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By using the cone theory and the Banach contraction mapping principle, the existence and
uniqueness results are established for singular third-order boundary value problems. The
theorems obtained are very general and complement previous known results.

1. Introduction

Third-order differential equations arise in a variety of different areas of applied mathematics
and physics, such as the deflection of a curved beam having a constant or varying cross
section, three-layer beam, electromagnetic waves, or gravity-driven flows [1]. Recently, third-
order boundary value problems have been studied extensively in the literature (see, e.g., [2–
13], and their references). In this paper, we consider the following third-order boundary value
problem:

u′′′(t) + f(t, u(t)) = 0, t ∈ (0, 1),

u(0) = u′(0) = 0, u′(1) = αu′(η
)
,

(1.1)

where f(t, x) ∈ C((0, 1) × (−∞,+∞), (−∞,+∞)), 0 < η < 1.
Three-point boundary value problems (BVPs for short) have been also widely studied

because of both practical and theoretical aspects. There have been many papers investigating
the solutions of three-point BVPs, see [2–5, 10, 12] and references therein. Recently, the
existence of solutions of third-order three-point BVP (1.1) has been studied in [2, 3]. Guo
et al. [2] show the existence of positive solutions for BVP (1.1) when 1 < α < 1/η and
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f(t, x) is separable by using cone expansion-compression fixed point theorem. In [3], the
singular third-order three-point BVP (1.1) is considered under some conditions concerning
the first eigenvalues corresponding to the relevant linear operators, where 1 < α < 1/η,
f(t, x) is separable and is not necessary to be nonnegative, and the existence results of
nontrivial solutions and positive solutions are given by means of the topological degree
theory. Motivated by the above works, we consider the singular third-order three-point BVP
(1.1). Here, we give the unique solution of BVP (1.1) under the conditions that αη /= 1 and
f(t, x) is mixed nonmonotone in x and does not need to be separable by using the cone
theory and the Banach contraction mapping principle.

2. Preliminaries

Let J = (0, 1), I = [0, 1]. By [2, Lemma 2.1], we have that x is a solution of (1.1) if and only if

x(t) =
∫1

0
G(t, s)f(s, x(s))ds, t ∈ I, (2.1)

where

G(t, s) =
1

2
(
1 − αη

)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(
1 − αη

)(
s2 − 2ts

) − (1 − α)t2s, s ≤ min
{
η, t
}
,

(
αη − 1

)
t2 + (1 − α)t2s, t ≤ s ≤ η,

(
1 − αη

)(
s2 − 2ts

)
+
(
s − αη

)
t2, η ≤ s ≤ t,

(s − 1)t2, max
{
η, t
} ≤ s.

(2.2)

It is shown in [2] that G(t, s) is the Green’s function to −u′′′ = 0, u(0) = u′(0) = 0, and
u′(1) = αu′(η).

Let

h(t, s) =
1

s(1 − s)
|G(t, s)|,

I1(t) =
∫1

0
h(t, s)ds,

In+1(t) =
∫1

0
h(t, s)In(s)ds, (n = 1, 2, . . .),

r(G) = lim
n→∞

(

sup
t∈J

In(t)

)−1/n
.

(2.3)

It is easy to see that r(G) > 0.

Lemma 2.1 (Guo [14, 15]). P is generating if and only if there exists a constant τ > 0 such that
every element x ∈ C(I) can be represented in the form x = y − z, where y, z ∈ P and ‖y‖ ≤ τ‖x‖,
‖z‖ ≤ τ‖x‖.
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3. Singular Third-Order Boundary Value Problem

This section discusses singular third-order boundary value problem (1.1).
Let P = {x ∈ C(I) | x(t) ≥ 0, ∀ t ∈ [0, 1]}. Obviously, P is a normal solid cone of

Banach space C(I); by [16, Lemma 2.1.2], we have that P is a generating cone in C(I).

Theorem 3.1. Suppose that f(t, x) = g(t, x, x), and there exist two positive linear bounded operators
B : C(I) → C(I) andC : C(I) → C(I)with r(B+C) < r(G) such that for any t ∈ I, x1, x2, y1, y2 ∈
C(I), x1 ≥ x2, y1 ≤ y2, we have

−B(x1 − x2) − C
(
y2 − y1

) ≤ t(1 − t)g
(
t, x1, y1

) − t(1 − t)g
(
t, x2, y2

)

≤ B(x1 − x2) + C
(
y2 − y1

)
,

(3.1)

and there exists x0, y0 ∈ C(I), such that

∫1

0
t(1 − t)g

(
t, x0(t), y0(t)

)
dt can converge to σ ∈ R. (3.2)

Then (1.1) has a unique solution x∗ in C(I). And moreover, for any x0 ∈ C(I), the iterative sequence

xn(t) =
∫1

0
G(t, s)f(t, xn−1(s))ds (n = 1, 2, . . .) (3.3)

converges to x∗ (n → ∞).

