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We present new results on the existence of multiple positive solutions of a fourth-order differential
equation subject to nonlocal and nonlinear boundary conditions that models a particular stationary
state of an elastic beam with nonlinear controllers. Our results are based on classical fixed point
index theory. We improve and complement previous results in the literature. This is illustrated in
some examples.

1. Introduction

The fourth-order differential equation

u(4)(t) = g(t)f(t, u(t)), t ∈ (0, 1), (1.1)

arises naturally in the study of the displacement u = u(t) of an elastic beamwhen we suppose
that, along its length, a load is added to cause deformations. This classical problem has been
widely studied under a variety of boundary conditions (BCs) that describe the controls at
the ends of the beam. In particular, Gupta [1] studied, along other sets of local homogeneous
BCs, the problem

u(0) = 0, u′′(0) = 0, u′(1) = 0, u′′′(1) = 0 (1.2)

that models a bar with the left end being simply supported (hinged) and the right end
being sliding clamped. This problem, and its generalizations, has been studied previously
by Davies and coauthors [2], Graef and Henderson [3] and Yao [4].
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Multipoint versions of this problem do have a physical interpretation. For example,
the four-point boundary conditions

u(0) = 0, u′′(0) = 0, u′(1) = H1(u(τ)), u′′′(1) +H2(u(ξ)) = 0 (1.3)

model a bar where the displacement u and the bending moment u′′ at t = 0 are zero, and there
are relations, not necessarily linear, between the shearing force u′′′ and the angular attitude u′

at t = 1 and the displacement u in two other points of the beam.
In this paper we establish new results on the existence of positive solutions for the

fourth-order differential equation (1.1) subject to the following nonlocal nonlinear boundary
conditions:

u(0) = 0, u′′(0) = 0, (1.4)

u′(1) = H1(α1[u]), (1.5)

u′′′(1) +H2(α2[u]) = 0, (1.6)

where H1,H2 are nonnegative continuous functions and α1[·], α2[·] are linear functionals
given by

α1[u] =
∫1

0
u(s)dA1(s), α2[u] =

∫1

0
u(s)dA2(s), (1.7)

involving Riemann-Stieltjes integrals.
The conditions (1.5)-(1.6) cover a variety of cases and include, as special cases when

H1(w) = H2(w) = w, multipoint and integral boundary conditions. These are widely studied
objects in the case of fourth-order BVPs; see, for example, [5–14]. BCs of nonlinear type also
have been studied before in the case of fourth-order equations; see, for example, [15–20] and
references therein.

The study of positive solutions of BVPs that involve Stieltjes integrals has been done,
in the case of positive measures, in [21–24]. Signed measures were used in [12, 25]; here, as in
[21, 22], due to some inequalities involved in our theory, the functionals αi[·] are assumed to
be given by positive measures.

A standard methodology to solve (1.1) subject to local BCs is to find the corresponding
Green’s function k and to rewrite the BVP as a Hammerstein integral equation of the form

u(t) =
∫1

0
k(t, s)g(s)f(s, u(s))ds. (1.8)

However, for nonlocal and nonlinear BCs the form of Green’s functions can become
very complicated. In the case of linear, nonlocal BCs, an elegant approach is due to Webb and
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Infante [12], where a unified method is given to study a large class of problems. This is done
via an auxiliary perturbed Hammerstein integral equation of the form

u(t) = γ1(t)α1[u] + γ2(t)α2[u] +
∫1

0
k(t, s)g(t)f(s, u(s))ds, (1.9)

with suitable functions γ1, γ2.
Infante studied in [26, 27] the case of one nonlinear BC and in [21] a thermostat model

with two nonlinear controllers. The approach used in [21] relied on an extension of the results
of [25], valid for equations of the type

u(t) = γ1(t)H1(α1[u]) + γ2(t)H2(α2[u]) +
∫1

0
k(t, s)g(s)f(s, u(s))ds, (1.10)

and gives a simple general method to avoid long technical calculations.
In our paper the approach of [21] is applied to BVP (1.1)–(1.6): we rewrite this BVP as

a perturbed Hammerstein integral equation, and we prove the existence of multiple positive
solutions under a suitable oscillatory behavior of the nonlinearity f . We observe that our
results are new even for the local BCs, when H1(α1[u]) = H2(α2[u]) = 0. We illustrate our
theory with some examples. We also point out that this approach may be utilized for other
sets of nonlinear BCs that have a physical interpretation, this is done in the last section.

