
Hindawi Publishing Corporation
Boundary Value Problems
Volume 2011, Article ID 456426, 19 pages
doi:10.1155/2011/456426

Research Article
Positive Solutions of nth-Order Nonlinear
Impulsive Differential Equation with Nonlocal
Boundary Conditions

Meiqiang Feng,1 Xuemei Zhang,2 and Xiaozhong Yang2

1 School of Science, Beijing Information Science & Technology University, Beijing 100192, China
2 Department of Mathematics and Physics, North China Electric Power University, Beijing 102206, China

Correspondence should be addressed to Meiqiang Feng, meiqiangfeng@sina.com

Received 25 March 2010; Accepted 9 May 2010

Academic Editor: Feliz Manuel Minhós

Copyright q 2011 Meiqiang Feng et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

This paper is devoted to study the existence, nonexistence, and multiplicity of positive solutions
for the nth-order nonlocal boundary value problem with impulse effects. The arguments are based
upon fixed point theorems in a cone. An example is worked out to demonstrate the main results.

1. Introduction

The theory of impulsive differential equations describes processes which experience a sudden
change of their state at certain moments. Processes with such a character arise naturally
and often, especially in phenomena studied in physics, chemical technology, population
dynamics, biotechnology, and economics. For an introduction of the basic theory of impulsive
differential equations, see Lakshmikantham et al. [1]; for an overview of existing results and
of recent research areas of impulsive differential equations, see Benchohra et al. [2]. The
theory of impulsive differential equations has become an important area of investigation in
the recent years and is much richer than the corresponding theory of differential equations;
see, for instance, [3–14] and their references.

At the same time, a class of boundary value problems with integral boundary
conditions arise naturally in thermal conduction problems [15], semiconductor problems
[16], hydrodynamic problems [17]. Such problems include two, three, and multipoint
boundary value problems as special cases and attract much attention; see, for instance,
[7, 8, 11, 18–44] and references cited therein. In particular, we would like to mention some
results of Eloe and Ahmad [19] and Pang et al. [22]. In [19], by applying the fixed point
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theorem in cones due to the work of Krasnosel’kii and Guo, Eloe and Ahmad established the
existence of positive solutions of the following nth boundary value problem:

x(n)(t) + a(t)f(t, x(t)) = 0, t ∈ (0, 1),

x(0) = x′(0) = · · · = x(n−2)(0) = 0,

x(1) = αx
(
η
)
.

(1.1)

In [22], Pang et al. considered the expression and properties of Green’s function for
the nth-order m-point boundary value problem

x(n)(t) + a(t)f(x(t)) = 0, 0 < t < 1,

x(0) = x′(0) = · · · = x(n−2)(0) = 0,

x(1) =
m−2∑

i=1

βix(ξi),

(1.2)

where 0 < ξ1 < ξ2 < · · · < ξm−2 < 1, βi > 0,
∑m−2

i=1 βiξ
m−1
i < 1. Furthermore, they obtained the

existence of positive solutions by means of fixed point index theory.
Recently, Yang and Wei [23] and the author of [24] improved and generalized the

results of Pang et al. [22] by using different methods, respectively.
On the other hand, it is well known that fixed point theorem of cone expansion and

compression of norm type has been applied to various boundary value problems to show the
existence of positive solutions; for example, see [7, 8, 11, 19, 23, 24]. However, there are few
papers investigating the existence of positive solutions of nth impulsive differential equations
by using the fixed point theorem of cone expansion and compression. The objective of the
present paper is to fill this gap. Being directly inspired by [19, 22], using of the fixed point
theorem of cone expansion and compression, this paper is devoted to study a class of nonlocal
BVPs for nth-order impulsive differential equations with fixed moments.

Consider the following nth-order impulsive differential equations with integral
boundary conditions:

x(n)(t) + f(t, x(t)) = 0, t ∈ J, t /= tk,

−Δx(n−1)|t=tk = Ik(x(tk)), k = 1, 2, . . . , m,

x(0) = x′(0) = · · · = x(n−2)(0) = 0, x(1) =
∫1

0
h(t)x(t)dt.

(1.3)

Here J = [0, 1], f ∈ C(J × R+, R+), Ik ∈ C(R+, R+), and R+ = [0,+∞), tk(k = 1, 2, . . . , m)
(where m is fixed positive integer) are fixed points with 0 < t1 < t2 < · · · < tk < · · · < tm <
1, Δx(n−1)|t=tk = x(n−1)(t+

k
) − x(n−1)(t−

k
), where x(n−1)(t+

k
) and x(n−1)(t−

k
) represent the right-hand

limit and left-hand limit of x(n−1)(t) at t = tk, respectively, h ∈ L1[0, 1] is nonnegative.
For the case of h ≡ 0, problem (1.3) reduces to the problem studied by Samoı̆lenko and

Perestyuk in [4]. By using the fixed point index theory in cones, the authors obtained some
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sufficient conditions for the existence of at least one or two positive solutions to the two-point
BVPs.

