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The aim of this paper is to study a fourth-order separated boundary value problem with the right-
hand side function satisfying one-sided Nagumo-type condition. By making a series of a priori
estimates and applying lower and upper functions techniques and Leray-Schauder degree theory,
the authors obtain the existence and location result of solutions to the problem.

1. Introduction

In this paper we apply the lower and upper functions method to study the fourth-order
nonlinear equation

u(4)(t) = f
(
t, u(t), u′(t), u′′(t), u′′′(t)

)
, 0 < t < 1, (1.1)

with f : [0, 1] × �4 → � being a continuous function.
This equation can be used tomodel the deformations of an elastic beam, and the type of

boundary conditions considered depends on how the beam is supported at the two endpoints
[1, 2]. We consider the separated boundary conditions

u(0) = u(1) = 0,

au′′(0) − bu′′′(0) = A,

cu′′(1) + du′′′(1) = B

(1.2)

with a, b, c, d ∈ �+ = (0,+∞), A,B ∈ �.
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For the fourth-order differential equation

u(4)(t) = f
(
t, u(t), u′(t), u′′(t), u′′′(t)

)
, 0 < t < 1,

u(0) = u(1) = u′′(0) = u′′(1),
(1.3)

the authors in [3] obtained the existence of solutions with the assumption that f satisfies the
two-sided Nagumo-type conditions. For more related works, interested readers may refer to
[1–14]. The one-sided Nagumo-type condition brings some difficulties in studying this kind
of problem, as it can be seen in [15–18].

Motivated by the above works, we consider the existence of solutions when f
satisfies one-sided Nagumo-type conditions. This is a generalization of the above cases.
We apply lower and upper functions technique and topological degree method to prove
the existence of solutions by making a priori estimates for the third derivative of all
solutions of problems (1.1) and (1.2). The estimates are essential for proving the existence of
solutions.

The outline of this paper is as follows. In Section 2, we give the definition of lower
and upper functions to problems (1.1) and (1.2) and obtain some a priori estimates. Section 3
will be devoted to the study of the existence of solutions. In Section 4, we give an example to
illustrate the conclusions.

2. Definitions and A Priori Estimates

Upper and lower functions will be an important tool to obtain a priori bounds on u, u′, and
u′′. For this problem we define them as follows.

Definition 2.1. The functions α, β ∈ C4(0, 1) ∩ C3[0, 1] verifying

α′′(t) ≤ β′′(t), ∀t ∈ [0, 1], (2.1)

define a pair of lower and upper functions of problems (1.1) and (1.2) if the following
conditions are satisfied:

(i) α(4)(t) ≥ f(t, α(t), α′(t), α′′(t), α′′′(t)), β(4)(t) ≤ f(t, β(t), β′(t), β′′(t), β′′′(t)),

(ii) α(0) ≤ 0, α(1) ≤ 0, aα′′(0) − bα′′′(0) ≤ A, cα′′(1) + dα′′′(1) ≤ B, β(0) ≥ 0, β(1) ≥
0, aβ′′(0) − bβ′′′(0) ≥ A, cβ′′(1) + dβ′′′(1) ≥ B,

(iii) α′(0) − β′(0) ≤ min{β(0) − β(1), α(1) − α(0), 0}.

Remark 2.2. By integration, from (iii) and (2.1), we obtain

α(t) ≤ β(t), α′(t) ≤ β′(t), ∀t ∈ [0, 1], (2.2)

that is, lower and upper functions, and their first derivatives are also well ordered.

To have an a priori estimate on u′′′, we need a one-sided Nagumo-type growth
condition, which is defined as follows.
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Definition 2.3. Given a set E ⊂ [0, 1] × �4 , a continuous f : E → � is said to satisfy the
one-sided Nagumo-type condition in E if there exists a real continuous function hE : �+

0 →
[k,+∞), for some k > 0, such that

f(t, x0, x1, x2, x3) ≤ hE(|x3|), ∀(t, x0, x1, x2, x3) ∈ E, (2.3)

with

∫+∞

0

s

hE(s)
ds = +∞. (2.4)

Lemma 2.4. Let Γi(t), γi(t) ∈ C([0, 1],�) satisfy

Γi(t) ≥ γi(t), ∀t ∈ [0, 1], i = 0, 1, 2, (2.5)

and consider the set

E =
{
(t, x0, x1, x2, x3) ∈ [0, 1] × �4 : γi(t) ≤ xi ≤ Γi(t), i = 0, 1, 2

}
. (2.6)