2. The Boundary Value Problem

We begin by considering the homogeneous BVP

u(4)(t) = g(t)f(t, u(t)), u(0) = u′′(0) = u′(1) = u′′′(1) = 0, t ∈ (0, 1), (2.1)

of which we seek an equivalent integral formulation of the form

u(t) =
∫1

0
k(t, s)g(s)f(s, u(s))ds. (2.2)

Due to the nature of these particular BCs, the Green’s function k can be constructed
(as in [4]) by means of an auxiliary second-order BVP, namely,

u′′(t) + g(t)f(t, u(t)) = 0, u(0) = 0, u′(1) = 0, t ∈ (0, 1). (2.3)

The solutions of the BVP (2.3) can be written in the form

u(t) =
∫1

0
G(t, s)g(s)f(s, u(s))ds, (2.4)
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where

G(t, s) =

⎧⎨
⎩
s, s ≤ t,

t, s > t.
(2.5)

Therefore the function k in (2.2) is given by

k(t, s) =
∫1

0
G(t, v)G(v, s)dv. (2.6)

In order to use the approach of [21, 25, 28], we need to use some monotonicity
properties of k. Now, since

G(t, v)G(v, s) = v2χ[0,t](v)χ[0,s](v) + vsχ[0,t](v)χ[s,1](v)

+ tvχ[t,1](v)χ[0,s](v) + tsχ[t,1](v)χ[s,1](v),
(2.7)

we obtain the following formulation for the Green’s function:

k(t, s) =

⎧⎪⎪⎨
⎪⎪⎩

s

6
(−s2 − 3t2 + 6t

)
, s ≤ t,

t

6
(−t2 − 3s2 + 6s

)
, s > t.

(2.8)

We now look for a suitable interval [a, b] ⊂ [0, 1], a function Φ(s), and a constant cΦ > 0 such
that

k(t, s) ≤ Φ(s), for every (t, s) ∈ [0, 1] × [0, 1],

k(t, s) ≥ cΦΦ(s), for every (t, s) ∈ [a, b] × [0, 1].
(2.9)

Since k is continuous on [0, 1] × [0, 1] and k(t, s) > 0 for (t, s) ∈ (0, 1] × (0, 1], a natural
choice could be

Φ(s) = max
(t,s)∈[0,1]×[0,1]

k(t, s), cΦ = min
(t,s)∈[a,b]×[0,1]

k(t, s)
Φ(s)

; (2.10)

here we look for a better Φ, since this enables us to weaken the growth requirements on the
nonlinearity f .

An upper bound for k is obtained by finding maxt∈[0,1]k(t, s) for each fixed s. Since
(∂/∂t)k(t, s) ≥ 0 for (t, s) ∈ [0, 1] × [0, 1], k is a nondecreasing function of t that attains its
maximum, for each fixed s, when t = 1.

Therefore, for (t, s) ∈ [0, 1] × [0, 1], we have

k(t, s) ≤ k(1, s) =
s

6

(
−s2 + 3

)
:= Φ(s). (2.11)
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Now, one can see that the derivative of the function k(t, s)/Φ(s) with respect to s is
non-positive for all s ∈ [0, 1], that is, the function k(t, s)/Φ(s) is a non-increasing function of
s. Therefore, for an arbitrary [a, b] ⊂ (0, 1], we have

k(t, s) ≥ cΦΦ(s), for every (t, s) ∈ [a, b] × [0, 1], (2.12)

where

cΦ := min
a≤t≤b

k(t, 1)
Φ(1)

=
k(a, 1)
Φ(1)

=
1
2
a
(
3 − a2

)
. (2.13)

We now turn our attention to the BVP (1.1)–(1.6)

u(4)(t) = g(t)f(t, u(t)), u(0) = u′′(0) = u′(1) −H1(α1[u]) = u′′′(1) +H2(α2[u]) = 0,
(2.14)

and we show that we can study this problem by means of a perturbation of the Hammerstein
integral equation (2.2).