Motivated by the work above, in this paper we will extend the results of [4, 19, 22–
24] to problem (1.3). On the other hand, it is also interesting and important to discuss the
existence of positive solutions for problem (1.3) when Ik /= 0 (k = 1, 2, . . . , m, ), n ≥ 2, and
h/≡ 0. Many difficulties occur when we deal with them; for example, the construction of
cone and operator. So we need to introduce some new tools and methods to investigate the
existence of positive solutions for problem (1.3). Our argument is based on fixed point theory
in cones [45].

To obtain positive solutions of (1.3), the following fixed point theorem in cones is
fundamental which can be found in [45, page 93].

Lemma 1.1. Let Ω1 and Ω2 be two bounded open sets in Banach space E, such that 0 ∈ Ω1 and
Ω1 ⊂ Ω2. Let P be a cone in E and let operator A : P ∩ (Ω2 \ Ω1) → P be completely continuous.
Suppose that one of the following two conditions is satisfied:

(i) Ax/≥x, ∀x ∈ P ∩ ∂Ω1; Ax/≤x, ∀x ∈ P ∩ ∂Ω2;

(ii) Ax/≤x, ∀x ∈ P ∩ ∂Ω1; Ax/≥x, ∀x ∈ P ∩ ∂Ω2.

Then, A has at least one fixed point in P ∩ (Ω2 \Ω1).

2. Preliminaries

In order to define the solution of problem (1.3), we will consider the following space.
Let J ′ = J \ {t1, t2, . . . , tn}, and

PCn−1[0, 1] =
{
x ∈ C[0, 1] : x(n−1)|(tk ,tk+1) ∈ C(tk, tk+1),

x(n−1)(t−k
)
= x(n−1)(tk), ∃ x(n−1)(t+k

)}
, k = 1, 2, . . . , m.

(2.1)

Then PCn−1[0, 1] is a real Banach space with norm

‖x‖pcn−1 = max
{
‖x‖∞,

∥∥x′∥∥
∞,
∥∥x′′∥∥

∞, . . . ,
∥∥∥x(n−1)

∥∥∥
∞

}
, (2.2)

where ‖x(n−1)‖∞ = supt∈J |x(n−1)(t)|, n = 1, 2, . . . .
A function x ∈ PCn−1[0, 1] ∩ Cn(J ′) is called a solution of problem (1.3) if it satisfies

(1.3).
To establish the existence of multiple positive solutions in PCn−1[0, 1] ∩ Cn(J ′) of

problem (1.3), let us list the following assumptions:

(H1) f ∈ C(J × R+, R+), Ik ∈ C(R+, R+);

(H2) μ ∈ [0, 1), where μ =
∫1
0 h(t)t

n−1dt.
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Lemma 2.1. Assume that (H1) and (H2) hold. Then x ∈ PCn−1[0, 1] ∩ Cn(J ′) is a solution of
problem (1.3) if and only if x is a solution of the following impulsive integral equation:

x(t) =
∫1

0
H(t, s)f(s, x(s))ds +

m∑

k=1

H(t, tk)Ik(x(tk)), (2.3)

where

H(t, s) = G1(t, s) +G2(t, s), (2.4)

G1(t, s) =
1

(n − 1)!

⎧
⎨

⎩

tn−1(1 − s)n−1 − (t − s)n−1, 0 ≤ s ≤ t ≤ 1,

tn−1(1 − s)n−1, 0 ≤ t ≤ s ≤ 1,
(2.5)

G2(t, s) =
tn−1

1 − ∫10 h(t)tn−1dt

∫1

0
h(t)G1(t, s)dt. (2.6)

Proof. First suppose that x ∈ PCn−1[0, 1] ∩ Cn(J ′) is a solution of problem (1.3). It is easy to
see by integration of (1.3) that

x(n−1)(t) = x(n−1)(0) −
∫ t

0
f(s, x(s))ds +

∑

0<tk<t

[
x(n−1)(t+k

) − x(n−1)(tk)
]

= x(n−1)(0) −
∫ t

0
f(s, x(s))ds −

∑

0<tk<t

Ik(x(tk)).

