(
s, u(m−1)(s)

)
ds.

(4.3)

It is easy to show from the monotone property of f(t, u) and the condition (4.1) that the
sequences {u(m)},{u(m)} possess the following monotone property:

u(0) ≤ u(m) ≤ u(m+1) ≤ u(m+1) ≤ u(m) ≤ u(0) (m = 1, 2, . . .). (4.4)

The above property implies that

lim
m→∞

u(t)(m) = ϕ(t), lim
m→∞

u(t)(m) = η(t) (4.5)

exist and satisfy the relation

λ

∫1

0
G(t, s)s−σds ≤ η(t) ≤ ϕ(t) ≤ μ

∫1

0
G(t, s)s−σds, 0 ≤ t ≤ 1. (4.6)
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Lettingm → ∞ in (4.3) shows that ϕ(t) and η(t) satisfy the equations

ϕ(t) =
∫1

0
G(t, s)f

(
s, ϕ(s)

)
ds,

η(t) =
∫1

0
G(t, s)f

(
s, η(s)

)
ds.

(4.7)

It is easy to verify that the limits ϕ(t) and η(t) are maximal and minimal solutions of (1.2) in

S∗ =

{
ψ(t) | ψ(t) ∈ K, λ

∫1

0
G(t, s)s−σds ≤ ψ(t) ≤ μ

∫1

0
G(t, s)s−σds,

t ∈ [0, 1],
∥∥ψ(t)∥∥ = max

0≤t≤1
ψ(t)

} (4.8)

respectively, furthermore, if ϕ(t) = η(t) (≡ ζ(t)) then ζ(t) is the unique solution in S∗, and
hence the proof is completed.

Finally, we give an example to illuminate our results.

Example 4.3. We consider the fractional order differential equation

Dα
0+u(t) = t

−σ
{
1 +

u(t)
u(t) + sinu(t) + 1

}
, 0 < t < 1,

u(0) = u′(1) = u′′(0) = 0,

(4.9)

where 2 < α ≤ 3, 0 < σ < α − 2. It is obvious from f(t, u(t)) = t−σ{1 + u(t)/(u(t) + sinu(t) + 1)}
that 1 ≤ tσf(t, u) ≤ 2, (t, u) ∈ (0, 1] × [0,+∞). By Corollary 3.2, then (4.9) has a positive
solution. Nevertheless it is easy to prove that the conclusions of [9, 10] cannot be applied to
the above example.
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