Remark 3.2. Recently, in the study of BVP (1.1), almost all the papers have supposed that the
Green’s function G(t, s) is nonnegative. However, the scope of α is not limited to 1 < α < 1/η
in Theorem 3.1, so, we do not need to suppose that G(t, s) is nonnegative.

Remark 3.3. The function f in Theorem 3.1 is not monotone or convex; the conclusions and
the proof used in this paper are different from the known papers in essence.

Proof. It is easy to see that, for any t ∈ J , h(t, s) can be divided into finite partitionedmonotone
and bounded function on (0, 1), and then by (3.2), we have

∫1

0
G(t, s)g

(
s, x0(s), y0(s)

)
ds converges to σ(t) ∈ R. (3.4)

For any x, y ∈ C(I), let u = |x0| + |x|, v = −|y0| − |y|, then u ≥ x0, v ≤ y0, by (3.1), we have

−B(u − x0)(t) − C
(
y0 − v

)
(t) ≤ t(1 − t)g(t, u(t), v(t)) − t(1 − t)g

(
t, x0(t), y0(t)

)

≤ B(u − x0)(t) + C
(
y0 − v

)
(t).

(3.5)
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Hence

∥
∥t(1 − t)g(t, u(t), v(t)) − t(1 − t)g

(
t, x0(t), y0(t)

)∥∥ ≤ ‖B(u − x0)(t)‖ + ‖C(y0 − v
)
(t)‖

≤ ‖B‖‖u − x0‖ + ‖C‖‖y0 − v‖.
(3.6)

Following the former inequality, we can easily have

∫1

0
G(t, s)

[
g(s, u(s), v(s)) − g

(
s, x0(s), y0(s)

)]
ds converges to some element σ1(t) ∈ R;

(3.7)

thus

∫1

0
G(t, s)g(s, u(s), v(s))d =

∫1

0
G(t, s)g

(
s, x0(s), y0(s)

)
ds

+
∫1

0
G(t, s)

[
g(s, u(s), v(s)) − g

(
s, x0(s), y0(s)

)]
ds is converged.

(3.8)

Similarly, by u ≥ x, v ≤ y and
∫1
0 G(t, s)g(s, u(s), v(s))ds being converged, we have that

∫1

0
G(t, s)g

(
s, x(s), y(s)

)
ds converges to some element σ2(t) ∈ R. (3.9)

Define the operator A : C(I) × C(I) → C(I) by

A
(
x, y
)
(t) =

∫1

0
G(t, s)g

(
s, x(s), y(s)

)
ds, ∀t ∈ I. (3.10)

Then x is the solution of BVP (1.1) if and only if x = A(x, x). Let

(Sx)(t) =
∫1

0
h(t, s)(Bx)(s)ds,

(
Ty
)
(t) =

∫1

0
h(t, s)

(
Cy
)
(s)ds. (3.11)
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By (3.1) and (3.10), for any x1, x2, y1, y2 ∈ C(I), x1 ≥ x2, y1 ≤ y2, we have

−S(x1 − x2) − T
(
y2 − y1

) ≤ A
(
x1, y1

) −A
(
x2, y2

) ≤ S(x1 − x2) + T
(
y2 − y1

)
, (3.12)

(S + T)(x)(t) =
∫1

0
h(t, s)(B + C)(x)(s)ds,

(S + T)n+1(x)(t) =
∫1

0
h(t, s)(B + C)(S + T)n(x)(s)ds

= (B + C)n+1In+1(t), n = 1, 2, . . . ,

‖(S + T)n‖ ≤ ‖(B + C)n‖sup
t∈J

In(t),

r(S + T) ≤ r(B + C)
r(G)

< 1,

(3.13)

so we can choose an α, which satisfies limn→∞‖(S + T)n‖1/n = r(S + T) < α < 1, and so there
exists a positive integer n0 such that

‖(S + T)n‖ < αn < 1, n ≥ n0. (3.14)

Since P is a generating cone inC(I), from Lemma 2.1, there exists τ > 0 such that every
element x ∈ C(I) can be represented in

x = y − z, y, z ∈ P, ‖y‖ ≤ τ‖x‖, ‖z‖ ≤ τ‖x‖. (3.15)