(2.7)

Integrating again and by boundary conditions, we can get

x(n−2)(t) = x(n−1)(0)t −
∫ t

0
(t − s)f(s, x(s))ds −

∑

0<tk<t

Ik(x(tk))(t − tk). (2.8)

Similarly, we get

x(t) = − 1
(n − 1)!

∫ t

0
(t − s)n−1f(s, x(s))ds + x(n−1)(0)

tn−1

(n − 1)!
−
∑

tk<t

Ik(x(tk))(t − tk)n−1

(n − 1)!
. (2.9)

Letting t = 1 in (2.9), we find

x(n−1)(0) = (n − 1)!x(1) +
∫1

0
(1 − s)n−1f(s, x(s))ds

+
∑

tk<1

Ik(x(tk))(1 − tk)
n−1.

(2.10)
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Substituting x(1) =
∫1
0 h(t)x(t)dt and (2.10) into (2.9), we obtain

x(t) = − 1
(n − 1)!

∫ t

0
(t − s)n−1f(s, x(s))ds +

tn−1

(n − 1)!

[

(n − 1)!
∫1

0
h(t)x(t)dt

+
∫1

0
(1 − s)n−1f(s, x(s))ds +

∑

tk<1

Ik(x(tk))(1 − tk)n−1
]

−
∑

tk<t

Ik(x(tk))(t − tk)n−1

(n − 1)!

=
∫1

0
G1(t, s)f(s, x(s))ds +

m∑

k=1

G1(t, tk)Ik(x(tk)) + tn−1
∫1

0
h(t)x(t)dt.

(2.11)

Multiplying (2.11)with h(t) and integrating it, we have

∫1

0
h(t)x(t)dt =

∫1

0
h(t)

∫1

0
G1(t, s)f(s, x(s))dsdt +

∫1

0
h(t)

m∑

k=1

G1(t, tk)Ik(x(tk))dt

+
∫1

0
h(t)tn−1dt

∫1

0
h(t)x(t)dt,

(2.12)

that is,

∫1

0
h(t)x(t)dt =

1

1 − ∫10 h(t)tn−1dt

[∫1

0
h(t)

∫1

0
G1(t, s)f(s, x(s))dsdt

+
∫1

0
h(t)

m∑

k=1

G1(t, tk)Ik(x(tk))dt

]

.

(2.13)

Then we have

x(t) =
∫1

0
G1(t, s)f(s, x(s))ds +

m∑

k=1

G1(t, tk)Ik(x(tk))

+
tn−1

1 − ∫10 h(t)tn−1dt

[∫1

0
h(t)

∫1

0
G1(t, s)f(s, x(s))dsdt +

∫1

0
h(t)

m∑

k=1

G1(t, tk)Ik(x(tk))dt

]

.

(2.14)

Then, the proof of sufficient is complete.
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Conversely, if x is a solution of (2.3), direct differentiation of (2.3) implies that, for
t /= tk,

x′(t) =
1

(n − 2)!

∫ t

0

[
tn−2(1 − s)n−1 − (t − s)n−2

]
f(s, x(s))ds

+
1

(n − 2)!

∫1

t

tn−2(1 − s)n−1f(s, x(s))ds

− 1
(n − 2)!

∑

tk<t

[
tn−2(1 − tk)n−1 − (t − tk)n−2

]
Ik(x(tk))

+
1

(n − 2)!

∑

tk≥t
tn−2(1 − tk)n−1Ik(x(tk))

+
(n − 1)tn−2

1 − ∫10 h(t)tn−1dt

[∫1

0
h(t)

∫1

0
G1(t, s)f(s, x(s))dsdt

+
∫1

0
h(t)

m∑

k=1

G1(t, tk)Ik(x(tk))dt

]

,

...

x(n−1)(t) =
∫1

0
(1 − s)n−1f(s, x(s))ds −

∫ t

0
f(s, x(s))ds +

∑

tk<1

(1 − tk)n−1Ik(x(tk)) −
∑

tk<t

Ik(x(tk))

+
(n − 1)!

1 − ∫10 h(t)tn−1dt

[∫1

0
h(t)

∫1

0
G1(t, s)f(s, x(s))dsdt

+
∫1

0
h(t)

m∑

k=1

G1(t, tk)Ik(x(tk))dt

]

.

(2.15)

Evidently,

Δx(n−1)|t=tk = −Ik(x(tk)), (k = 1, 2, . . . , m), (2.16)

x(n)(t) = −f(t, x(t)). (2.17)

So x ∈ Cn(J ′) andΔx(n−1)|t=tk = −Ik(x(tk)), (k = 1, 2, . . . , m), and it is easy to verify that
x(0) = x′(0) = · · · = x(n−2)(0) = 0, x(1) =

∫1
0 h(t)x(t)dt, and the lemma is proved.