In order to do this, we look for the (unique) solutions of the linear problems

γ1
(4)(t) = 0, γ1(0) = γ ′′1 (0) = 0, γ ′1(1) = 1, γ ′′′1 (1) = 0,

γ2
(4)(t) = 0, γ2(0) = γ ′′2 (0) = γ ′2(1) = 0, γ ′′′2 (1) + 1 = 0

(2.15)

that are

γ1(t) = t, γ2(t) = −1
6
t3 +

1
2
t. (2.16)

We observe that, for an arbitrary [a, b] ⊂ (0, 1], we have

∥∥γ1∥∥ = 1, min
t∈[a,b]

γ1(t) = γ1(a) = a,

∥∥γ2∥∥ =
1
3
, min

t∈[a,b]
γ2(t) = γ2(a) = −1

6
a3 +

1
2
a,

(2.17)

where ‖u‖ := sup{|u(t)|: t ∈ [0, 1]}, and therefore

γ1(t) ≥ cγ1
∥∥γ1∥∥, γ2(t) ≥ cγ2

∥∥γ2∥∥, for every t ∈ [a, b], (2.18)

with

cγ1 :=
mint∈[a,b]γ1(t)∥∥γ1∥∥ = a, cγ2 :=

mint∈[a,b]γ2(t)∥∥γ2∥∥ = −a
3

2
+
3a
2
. (2.19)
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By a solution of the BVP (1.1)–(1.6) we mean a solution of the perturbed integral
equation

u(t) = γ1(t)H1(α1[u]) + γ2(t)H2(α2[u]) +
∫1

0
k(t, s)g(t)f(s, u(s))ds =: Tu(t), (2.20)

and we work in a suitable cone in the Banach space C[0, 1] of continuous functions defined
on the interval [0, 1] endowed with the usual supremum norm.

Our assumptions are the following:

(C1) f : [0, 1] × [0,∞) → [0,∞) satisfies Carathéodory conditions, that is, for each u,
t 
→ f(t, u) is measurable, for almost every t, u 
→ f(t, u) is continuous, and for
every r > 0, there exists an L∞-function φr : [0, 1] → [0,∞) such that

f(t, u) ≤ φr(t) for almost all t ∈ [0, 1] and all u ∈ [0, r]; (2.21)

(C2) g Φ ∈ L1[0, 1], g ≥ 0 almost everywhere, and
∫1
0 Φ(s)g(s)ds > 0;

(C3) H1,H2 are positive continuous functions such that there exist h11, h12, h21, h22 ∈
[0,∞)with

h11v ≤ H1(v) ≤ h12v, h21v ≤ H2(v) ≤ h22v, (2.22)

for every v ≥ 0;

(C4) α1[·], α2[·] are positive bounded linear functionals on C[0, 1] given by

αi[u] =
∫1

0
u(s)dAi(s), i = 1, 2, (2.23)

involving Stieltjes integrals with positivemeasures dAi;

(C5) D2 := (1 − h12α1[γ1])(1 − h22α2[γ2]) − h12h22α1[γ2]α2[γ1] > 0, h12α1[γ1] < 1 and
h22α2[γ2] < 1.

It follows from this last hypothesis that

D1 :=
(
1 − h11α1

[
γ1
])(

1 − h21α2
[
γ2
]) − h11h21α1

[
γ2
]
α2
[
γ1
] ≥ D2 > 0. (2.24)



Boundary Value Problems 7

The above hypotheses enable us to utilize the cone

K =
{
u ∈ C[0, 1] : u ≥ 0, min

t∈[a,b]
u(t) ≥ c‖u‖

}
, (2.25)

for an arbitrary [a, b] ⊂ (0, 1] and

c := min
{
cΦ, cγ1 , cγ2

}
= a, (2.26)

and to use the classical fixed point index for compact maps (see e.g., [29] or [30]).
We observe, as in [21], that T leaves K invariant and is compact. We give the proof in

the Carathéodory case for completeness.

Lemma 2.1. If the hypotheses (C1)–(C4) hold, then T mapsK intoK. Moreover, T is a compact map.

Proof. Take u ∈ K such that ‖u‖ ≤ r. Then we have, for t ∈ [0, 1],

Tu(t) = γ1(t)H1(α1[u]) + γ2(t)H2(α2[u]) +
∫1

0
k(t, s)g(s)f(s, u(s))ds

≤ γ1(t)H1(α1[u]) + γ2(t)H2(α2[u]) +
∫1

0
Φ(s)g(s)φr(s)ds,

(2.27)

therefore

‖Tu‖ ≤ ∥∥γ1∥∥H1(α1[u]) +
∥∥γ2∥∥H2(α2[u]) +

∫1

0
Φ(s)g(s)φr(s)ds. (2.28)

Then we obtain

min
t∈[a,b]

Tu(t) ≥ cγ1
∥∥γ1∥∥H1(α1[u]) + cγ2

∥∥γ2∥∥H2(α2[u]) + cΦ

∫1

0
Φ(s)g(s)φr(s) ≥ c‖Tu‖. (2.29)

Hence we have Tu ∈ K. Moreover, the map T is compact since it is a sum of two compact
maps: the compactness of

∫1
0 k(t, s)g(s)f(s, u(s))ds is well known, and since γ1, γ2,H1, and

H2 are continuous, the perturbation γ1(t)H1(α1[u]) + γ2(t)H2(α2[u])maps bounded sets into
bounded subsets of a 1-dimensional space.