Let f : [0, 1] × �4 → � be a continuous function satisfying one-sided Nagumo-type condition in E.
Then, for every ρ > 0, there exists an R > 0 such that for every solution u(t) of problems (1.1)

and (1.2) with

u′′′(0) ≤ ρ, u′′′(1) ≥ −ρ, (2.7)

γi(t) ≤ u(i)(t) ≤ Γi(t), (2.8)

for i = 0, 1, 2 and every t ∈ [0, 1], one has ‖u′′′‖∞ < R.

Proof. Let u be a solution of problems (1.1) and (1.2) such that (2.7) and (2.8) hold. Define

η := max
{
Γ2(1) − γ2(0), Γ2(0) − γ2(1)

}
. (2.9)

Assume that ρ ≥ η, and suppose, for contradiction, that |u′′′(t)| > ρ for every t ∈ (0, 1).
If u′′′(t) > ρ for every t ∈ (0, 1), then we obtain the following contradiction:

Γ2(1) − γ2(0) ≥ u′′(1) − u′′(0) =
∫1

0
u′′′(t)dt >

∫1

0
ρ dt ≥ Γ2(1) − γ2(0). (2.10)

If u′′′(t) < −ρ for every t ∈ (0, 1), a similar contradiction can be derived. So there is a t̃ ∈ (0, 1)
such that |u′′′(t̃)| ≤ ρ. By (2.4) we can take R1 > ρ such that

∫R1

ρ

s

hE(s)
ds > max

t∈[0,1]
Γ2(t) − min

t∈[0,1]
γ2(t). (2.11)
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If |u′′′(t)| ≤ ρ for every t ∈ [0, 1], then we have trivially |u′′′(t)| < R1. If not, then we can
take t1 ∈ [0, 1) such that u′′′(t1) < −ρ or t1 ∈ (0, 1] such that u′′′(t1) > ρ. Suppose that the first
case holds. By (2.7) we can consider t1 < t0 ≤ 1 such that

u′′′(t0) = −ρ, u′′′(t) < −ρ, ∀t ∈ [t1, t0 ). (2.12)

Applying a convenient change of variable, we have, by (2.3) and (2.11),

∫−u′′′(t1)

−u′′′(t0)

s

hE(s)
ds =

∫ t1

t0

−u′′′(t)
hE(−u′′′(t))

(
−u(4)(t)

)
dt

=
∫ t0

t1

−u′′′(t)
hE(−u′′′(t))

f
(
t, u(t), u′(t), u′′(t), u′′′(t)

)
dt

≤
∫ t0

t1

−u′′′(t)dt = u′′(t1) − u′′(t0)

≤ max
t∈[0,1]

Γ2(t) − min
t∈[0,1]

γ2(t) <
∫R1

ρ

s

hE(s)
ds.

(2.13)

Hence, u′′′(t1) > −R1. Since t1 can be taken arbitrarily as long as u′′′(t1) < −ρ, we conclude that
u′′′(t) > −R1 for every t ∈ [0, 1) provided that u′′′(t) < −ρ.

In a similar way, it can be proved that u′′′(t) < R1, for every t ∈ (0, 1] if u′′′(t) > ρ.
Therefore,

∣
∣u′′′(t)

∣
∣ < R1, ∀t ∈ [0, 1]. (2.14)

Consider now the case η > ρ, and take R2 > η such that

∫R2

η

s

hE(s)
ds > max

t∈[0,1]
Γ2(t) − min

t∈[0,1]
γ2(t). (2.15)

In a similar way, we may show that

∣∣u′′′(t)
∣∣ < R2, ∀t ∈ [0, 1]. (2.16)

Taking R = max{R1, R2}, we have ‖u′′′‖∞ < R.

Remark 2.5. Observe that the estimation R depends only on the functions hE, γ2, Γ2, and ρ and
it does not depend on the boundary conditions.