Similar to the proof of that from [22], we can prove that H(t, s), G1(t, s), and G2(t, s)
have the following properties.

Proposition 2.2. The function G1(t, s) defined by (2.5) satisfyong G1(t, s) ≥ 0 is continuous for all
t, s ∈ [0, 1], G1(t, s) > 0, ∀t, s ∈ (0, 1).
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Proposition 2.3. There exists γ > 0 such that

min
t∈[tm,1]

G1(t, s) ≥ γG1(τ(s), s), ∀s ∈ [0, 1], (2.18)

where τ(s) is defined in (2.20).

Proposition 2.4. If μ ∈ [0, 1), then one has

(i) G2(t, s) ≥ 0 is continuous for all t, s ∈ [0, 1], G2(t, s) > 0, ∀t, s ∈ (0, 1);

(ii) G2(t, s) ≤ (1/(1 − μ))
∫1
0 h(t)G1(t, s)dt, ∀t ∈ [0, 1], s ∈ (0, 1).

Proof. From the properties of G1(t, s) and the definition of G2(t, s), we can prove that the
results of Proposition 2.4 hold.

Proposition 2.5. If μ ∈ [0, 1), the function H(t, s) defined by (2.4) satisfies

(i) H(t, s) ≥ 0 is continuous for all t, s ∈ [0, 1], H(t, s) > 0, ∀t, s ∈ (0, 1);

(ii) H(t, s) ≤ H(s) ≤ H0 for each t, s ∈ [0, 1], and

min
t∈[tm,1]

H(t, s) ≥ γ∗H(s), ∀s ∈ [0, 1], (2.19)

where γ∗ = min{γ, tn−1m }, and

H(s) = G1(τ(s), s) +G2(1, s), τ(s) =
s

1 − (1 − s)1+1/(n−2)
, H0 = max

s∈J
H(s), (2.20)

γ is defined in Proposition 2.3.

Proof. (i) From Propositions 2.2 and 2.4, we obtain that H(t, s) ≥ 0 is continuous for all t, s ∈
[0, 1], and H(t, s) > 0, ∀t, s ∈ (0, 1).

(ii) From (ii) of Proposition 2.2 and (ii) of Proposition 2.4, we have H(t, s) ≤ H(s) for
each t, s ∈ [0, 1].

Now, we show that (2.19) holds.
In fact, from Proposition 2.3, we have

min
t∈[tm,1]

H(t, s) ≥ γG1(τ(s), s) +
tn−1m

1 − μ

∫1

0
h(t)G1(t, s)dt

≥ γ∗
[

G1(τ(s), s) +
1

1 − μ

∫1

0
h(t)G1(t, s)dt

]

= γ∗H(s), ∀s ∈ [0, 1].

(2.21)

Then the proof of Proposition 2.5 is completed.

Remark 2.6. From the definition of γ∗, it is clear that 0 < γ∗ < 1.
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Lemma 2.7. Assume that (H1) and (H2) hold. Then, the solution x of problem (1.3) satisfies x(t) ≥
0, ∀t ∈ J.

Proof. It is an immediate subsequence of the facts thatH(t, s) ≥ 0 on [0, 1] × [0, 1].

Remark 2.8. From (ii) of Proposition 2.5, one can find that

γ∗H(s) ≤ H(t, s) ≤ H(s), t ∈ [tm, 1], s ∈ J. (2.22)

For the sake of applying Lemma 1.1, we construct a cone K in PCn−1[0, 1] by

K =
{
x ∈ PCn−1[0, 1] : x ≥ 0, x(t) ≥ γ∗x(s), t ∈ [tm, 1], s ∈ J

}
. (2.23)

Define T : K → K by

(Tx)(t) =
∫1

0
H(t, s)f(s, x(s))ds +

m∑

k=1

H(t, tk)Ik(x(tk)). (2.24)

Lemma 2.9. Assume that (H1) and (H2) hold. Then, T(K) ⊂ K, and T : K → K is completely
continuous.