For ρ > 0, we use, as in [23, 31], the following bounded open subsets of K:

Kρ =
{
u ∈ K : ‖u‖ < ρ

}
, Vρ =

{
u ∈ K : min

t∈[a,b]
u(t) < ρ

}
. (2.30)

Note that Kρ ⊂ Vρ ⊂ Kρ/c.
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We employ the following numbers:

f0,ρ := sup
0≤u≤ρ, 0≤t≤1

f(t, u)
ρ

, fρ,ρ/c := inf
ρ≤u≤ρ/c, a≤t≤b

f(t, u)
ρ

,

1
m

:= sup
t∈[0,1]

∫1

0
k(t, s)g(s)ds,

1
M(a, b)

:= inf
t∈[a,b]

∫b

a

k(t, s)g(s)ds,

(2.31)

and we note

Ki(s) :=
∫1

0
k(t, s)dAi(t), i = 1, 2. (2.32)

The proofs of the following results can be immediately deduced from the analogous
results in [21], where the proofs involve a careful analysis of fixed point index and utilize
order-preserving matrices. The only difference here is that we allow nonlinearity f to be
Carathéodory instead of continuous. The lines of proof are not effected and therefore the
proofs are omitted.

Firstly we give conditions which imply that the fixed point index is 0 on the set Vρ.

Lemma 2.2. Suppose that (C1)–(C5) hold. Assume that there exist ρ > 0 such that

fρ,ρ/c

((
cγ1
∥∥γ1∥∥
D1

(
1 − h21α2

[
γ2
])

+
cγ2
∥∥γ2∥∥
D1

h11α2
[
γ1
])∫1

0
K1(s)g(s)ds

+

(
cγ1
∥∥γ1∥∥
D1

h21α1
[
γ2
]
+
cγ2
∥∥γ2∥∥
D1

(
1 − h11α1

[
γ1
]))∫1

0
K2(s)g(s)ds +

1
M(a, b)

)
> 1.

(2.33)

Then the fixed point index, iK(T, Vρ), is 0.

Now, we give conditions which imply that the fixed point index is 1 on the set Kρ.

Lemma 2.3. Suppose (C1)–(C5) hold. Assume that there exists ρ > 0 such that

f0,ρ

((∥∥γ1∥∥
D2

(
1 − h22α2

[
γ2
])

+

∥∥γ2∥∥
D2

h12α2
[
γ1
])∫1

0
K1(s)g(s)ds

+

(∥∥γ1∥∥
D2

h22α1
[
γ2
]
+

∥∥γ2∥∥
D2

(
1 − h12α1

[
γ1
]))∫1

0
K2(s)g(s)ds +

1
m

)
< 1.

(2.34)

Then iK(T,Kρ) = 1.

The two lemmas above lead to the following result on existence of one or two positive
solutions for the integral equation (2.20). Note that, if the nonlinearity f has a suitable
oscillatory behavior, it is possible to state, with the same arguments as in [23], a theorem
on the existence of more than two positive solutions.
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Theorem 2.4. Suppose (C1)–(C5) hold. Let [a, b] ⊂ (0, 1) and c be as in (2.26). Then (2.20) has one
positive solution in K if either of the following conditions holds:

(S1) there exist ρ1, ρ2 ∈ (0,∞) with ρ1 < ρ2 such that (2.34) is satisfied for ρ1 and (2.33) is
satisfied for ρ2;

(S2) there exist ρ1, ρ2 ∈ (0,∞) with ρ1 < cρ2 such that (2.33) is satisfied for ρ1 and (2.34) is
satisfied for ρ2.

Equation (2.20) has at least two positive solutions in K if one of the following conditions hold.

(D1) there exist ρ1, ρ2, ρ3 ∈ (0,∞), with ρ1 < ρ2 < cρ3, such that (2.34) is satisfied for ρ1,
(2.33) is satisfied for ρ2, and (2.34) is satisfied for ρ3;

(D2) there exist ρ1, ρ2, ρ3 ∈ (0,∞), with ρ1 < cρ2 and ρ2 < ρ3, such that (2.33) is satisfied for
ρ1, (2.34) is satisfied for ρ2, and (2.33) is satisfied for ρ3.