3. Existence and Location Result

In the presence of an ordered pair of lower and upper functions, the existence and location
results for problems (1.1) and (1.2) can be obtained.
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Theorem 3.1. Suppose that there exist lower and upper functions α(t) and β(t) of problems (1.1)
and (1.2), respectively. Let f : [0, 1] × �4 → � be a continuous function satisfying the one-sided
Nagumo-type conditions (2.3) and (2.4) in

E∗ =
{
(t, x0, x1, x2, x3) ∈ [0, 1] × �4 : α(t) ≤ x0 ≤ β(t), α′(t) ≤ x1 ≤ β′(t), α′′(t) ≤ x2 ≤ β′′(t)

}

(3.1)

If f verifies

f
(
t, α(t), α′(t), x2, x3

) ≥ f(t, x0, x1, x2, x3) ≥ f
(
t, β(t), β′(t), x2, x3

)
(3.2)

for (t, x2, x3) ∈ [0, 1] × �2 and

(
α(t), α′(t)

) ≤ (x0, x1) ≤
(
β(t), β′(t)

)
, (3.3)

where (x0, x1) ≤ (y0, y1) means x0 ≤ y0 and x1 ≤ y1, then problems (1.1) and (1.2) has at least one
solution u(t) ∈ C4[0, 1] satisfying

α(t) ≤ u(t) ≤ β(t), α′(t) ≤ u′(t) ≤ β′(t), α′′(t) ≤ u′′(t) ≤ β′′(t) (3.4)

for t ∈ [0, 1].

Proof. Define the auxiliary functions

δi(t, xi) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

α(i)(t), xi < α(i)(t),

xi, α(i)(t) ≤ xi ≤ β(i)(t),

β(i)(t), xi > β(i)(t).

i = 0, 1, 2, (3.5)

For λ ∈ [0, 1], consider the homotopic equation

u(4)(t) = λf
(
t, δ0(t, u(t)), δ1

(
t, u′(t)

)
, δ2
(
t, u′′(t)

)
, u′′′(t)

)
+ u′′(t) − λδ2

(
t, u′′(t)

)
, (3.6)

with the boundary conditions

u(0) = u(1) = 0,

u′′′(0) =
λ

b

[
au′′(0) −A

]
,

u′′′(1) =
λ

d

[
B − cu′′(1)

]
.

(3.7)
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Take r1 > 0 large enough such that, for every t ∈ [0, 1],

−r1 < α′′(t) ≤ β′′(t) < r1, (3.8)

f
(
t, α(t), α′(t), α′′(t), 0

) − r1 − α′′(t) < 0, (3.9)

f
(
t, β(t), β′(t), β′′(t), 0

)
+ r1 − β′′(t) > 0, (3.10)

|A|
a

< r1,
|B|
c

< r1. (3.11)

Step 1. Every solution u(t) of problems (3.6) and (3.7) satisfies

∣
∣∣u(i)(t)

∣
∣∣ < r1, ∀t ∈ [0, 1] (3.12)

for i = 0, 1, 2, for some r1 independent of λ ∈ [0, 1].

Assume, for contradiction, that the above estimate does not hold for i = 2. So there
exist λ ∈ [0, 1], t ∈ [0, 1], and a solution u of (3.6) and (3.7) such that |u′′(t)| ≥ r1. In the case
u′′(t) ≥ r1 define

max
t∈[0,1]

u′′(t) := u′′(t0) ≥ r1. (3.13)

If t0 ∈ (0, 1), then u′′′(t0) = 0 and u(4)(t0) ≤ 0. Then, by (3.2) and (3.10), for λ ∈ (0, 1],
the following contradiction is obtained:

0 ≥ u(4)(t0) = λf
(
t0, δ0(t0, u(t0)), δ1

(
t0, u

′(t0)
)
, δ2
(
t0, u

′′(t0)
)
, u′′′(t0)

)
+ u′′(t0) − λδ2

(
t0, u

′′(t0)
)

= λf
(
t0, δ0(t0, u(t0)), δ1

(
t0, u

′(t0)
)
, β′′(t0), 0

)
+ u′′(t0) − λβ′′(t0)

≥ λf
(
t0, β(t0), β′(t0), β′′(t0), 0

)
+ u′′(t0) − λβ′′(t0)

= λ
[
f
(
t0, β(t0), β′(t0), β′′(t0), 0

)
+ r1 − β′′(t0)

]
+ u′′(t0) − λr1 > 0.