Proof. From Proposition 2.5 and (2.24), we have

min
t∈[tm,1]

(Tx)(t) = min
t∈[tm,1]

∫1

0
H(t, s)f(s, x(s))ds +

m∑

k=1

H(t, tk)Ik(x(tk))

≥
∫1

0
min
t∈[tm,1]

H(t, s)f(s, x(s))ds +
m∑

k=1

min
t∈[tm,1]

H(t, tk)Ik(x(tk))

≥ γ∗
[∫1

0
H(s)f(s, x(s))ds +

m∑

k=1

H(tk)Ik(x(tk))

]

≥ γ∗
[∫1

0
max
t∈[0,1]

H(t, s)f(s, x(s))ds +
m∑

k=1

max
t∈[0,1]

H(t, tk)Ik(x(tk))

]

≥ γ∗max
t∈[0,1]

[∫1

0
H(t, s)f(s, x(s))ds +

m∑

k=1

H(t, tk)Ik(x(tk))

]

= γ∗‖Tx‖, ∀x ∈ K.

(2.25)

Thus, T(K) ⊂ K.
Next, by similar arguments to those in [8] one can prove that T : K → K is completely

continuous. So it is omitted, and the lemma is proved.
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3. Main Results

Write

fβ = lim sup
x→ β

max
t∈J

f(t, x)
x

, fβ = lim inf
x→ β

min
t∈J

f(t, x)
x

,

Iβ(k) = lim inf
x→ β

Ik(x)
x

, Iβ(k) = lim sup
x→ β

Ik(x)
x

,

(3.1)

where β denotes 0+ or +∞.
In this section, we apply Lemma 1.1 to establish the existence of positive solutions for

BVP (1.3).

Theorem 3.1. Assume that (H1) and (H2) hold. In addition, letting f and Ik satisfy the following
conditions:

(H3) f0 = 0 and I0(k) = 0, k = 1, 2, . . . , m;

(H4) f∞ = ∞ or I∞(k) = ∞, k = 1, 2, . . . , m,

BVP (1.3) has at least one positive solution.

Proof. Considering (H3), there exists η > 0 such that

f(t, x) ≤ εx, Ik(x) ≤ εkx, k = 1, 2, . . . , m, ∀0 ≤ x ≤ η, t ∈ J, (3.2)

where ε, εk > 0 satisfy

max{H0, 1 +G0}
(

ε +
m∑

k=1

εk

)

< 1; (3.3)

here

G0 = max
{
G1

0, G
2
0, . . . , G

n−1
0

}
,

G1
0 = max

t,s∈J,t /= s
G′

2t(t, s) = max
t,s∈J,t /= s

(n − 1)tn−2

1 − μ

∫1

0
h(t)G1(t, s)dt,

G2
0 = max

t,s∈J,t /= s
G′′

2t(t, s) = max
t,s∈J,t /= s

(n − 1)(n − 2)tn−3

1 − μ

∫1

0
h(t)G1(t, s)dt,

...

Gn−1
0 = max

t,s∈J,t /= s
G

(n−1)
2t (t, s) = max

t,s∈J,t /= s

(n − 1)!
1 − μ

∫1

0
h(t)G1(t, s)dt.

(3.4)
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Now, for 0 < r < η, we prove that

Tx/≥x, x ∈ K, ‖x‖pcn−1 = r. (3.5)

In fact, if there exists x1 ∈ K, ‖x1‖pcn−1 = r such that Tx1 ≥ x1. Noticing (3.2), then we have

0 ≤ x1(t) ≤
∫1

0
H(t, s)f(s, x1(s))ds +

m∑

k=1

H(t, tk)Ik(x1(tk))

≤ εr

∫1

0
H(s)ds + r

m∑

k=1

H(tk)εk

≤ rH0

(

ε +
m∑

k=1

εk

)

< r = ‖x1‖pcn−1 ,

∣∣x′
1(t)
∣∣ ≤
∫1

0

∣∣H ′
t(t, s)

∣∣f(s, x1(s))ds +
m∑

k=1

∣∣H ′
t(t, tk)

∣∣Ik(x1(tk))

≤
∫1

0

(∣∣G′
1t(t, s)

∣∣ +
∣∣G′

2t(t, s)
∣∣)f(s, x1(s))ds

+
m∑

k=1

(∣∣G′
1t(t, tk)

∣∣ +
∣∣G′

2t(t, tk)
∣∣)Ik(x1(tk))

≤
∫1

0

(
1 +G1

0

)
f(s, x1(s))ds +

m∑

k=1

(
1 +G1

0

)
Ik(x1(tk))

≤ r
(
1 +G1

0

)(

ε +
m∑

k=1

εk

)

< r = ‖x1‖pcn−1 ,

∣∣x′′
1(t)
∣∣ ≤
∫1

0

∣∣H ′′
t (t, s)