This implies

−(y + z
) ≤ x ≤ y + z. (3.16)

Let

‖x‖0 = inf{‖u‖ | u ∈ P,−u ≤ x ≤ u}. (3.17)

By (3.16), we know that ‖x‖0 is well defined for any x ∈ C(I). It is easy to verify that
‖ · ‖0 is a norm in C(I). By (3.15)–(3.17), we get

‖x‖0 ≤ ‖y + z‖ ≤ 2τ‖x‖, ∀x ∈ C(I). (3.18)

On the other hand, for any u ∈ P which satisfies −u ≤ x ≤ u, we have θ ≤ x + u ≤ 2u.
Thus ‖x‖ ≤ ‖x + u‖ + ‖ − u‖ ≤ (2N + 1)‖u‖, where N denotes the normal constant of P . Since
u is arbitrary, we have

‖x‖ ≤ (2N + 1)‖x‖0, ∀x ∈ C(I). (3.19)
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It follows from (3.18) and (3.19) that the norms ‖ · ‖0 and ‖ · ‖ are equivalent.
Now, for any x, y ∈ C(I) and u ∈ P which satisfies −u ≤ x − y ≤ u, let

u1 =
1
2
(
x + y − u

)
, u2 =

1
2
(
x − y + u

)
, u3 =

1
2
(−x + y + u

)
; (3.20)

then x ≥ u1, y ≥ u1, x − u1 = u2, y − u1 = u3, and u2 + u3 = u.
It follows from (3.12) that

−Su2 ≤ A(x, x) −A(u1, x) ≤ Su2, (3.21)

−Su3 − Tu2 ≤ A
(
y, u1

) −A(u1, x) ≤ Su2 + Tu3, (3.22)

−Tu3 ≤ A
(
y, u1

) −A
(
y, y
) ≤ Tu3. (3.23)

Subtracting (3.22) from (3.21) + (3.23), we obtain

−(S + T)u ≤ A(x, x) −A
(
y, y
) ≤ (S + T)u. (3.24)

Let Ã(x) = A(x, x); then we have

−(S + T)u ≤ Ã(x) − Ã
(
y
) ≤ (S + T)u. (3.25)

As S and T are both positive linear bounded operators, so, S + T is a positive linear
bounded operator, and therefore (S + T)u ∈ P . Hence, by mathematical induction, it is easy
to know that for natural number n0 in (3.14), we have

−(S + T)n0u ≤ Ãn0(x) − Ãn0
(
y
) ≤ (S + T)n0u, (S + T)n0u ∈ P. (3.26)

Since (S + T)n0u ∈ P , we see that

∥∥∥Ãn0(x) − Ãn0(y)
∥∥∥
0
≤ ‖(S + T)n0‖‖u‖, (3.27)

which implies by virtue of the arbitrariness of u that

∥∥∥Ãn0x − Ãn0y
∥∥∥
0
≤ ‖(S + T)n0‖∥∥x − y

∥∥
0 ≤ αn0

∥∥x − y
∥∥
0. (3.28)

By 0 < α < 1, we have 0 ≤ αn0 < 1. Thus the Banach contraction mapping principle
implies that Ãn0 has a unique fixed point x∗ in C(I), and so Ã has a unique fixed point
x∗ in C(I); by the definition of Ã,A has a unique fixed point x∗ in C(I), that is, x∗ is the
unique solution of (1.1). And, for any x0 ∈ C(I), let xn = A(xn−1, xn−1) (n = 1, 2, . . .);
we have ‖xn − x∗‖0 → 0 (n → ∞). By the equivalence of ‖ · ‖0 and ‖ · ‖ again, we get
‖xn − x∗‖ → 0 (n → ∞). This completes the proof.
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Example 3.4. In this paper, the results apply to a very wide range of functions, we are
following only one example to illustrate.