3. Optimal Constants and Examples

Consider the differential equation

u(4)(t) = f(t, u(t)), t ∈ (0, 1), (3.1)

with the BCs (1.4)–(1.6).
The value 1/m is given by direct calculation as follows:

1
m

= sup
t∈[0,1]

∫1

0
k(t, s)ds = max

t∈[0,1]
t

24

(
t3 − 4t2 + 8

)
=

5
24

. (3.2)

We seek the “optimal” [a, b] for whichM(a, b) is a minimum. This type of problems has been
tackled in the past, for example, in the second-order case for heat-flow problems in [32] and
for beam equations (under different BCs) in [9, 12, 13].

The kernel k is a positive, nondecreasing function of t, thus

1
M(a, b)

= min
t∈[a,b]

∫b

a

k(t, s)ds =
∫b

a

k(a, s)ds =
∫b

a

a

6

(
−a2 − 3s2 + 6s

)
ds. (3.3)

Since k is a nondecreasing function of t, we have

max
0<a<b≤1

{
1

M(a, b)

}
= max

0<a≤1

∫1

a

a

6

(
−a2 − 3s2 + 6s

)
ds = max

0<a≤1

{
a

6

(
2a3 − 4a2 + 2

)}
. (3.4)

Such maximum is attained at a = 1/2. Thus the “optimal” interval [a, b], for which M(a, b)
is a minimum, is the interval [1/2, 1]; this gives M(1/2, 1) = 48/5 and c = 1/2.

Remark 3.1. From Theorem 2.4, it is possible to state results for the existence of several
nonnegative solutions for the homogeneous BVP

u(4)(t) = f(t, u(t)), u(0) = u′′(0) = u′(1) = u′′′(1) = 0, t ∈ (0, 1). (3.5)
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For example, with [a, b] = [1/2, 1] and c = 11/16, the BVP (3.5) has at least two positive
solutions in K if there exist ρ1 < ρ2 < cρ3, such that f0,ρ1 < 4.8, fρ2,ρ2/c > 9.6 and f0,ρ3 < 4.8.

These results are new and improve and complement the previous ones. Gupta [1] and
Yao [4] studied the problem with more general nonlinearity but established existence results
only. Davies and co-authors [2] and Graef and Henderson [3] obtain the existence of multiple
positive solutions for a 2nth-order differential equation subject to our boundary conditions
in the case n = 2. In [2] the choice [a, b] = [1/4, 3/4] gives the values η = 4 and μ = 164 which
replace our constants m and M(1/2, 1) in the growth conditions of f . The growth conditions
of the nonlinearity f = f(u) in Theorem 3.1 in [3] cannot be compared with ours, but we do
not require the restriction f(0)/= 0.

The next examples illustrate the applicability of our results. Firstly we consider, as an
illustrative example, the case of a nonlinear 4-point problem.

Example 3.2. Consider the differential equation

u(4)(t) = f(t, u(t)), t ∈ (0, 1), (3.6)

with the BCs

u(0) = 0, u′′(0) = 0, u′(1) = H1(u(τ)), u′′′(1) +H2(u(ξ)) = 0, (3.7)

where τ, ξ ∈ (0, 1) and, as in [22], for i = 1, 2

Hi(w) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
4i
w, 0 ≤ w ≤ 1,

1
8i
w +

1
8i
, w ≥ 1.

(3.8)

In this case we have h11 = 1/8, h12 = 1/4, h21 = 1/16, h22 = 1/8,

α1
[
γ1
]
= τ, α1

[
γ2
]
= −1

6

(
τ3 − 3τ

)
, α2

[
γ1
]
= ξ, α2

[
γ2
]
= −1

6

(
ξ3 − 3ξ

)
,

∫1

0
K1(s)ds =

∫1

0
k(τ, s)ds =

τ

24

(
τ3 − 4τ2 + 8

)
,

∫1

0
K2(s)ds =

∫1

0
k(ξ, s)ds =

ξ

24

(
ξ3 − 4ξ2 + 8

)
.