∣∣f(s, x1(s))ds +
m∑

k=1

∣∣H ′′
t (t, tk)

∣∣Ik(x1(tk))

≤
∫1

0

(∣∣G′′
1t(t, s)

∣∣ +
∣∣G′′

2t(t, s)
∣∣)f(s, x1(s))ds

+
m∑

k=1

(∣∣G′′
1t(t, tk)

∣∣ +
∣∣G′′

2t(t, tk)
∣∣)Ik(x1(tk))
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≤
∫1

0

(
1 +G2

0

)
f(s, x1(s))ds +

m∑

k=1

(
1 +G2

0

)
Ik(x1(tk))

≤ r
(
1 +G2

0

)(

ε +
m∑

k=1

εk

)

< r = ‖x1‖pcn−1 ,
...

∣
∣
∣x(n−1)

1 (t)
∣
∣
∣ ≤
∫1

0

∣
∣
∣H(n−1)

t (t, s)
∣
∣
∣f(s, x1(s))ds +

m∑

k=1

∣
∣
∣H(n−1)

t (t, tk)
∣
∣
∣Ik(x1(tk))

≤
∫1

0

(∣∣
∣G(n−1)

1t (t, s)
∣
∣
∣ +
∣
∣
∣G(n−1)

2t (t, s)
∣
∣
∣
)
f(s, x1(s))ds

+
m∑

k=1

(∣∣∣G(n−1)
1t (t, tk)

∣∣∣ +
∣∣∣G(n−1)

2t (t, tk)
∣∣∣
)
Ik(x1(tk))

≤
∫1

0

(
1 +Gn

0

)
f(s, x1(s))ds +

m∑

k=1

(
1 +Gn

0

)
Ik(x1(tk))

≤ r
(
1 +Gn

0

)
(

ε +
m∑

k=1

εk

)

< r = ‖x1‖pcn−1 , (3.6)

where

G′
1t(t, s) =

1
(n − 2)!

⎧
⎨

⎩

tn−2(1 − s)n−1 − (t − s)n−2 if 0 ≤ s ≤ t ≤ 1,

tn−2(1 − s)n−1 if 0 ≤ t ≤ s ≤ 1,

G′
1t(t, s) =

1
(n − 3)!

⎧
⎨

⎩

tn−3(1 − s)n−1 − (t − s)n−3 if 0 ≤ s ≤ t ≤ 1,

tn−3(1 − s)n−1 if 0 ≤ t ≤ s ≤ 1,

...

G
(n−1)
1t (t, s) =

⎧
⎨

⎩

(1 − s)n−1 − 1 if 0 ≤ s ≤ t ≤ 1,

(1 − s)n−1 if 0 ≤ t ≤ s ≤ 1,

max
t,s∈J,t /= s

∣∣∣G(N)
1t (t, s)

∣∣∣ = 1, N = 1, 2, . . . , n − 1.

(3.7)

Therefore, ‖x1‖pcn−1 < ‖x1‖pcn−1 , which is a contraction. Hence, (3.2) holds.
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Next, turning to (H4). Case (1). f∞ = ∞. There exists τ > 0 such that

f(t, x) ≥ Mx, t ∈ J, x ≥ τ, (3.8)

where M > [γ∗H0(1 − tm)]
−1. Choose

R > max
{
r, τ
(
γ∗
)−1}

. (3.9)

We show that

Tx/≤x, x ∈ K, ‖x‖pcn−1 = R. (3.10)

In fact, if there exists x0 ∈ K, ‖x0‖pcn−1 = R such that Tx0 ≤ x0, then

x0(t) ≥ γ∗x0(s), t ∈ [tm, 1], s ∈ J. (3.11)

This and (3.9) imply that

min
t∈[tm,1]

x0(t) ≥ γ∗‖x0‖pcn−1 = γ∗R > τ. (3.12)

So, we have

t ∈ J =⇒ x0(t) ≥ (Tx0)(t) ≥ min
t∈[tm,1]

∫1

tm

H(t, s)f(s, x0(s))ds ≥ γ∗H0M

∫1

tm

x0(s)ds, (3.13)

that is,

∫1

tm

x0(t)dt ≥ γ∗H0M(1 − tm)
∫1

tm

x0(s)ds. (3.14)

It is easy to see that

∫1

tm

x0(s)ds > 0. (3.15)

In fact, if
∫1
tm
x0(s)ds = 0, then x0(t) = 0, for t ∈ [tm, 1]. Since x0 ∈ K,x0(s) = 0, ∀s ∈ J .