(3.14)

For λ = 0,

0 ≥ u(4)(t0) = u′′(t0) ≥ r1 > 0. (3.15)

If t0 = 0, then

max
t∈[0,1]

u′′(t) := u′′(0) ≥ r1 > 0 (3.16)

and u′′′(0+) = u′′′(0) ≤ 0. If λ = 0, then u′′′(0) = 0 and so u(4)(0) ≤ 0. Therefore, the above
computations with t0 replaced by 0 yield a contradiction. For λ ∈ (0, 1], by (3.11), we get the
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following contradiction:

0 ≥ u′′′(0) =
λ

b

[
au′′(0) −A

] ≥ λ

b
[ar1 −A] > 0. (3.17)

The case t0 = 1 is analogous. Thus, u′′(t) < r1 for every t ∈ [0, 1]. In a similar way, we
may prove that u′′(t) > −r1 for every t ∈ [0, 1].

By the boundary condition (3.7) there exists a ξ ∈ (0, 1), such that u′(ξ) = 0. Then by
integration we obtain

∣
∣u′(t)

∣
∣ =

∣
∣∣∣
∣

∫ t

ξ

u′′(s)ds

∣
∣∣∣
∣
< r1|t − ξ| ≤ r1,

|u(t)| =
∣
∣∣∣
∣

∫ t

0
u′(s)ds

∣
∣∣∣
∣
< r1t ≤ r1.

(3.18)

Step 2. There is an R > 0 such that for every solution u(t) of problems (3.6) and (3.7)

∣∣u′′′(t)
∣∣ < R, ∀t ∈ [0, 1], (3.19)

with R independent of λ ∈ [0, 1].

Consider the set

Er1 =
{
(t, x0, x1, x2, x3) ∈ [0, 1] × �4 : −r1 ≤ xi ≤ r1, i = 0, 1, 2

}
(3.20)

and for λ ∈ [0, 1] the function Fλ : Er1 → � given by

Fλ(t, x0, x1, x2, x3) = λf(t, δ0(t, x0), δ1(t, x1), δ2(t, x2), x3) + x2 − λδ2(t, x2). (3.21)

In the following we will prove that the function Fλ satisfies the one-sided Nagumo-type
conditions (2.3) and (2.4) in Er1 independently of λ ∈ [0, 1]. Indeed, as f verifies (2.3) in
E∗, then

Fλ(t, x0, x1, x2, x3) = λf(t, δ0(t, x0), δ1(t, x1), δ2(t, x2), x3) + x2 − λδ2(t, x2)

≤ hE∗(|x3|) + r1 − λα′′(t) ≤ hE∗(|x3|) + 2r1.
(3.22)

So, defining hEr1
(t) = hE∗(|x3|) + 2r1 in �+

0 , we see that Fλ verifies (2.3)with E and hE replaced
by Er1 and hEr1

, respectively. The condition (2.4) is also verified since

∫+∞

0

s

hEr1
(s)

ds =
∫+∞

0

s

hE∗(s)+2r1
ds ≥ 1

1 + 2r1/k

∫+∞

0

s

hE∗(s)
ds = +∞. (3.23)



8 Boundary Value Problems

Therefore, Fλ satisfies the one-sided Nagumo-type condition in Er1 with hE replaced by hEr1
,

with r1 independent of λ ∈ [0, 1].
Moreover, for

ρ := max
{
ar1 + |A|

b
,
|B| + cr1

d

}
, (3.24)

every solution u of (3.6) and (3.7) satisfies

u′′′(0) =
λ

b

[
au′′(0) −A

] ≤ λ

b
[ar1 + |A|] ≤ ρ,

u′′′(1) =
λ

d

[
B − cu′′(1)

] ≥ −λ
d
[|B| + cr1] ≥ −ρ.

(3.25)

Define

γi(t) := −r1, Γi(t) := r1, for i = 0, 1, 2. (3.26)

The hypotheses of Lemma 2.4 are satisfied with E replaced by Er1 . So there exists an R > 0,
depending on r1 and hEr1

, such that |u′′′(t)| < R for every t ∈ [0, 1]. As r1 and hEr1
do not

depend on λ, we see that R is maybe independent of λ.

Step 3. For λ = 1, the problems (3.6) and (3.7) has at least one solution u1(t).