(3.9)
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We now fix τ = 1/4, ξ = 1/2 and show that all the constants that appear in (2.33) and
in (2.34) can be computed. This choice leads to

α1
[
γ1
]
=

1
4
, α1

[
γ2
]
=

47
384

, α2
[
γ1
]
=

1
2
, α2

[
γ2
]
=

11
48

, D2 =
45373
49152

. (3.10)

Moreover we have

∫1

0
K1(s)ds =

497
6144

,

∫1

0
K2(s)ds =

19
128

, (3.11)

and conditions (2.34) and (2.33) read f0,ρ1 < 2.8587 and fρ2,ρ2/c > 6.9470. Since (S1) holds,
from Theorem 2.4 it follows that this BVP has a nontrivial solution in K. A nonlinearity that
easily verifies (S1), for example, is the function f(t, u) = u3 for every 0 < ρ1 <

√
2.8587 and

every ρ2 >
√
6.9470.

We now give an example with continuously distributed positive measures.

Example 3.3. Consider the differential equation

u(4)(t) = f(t, u(t)), t ∈ (0, 1), (3.12)

with the BCs

u(0) = 0, u′′(0) = 0, u′(1) = H1

(∫1

0
α1u(s)ds

)
, u′′′(1) +H2

(∫1

0
α2u(s)ds

)
= 0,

(3.13)

with α1, α2 > 0 and Hi, i = 1, 2, as in the previous example. In this case, we obtain

α1
[
γ1
]
=

α1

2
, α1

[
γ2
]
=

5α1

24
, α2

[
γ1
]
=

α2

2
, α2

[
γ2
]
=

5α2

24
, (3.14)

and for i = 1, 2

Ki(s) =
∫1

0
k(t, s)dAi(t) =

∫1

0
αik(t, s)dt = αi

(
1
24

s4 − 1
6
s3 +

1
3
s

)
,

∫1

0
Ki(s)ds =

2αi

15
.

(3.15)
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The Condition (C5) becomes

α1 < 8, α2 <
192
5

, 1 − 5
192

α2 − 1
8
α1 > 0. (3.16)

We now fix α1 = 4, α2 = 8. This choice leads to

α1
[
γ1
]
= 2, α1

[
γ2
]
=

5
6
, α2

[
γ1
]
= 4, α2

[
γ2
]
=

5
3
, D2 =

7
24

,

∫1

0
K1(s)ds =

8
15

,

∫1

0
K2(s)ds =

16
15

(3.17)

and conditions (2.34) and (2.33) read f0,ρ1 < 0.30713 and fρ2,ρ2/c > 1.1166.

4. Other Nonlinear BCs

So far we have discussed in detail the case of the BCs (1.4)–(1.6), but the same approach may
be applied to (1.1) subject to the nonlinear BCs

u(0) = H1(α1[u]), u′′(0) +H2(α2[u]) = 0, u′(1) = 0, u′′′(1) = 0, (4.1)

or

u(0) = H1(α1[u]), u′′(0) = 0, u′(1) = H2(α2[u]), u′′′(1) = 0, (4.2)

or

u(0) = H1(α1[u]), u′′(0) = 0, u′(1) = 0, u′′′(1) +H2(α2[u]) = 0, (4.3)

or

u(0) = 0, u′′(0) +H1(α1[u]) = 0, u′(1) = H2(α2[u]), u′′′(1) = 0, (4.4)

or

u(0) = 0, u′′(0) +H1(α1[u]) = 0, u′(1) = 0, u′′′(1) +H2(α2[u]) = 0. (4.5)

As in [12], where a different set of BCs were investigated, we point out that these nonlocal
boundary conditions can be interpreted as feedback controls: for example, the BCs (4.1) can
be seen as a control on the displacement at the left end and a device handling the shear force
at t = 0.
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Table 1

BCs (1.4)–(1.6) BCs (4.1) BCs (4.2) BCs (4.3) BCs (4.4) BCs (4.5)

γ1(t) t 1 1 1 − t
2

2
+ t − t

2

2
+ t

γ2(t) − t
3

6
+

t

2
− t

2

2
+ t t − t

3

6
+

t

2
t − t

3

6
+

t

2

cγ1 a 1 1 1 2a − a2 2a − a2

cγ2 −a
3

2
+
3a
2

2a − a2 a −a
3

2
+
3a
2

a −a
3

2
+
3a
2

Table 1 illustrates how the choice of the BCs affects the functions γ1, γ2 and the
constants cγ1 , cγ2 .

Since one can see that

1 > 2a − a2 > −a
3

2
+
3a
2

> a, a ∈ (0, 1], (4.6)

the coneK, given by the constant c, varies according to the nonhomogeneous BCs considered.
This affects also, in a natural manner, conditions (2.33) and (2.34).
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