Hence, ‖x0‖pcn−1 = ‖x(n−1)
0 ‖∞ = ‖x0‖∞ = 0, which contracts ‖x0‖pcn−1 = R. So, (3.15) holds.

Therefore, M ≤ [γ∗H0(1 − tm)]
−1, this is also a contraction. Hence, (3.10) holds.

Case (2). I∞(k) = ∞, k = 1, 2, . . . , m. There exists τ1 > 0 such that

Ik(x) ≥ Mkx, x ≥ τ1, (3.16)
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where Mk > (γ∗H0)
−1, k = 1, 2, . . . , m. If we define M∗ = min{Mk : k = 1, 2, . . . , m}, then

M∗ > (γ∗H0)
−1. Choose

R > max
{
r, τ1
(
γ∗
)−1}

. (3.17)

We prove that (3.10) holds.
In fact, if there exists x00 ∈ K, ‖x00‖pcn−1 = R such that Tx00 ≤ x00, then

x00(t) ≥ γ∗x00(s), t ∈ [tm, 1], s ∈ J. (3.18)

This and (3.17) imply that

min
t∈[tm,1]

x00(t) ≥ γ∗‖x00‖pcn−1 = γ∗R > τ1. (3.19)

So, we have

t ∈ J =⇒ x00(t) ≥ (Tx00)(t) ≥ min
t∈[tm,1]

m∑

k=1

H(t, tk)Ik(x00(tk))

≥ γ∗H0

m∑

k=1

Mkx00(tk)

≥ γ∗H0M
∗

m∑

k=1

x00(tk).

(3.20)

From (3.20), we obtain that

x00(t1) ≥ γ∗H0M
∗

m∑

k=1

x00(tk),

x00(t2) ≥ γ∗H0M
∗

m∑

k=1

x00(tk),

...

x00(tk) ≥ γ∗H0M
∗

m∑

k=1

x00(tk).

(3.21)

So, we have

m∑

k=1

x00(tk) ≥ mγ∗H0M
∗

m∑

k=1

x00(tk). (3.22)
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From the definition of M∗, we can find that

m∑

k=1

x00(tk) > m
m∑

k=1

x00(tk), x00 ∈ K, ‖x00‖pcn−1 = R. (3.23)

Similar to the proof in case (1), we can show that
∑m

k=1 x00(tk) > 0. Then, from (3.23),
we have m < 1, which is a contraction. Hence, (3.10) holds.

Applying (i) of Lemma 1.1 to (3.2) and (3.10) yields that T has a fixed point x ∈ Kr,R =
{x : r ≤ ‖x‖pcn−1 ≤ R}. Thus, it follows that BVP (1.3) has at least one positive solution, and
the theorem is proved.

Theorem 3.2. Assume that (H1) and (H2) hold. In addition, letting f and Ik satisfy the following
conditions:

(H5) f∞ = 0 and I∞(k) = 0, k = 1, 2, . . . , m;

(H6) f0 = ∞ or I0(k) = ∞, k = 1, 2, . . . , m,

BVP (1.3) has at least one positive solution.

Proof. Considering (H5), there exists r > 0 such that f(t, x) ≤ εr, Ik(x) ≤ εkr, and k =
1, 2, . . . , m, for x ≥ r, t ∈ J , where ε, εk > 0 satisfy max{H0, 1 +G0}(ε +

∑m
k=1 εk) < 1.

Similar to the proof of (3.2), we can show that

Tx/≥x, x ∈ K, ‖x‖pc1 = r. (3.24)

Next, turning to (H6). Under condition (H6), similar to the proof of (3.10), we can also
show that

Tx/≤x, x ∈ K, ‖x‖pc1 = R. (3.25)

Applying (i) of Lemma 1.1 to (3.24) and (3.25) yields that T has a fixed point x ∈
Kr,R = {x : r ≤ ‖x‖pcn−1 ≤ R}. Thus, it follows that BVP (1.3) has one positive solution, and
the theorem is proved.

Theorem 3.3. Assume that (H1), (H2), (H3), and (H5) hold. In addition, letting f and Ik satisfy
the following condition:

(H7) there is a ς > 0 such that γ∗ς ≤ x ≤ ς and t ∈ J implies

f(t, x) ≥ τς, Ik(x) ≥ τkς, k = 1, 2, . . . , (3.26)

where τ, τk ≥ 0 satisfy τ +
∑m

k=1 τk > 0, τ
∫1
tm
H(1/2, s)ds +

∑m
k=1 τkH(1/2, tk) > 1, BVP

(1.3) has at least two positive solutions x∗ and x∗∗ with 0 < ‖x∗‖pcn−1 < ς < ‖x∗∗‖pcn−1 .