Define the operators

L : C4([0, 1]) ⊂ C3([0, 1]) −→ C([0, 1]) × �4 (3.27)

by

Lu =
(
u(4) − u′′, u(0), u(1), u′′′(0), u′′′(1)

)
(3.28)

and for λ ∈ [0, 1],Nλ : C3([0, 1]) → C([0, 1]) × �4 by

Nλu =
(
λf
(
t, δ0(t, u(t)), δ1

(
t, u′(t)

)
, δ2
(
t, u′′(t)

)
, u′′′(t)

) − λδ2
(
t, u′′(t)

)
, 0, 0, Aλ, Bλ

)
, (3.29)

with

Aλ :=
λ

b

[
au′′(0) −A

]
,

Bλ :=
λ

d

[
B − cu′′(1)

]
.

(3.30)
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Observe that L has a compact inverse. Therefore, we can consider the completely continuous
operator

Tλ :
(
C3([0, 1]),�

)
−→
(
C3([0, 1]),�

)
(3.31)

given by

Tλ(u) = L−1Nλ(u). (3.32)

For R given by Step 2, take the set

Ω =
{
x ∈ C3([0, 1]) :

∥
∥∥x(i)

∥
∥∥
∞
< r1, i = 0, 1, 2,

∥∥x′′′∥∥∞ < R
}
. (3.33)

By Steps 1 and 2, degree d(I−Tλ,Ω, 0) is well defined for every λ ∈ [0, 1] and by the invariance
with respect to a homotopy

d(I − T0,Ω, 0) = d(I − T1,Ω, 0). (3.34)

The equation x = T0(x) is equivalent to the problem

u(4)(t) = u′′(t),

u(0) = u(1) = u′′′(0) = u′′′(1) = 0
(3.35)

and has only the trivial solution. Then, by the degree theory,

d(I − T0,Ω, 0) = ±1. (3.36)

So the equation T1(x) = x has at least one solution, and therefore the equivalent problem

u(4)(t) = f
(
t, δ0(t, u(t)), δ1

(
t, u′(t)

)
, δ2
(
t, u′′(t)

)
, u′′′(t)

)
+ u′′(t) − δ2

(
t, u′′(t)

)
,

u(0) = u(1) = 0,

au′′(0) − bu′′′(0) = A,

cu′′(1) + du′′′(1) = B

(3.37)

has at least one solution u1(t) in Ω.

Step 4. The function u1(t) is a solution of the problems (1.1) and (1.2).
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The proof will be finished if the above function u1(t) satisfies the inequalities

α(t) ≤ u1(t) ≤ β(t), α′(t) ≤ u′
1(t) ≤ β′(t), α′′(t) ≤ u′′

1(t) ≤ β′′(t). (3.38)

Assume, for contradiction, that there is a t ∈ [0, 1] such that u′′
1(t) > β′′(t), and define

max
t∈[0,1]

[
u′′
1(t) − β′′(t)

]
:= u′′

1(t2) − β′′(t2) > 0. (3.39)

If t2 ∈ (0, 1), then u′′′
1 (t2) = β′′′(t2) and u

(4)
1 (t2) ≤ β(4)(t2). Therefore, by (3.2) and

Definition 2.1, we obtain the contradiction

u
(4)
1 (t2) = f

(
t2, δ0(t2, u1(t2)), δ1

(
t2, u

′
1(t2)

)
, δ2
(
t2, u

′′
1(t2)

)
, u′′′

1 (t2)
)

+ u′′
1(t2) − δ2

(
t2, u

′′
1(t2)

)

= f
(
t2, δ0(t2, u1(t2)), δ1

(
t2, u

′
1(t2)

)
, β′′(t2), β′′′(t2)

)
+ u′′

1(t2) − β′′(t2)

≥ f
(
t2, β(t2), β′(t2), β′′(t2), β′′′(t2)

) ≥ β(4)(t2).

(3.40)

If t2 = 0, then we have

max
t∈[0,1]

[
u′′
1(t) − β′′(t)

]
:= u′′

1(0) − β′′(0) > 0,

u′′′
1 (0) − β′′′(0) = u′′′

1 (0
+) − β′′′(0+) ≤ 0.