Consider the following singular third-order boundary value problem:

u′′′(t) =
k1t +m1

(1 − t) tan t

√
u2(t) + (k2t +m2)

2 +
∫ t

0

p(s, u(s))
t tan(1 − s)

ds, t ∈ J,

u(0) = u′(0) = 0, u′(1) = αu′(η
)
,

(3.29)

where k1, m1, k2, m2 ∈ R and there existsM ≥ 0, such that for any t ∈ I, y1, y2 ∈ C(I), y1 ≤ y2,
we have

−M(y2 − y1
)
(t) ≤ p

(
t, y1(t)

) − p
(
t, y2(t)

) ≤ M
(
y2 − y1

)
(t). (3.30)

Applying Theorem 3.1, we can find that (3.29) has a unique solution x∗(t) ∈ C2(I) provided
N = max{|m1|, |k1 +m1|} < r(G). And moreover, for any w0 ∈ C(I), the iterative sequence

wn(t) =
∫1

0
G(t, s)

[
k1s +m1

s tan(1 − s)

√
w2

n−1(s) + (k2s +m2)
2 +
∫ s

0

p(τ,wn−1(τ))
(1 − τ) tan s

dτ

]
ds,

n = 1, 2, . . .

(3.31)

converges to x∗ (n → ∞).
To see that, we put

g
(
t, x(t), y(t)

)
=

k1t +m1

(1 − t) tan t

√
x2(t) + (k2t +m2)

2 +
∫ t

0

p
(
s, y(s)

)

t tan(1 − s)
ds,

(Bx)(t) = Nx(t),
(
Cy
)
(t) = M

∫ t

0
y(s)ds.

(3.32)

Then (3.1) is satisfied for any t ∈ I, x1, x2, y1, y2 ∈ C[I], x1 ≥ x2, and y1 ≤ y2.
In fact, if x1(t) = x2(t), then

t(1 − t)g
(
t, x1(t), y1(t)

) − t(1 − t)g
(
t, x2(t), y2(t)

)

≤ (k1t +m1)
√
x2
1(t) + (k2t +m2)

2 − (k1t +m1)
√
x2
2(t) + (k2t +m2)

2

+
∫ t

0

[
p
(
s, y1(s)

) − p
(
s, y2(s)

)]
ds

=
∫ t

0

[
p
(
s, y1(s)

) − p
(
s, y2(s)

)]
ds

≤
∫ t

0

[
M
(
y2(s) − y1(s)

)]
ds

= B(x1 − x2)(t) + C
(
y2 − y1

)
(t).

(3.33)
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If x1(t) > x2(t), then

t(1 − t)g
(
t, x1(t), y1(t)

) − t(1 − t)g
(
t, x2(t), y2(t)

)

≤ (k1t +m1)
√
x2
1(t) + (k2t +m2)

2 − (k1t +m1)
√
x2
2(t) + (k2t +m2)

2

+
∫ t

0

[
p
(
s, y1(s)

) − p
(
s, y2(s)

)]
ds

=
(k1t +m1)

[
x2
1(t) − x22(t)

]

√
x2
1(t) + (k2t +m2)

2 +
√
x2
2(t) + (k2t +m2)

2

+
∫ t

0

[
p
(
s, y1(s)

) − p
(
s, y2(s)

)]
ds

≤ (k1t +m1)[|x1(t)| − |x2(t)|] +
∫ t

0
M
[
y2(s) − y1(s)

]
ds

≤ |k1t +m1|[x1(t) − x2(t)] +M

∫ t

0

[
y2(s) − y1(s)

]
ds

≤ B(x1 − x2)(t) + C
(
y2 − y1

)
(t).

(3.34)

Similarly,

t(1 − t)g
(
t, x1(t), y1(t)

) − t(1 − t)g
(
t, x2(t), y2(t)

) ≥ −B(x1 − x2)(t) − C
(
y2 − y1

)
(t). (3.35)

Next, for any t ∈ I, by (3.30) and (3.32), we get

‖(Tu)(t)‖ ≤ Mt‖u‖c. (3.36)

Then, from (3.32) and (3.36), we have

∥∥∥
(
T2u
)
(t)
∥∥∥ ≤ M

∫ t

0
‖(Tu)(s)‖ds ≤ M‖u‖c

∫ t

0
s ds =

M2t2

2!
‖u‖c, ∀t ∈ I, (3.37)

so it is easy to know by induction, for any n, we get

‖(Tnu)(t)‖ ≤ Mntn

n!
‖u‖c, ∀t ∈ I; (3.38)

thus

‖(Tnu)‖ = max
t∈I

‖(Tnu)(t)‖ ≤ Mntn

n!
‖u‖c, (3.39)
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so

r(T) = lim
n→∞

‖(Tn ‖1/n = 0. (3.40)

then we get

r(B + C) ≤ r(B) + r(C) = N + 0 < r(G). (3.41)

Let x0 = y0 = 1; then

∫1

0
t(1 − t)g

(
t, x0(t), y0(t)

)
dt is converged. (3.42)

Thus all conditions in Theorem 3.1 are satisfied.
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