Proof. We choose ρ, ξ with 0 < ρ < ς < ξ. If (H3) holds, similar to the proof of (3.2), we can
prove that

Tx/≥x, x ∈ K, ‖x‖pc1 = ρ. (3.27)
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If (H5) holds, similar to the proof of (3.24), we have

Tx/≥x, x ∈ K, ‖x‖pcn−1 = ξ. (3.28)

Finally, we show that

Tx/≤x, x ∈ K, ‖x‖pcn−1 = ς. (3.29)

In fact, if there exists x2 ∈ K with ‖x2‖pcn−1 = ς, then by (2.23), we have

x2(t) ≥ γ∗‖x2‖pcn−1 = γ∗ς, (3.30)

and it follows from (H7) that

x2(t) ≥
∫1

tm

H

(
1
2
, s

)
f(s, x2(s))ds +

m∑

k=1

H

(
1
2
, tk

)
Ik(x2(tk))

≥ ς

[

τ

∫1

tm

H

(
1
2
, s

)
ds +

m∑

k=1

τkH

(
1
2
, tk

)]

> ς = ‖x2‖pcn−1 ,

(3.31)

that is, ‖x2‖pcn−1 > ‖x2‖pcn−1 , which is a contraction. Hence, (3.29) holds.
Applying Lemma 1.1 to (3.27), (3.28), and (3.29) yields that T has two fixed points

x∗, x∗∗ with x∗ ∈ Kρ,ς, x
∗∗ ∈ Kς,ξ. Thus it follows that BVP (1.3) has two positive solutions

x∗, x∗∗ with 0 < ‖x∗‖pcn−1 < ς < ‖x∗∗‖pcn−1 . The proof is complete.

Our last results corresponds to the case when problem (1.3) has no positive solution.
Write

Δ = H0(1 +m). (3.32)

Theorem 3.4. Assume (H1), (H2), f(t, x) < Δ−1x, t ∈ J, x > 0, and Ik(x) < Δ−1x, ∀x > 0, then
problem (1.3) has no positive solution.
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Proof. Assume to the contrary that problem (1.3) has a positive solution, that is, T has a fixed
point y. Then y ∈ K, y > 0 for t ∈ (0, 1), and

∥
∥y
∥
∥
∞ ≤

∫1

0
H(s)f

(
s, y(s)

)
ds +

m∑

k=1

H(tk)Ik
(
y(tk)

)

<

∫1

0
H(s)Δ−1y(s)ds +

m∑

k=1

H(tk)Δ−1∥∥y
∥
∥
∞

≤ H0Δ−1∥∥y
∥
∥
∞ +

m∑

k=1

H0Δ−1∥∥y
∥
∥
∞

= H0Δ−1(1 +m)
∥
∥y
∥
∥
∞

=
∥∥y
∥∥
∞,

(3.33)

which is a contradiction, and this completes the proof.

To illustrate how our main results can be used in practice we present an example.

Example 3.5. Consider the following boundary value problem:

−x(4)(t) =
3
√
t5 + 1x5 tanhx, t ∈ J, t /=

1
2
,

−Δx(3)|t1=1/2 = x3
(
1
2

)
,

x(0) = x′(0) = x′′(0) = 0, x(1) =
∫1

0
tx(t)dt.

(3.34)

Conclusion. BVP (3.34) has at least one positive solution.

Proof. BVP (3.34) can be regarded as a BVP of the form (1.3), where

h(t) = t, μ =
∫1

0
t · t3dt = 1

5
, t1 =

1
2
, f(t, x) =

3
√
t5 + 1x5 tanhx, I1(x) = x3,

G1(t, s) =
1
6

⎧
⎨

⎩

t3(1 − s)3 − (t − s)3, 0 ≤ s ≤ t ≤ 1,

t3(1 − s)3, 0 ≤ t ≤ s ≤ 1,

G2(t, s) =
1
24

t3
(
3
4
s − 2s2 +

3
2
s3 − 1

4
s5
)
.

(3.35)
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It is not difficult to see that conditions (H1) and (H2) hold. In addition,

f0 = lim sup
x→ 0

max
t∈J

f(t, x)
x

= 0, I0(k) = lim sup
x→ 0

Ik(x)
x

= 0,

f∞ = lim inf
x→∞

min
t∈J

f(t, x)
x

= ∞.

(3.36)

Then, conditions (H3) and (H4) of Theorem 3.1 hold. Hence, by Theorem 3.1, the
conclusion follows, and the proof is complete.
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