(3.41)

By Definition 2.1 this yields a contradiction

u′′′
1 (0) =

1
b

[
au′′

1(0) −A
]
>

1
b

[
aβ′′(0) −A

] ≥ β′′′(0). (3.42)

Then t2 /= 0 and, by similar arguments, we prove that t2 /= 1. Thus,

u′′
1(t) ≤ β′′(t), ∀t ∈ [0, 1]. (3.43)

Using an analogous technique, it can be deduced that α′′(t) ≤ u′′
1(t) for every t ∈ [0, 1]. So we

have

α′′(t) ≤ u′′
1(t) ≤ β′′(t). (3.44)

On the other hand, by (1.2),

0 = u1(1) − u1(0) =
∫1

0
u′
1(t)dt =

∫1

0

(

u′
1(0) +

∫ t

0
u′′
1(s)ds

)

dt = u′
1(0) +

∫1

0

∫ t

0
u′′
1(s)ds dt, (3.45)
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that is,

u′
1(0) = −

∫1

0

∫ t

0
u′′
1(s)ds dt. (3.46)

Applying the same technique, we have

−
∫1

0

∫ t

0
β′′(s)ds dt = −

∫1

0
β′(t)dt + β′(0) = β(0) − β(1) + β′(0), (3.47)

and then by Definition 2.1 (iii), (3.44) and (3.46), we obtain

α′(0) ≤ β′(0) − β(1) + β(0)

= −
∫1

0

∫ t

0
β′′(s)ds dt ≤ −

∫1

0

∫ t

0
u′′
1(s)ds dt = u′

1(0),

β′(0) ≥ α′(0) − α(1) + α(0)

= −
∫1

0

∫ t

0
α′′(s)ds dt ≥ −

∫1

0

∫ t

0
u′′
1(s)ds dt = u′

1(0),

(3.48)

that is,

α′(0) ≤ u′
1(0) ≤ β′(0). (3.49)

Since, by (3.44), β′(t) − u′
1(t) is nondecreasing, we have by (3.49)

β′(t) − u′
1(t) ≥ β′(0) − u′

1(0) ≥ 0, (3.50)

and, therefore, β′(t) ≥ u′
1(t) for every t ∈ [0, 1]. By the monotonicity of β(t) − u1(t),

β(t) − u1(t) ≥ β(0) − u1(0) = β(0) ≥ 0, (3.51)

and so β(t) ≥ u1(t) for every t ∈ [0, 1].
The inequalities u′

1(t) ≥ α′(t) and u1(t) ≥ α(t) for every t ∈ [0, 1] can be proved in the
same way. Then u1(t) is a solution of problems (1.1) and (1.2).

4. An Example

The following example shows the applicability of Theorem 3.1 when f satisfies only the one-
sided Nagumo-type condition.
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Example 4.1. Consider now the problem

u(4)(t) = −[3 + u(t)]
[
eu

′(t)
][
u′′(t) − 2

]2 − [u′′′(t)
]4
, (4.1)

u(0) = u(1) = 0,

u′′(0) − u′′′(0) = A,

u′′(1) + u′′′(1) = B

(4.2)

with A,B ∈ �. The nonlinear function

f(t, x0, x1, x2, x3) = −(3 + x0)ex1(x2 − 2)2 − (x3)4 (4.3)

is continuous in [0, 1] × �4 . If A,B ∈ [−2, 2], then the functions α, β : [0, 1] → � defined by

α(t) = −t2 − t, β(t) = t2 + t (4.4)

are, respectively, lower and upper functions of (4.1) and (4.2). Moreover, define

E =
{
(t, x0, x1, x2, x3) ∈ [0, 1] × �4 : −t2 − t ≤ x0 ≤ t2 + t, −2t − 1 ≤ x1 ≤ 2t + 1, −2 ≤ x2 ≤ 2

}
.

(4.5)

Then f satisfies condition (3.2) and the one-sided Nagumo-type condition with hE(|x3|) = 1,
in E.

Therefore, by Theorem 3.1, there is at least one solution u(t) of Problem (4.1) and (4.2)
such that, for every t ∈ [0, 1],

−t2 − t ≤ u(t) ≤ t2 + t, −2t − 1 ≤ u′(t) ≤ 2t + 1, −2 ≤ u′′(t) ≤ 2. (4.6)

Notice that the function

f(t, x0, x1, x2, x3) = −(3 + x0)ex1(x2 − 2)2 − (x3)4 (4.7)

does not satisfy the two-sided Nagumo condition.
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