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The purpose of this article is to establish the existence of multiple positive solutions of the dynamic
equation on time scales (φ(uΔ(t)))∇ + h(t)f(t, u(t), uΔ(t)) = 0, t ∈ (0, T)

T
, subject to the multi-

point boundary condition uΔ(0) = 0, u(T) =
∑m−2

i=1 aiu(ξi), where φ : R → R is an increasing
homeomorphism and satisfies the relation φ(xy) = φ(x)φ(y) for x, y ∈ R, which generalizes the
usually p-Laplacian operator. An example applying the result is also presented. The main tool of
this paper is a generalization of Leggett-Williams fixed point theorem, and the interesting points
are that the nonlinearity f contains the first-order derivative explicitly and the operator φ is not
necessarily odd.

1. Introduction

The study of dynamic equations on time scales goes back to its founder Hilger [1], and is a
new area of still fairly theoretical exploration in mathematics. On one hand, the time scales
approach not only unifies calculus and difference equations, but also solves other problems
that have a mix of stop-start and continuous behavior. On the other hand, the time scales
calculus has tremendous potential for application in biological, phytoremediation of metals,
wound healing, stock market and epidemic models [2–6].

Let T be a time scale (an arbitrary nonempty closed subset of the real numbers R). For
each interval I of R, we define IT = I ∩ T. For more details on time scales, one can refer to
[1–3, 5]. In this paper we are concerned with the existence of at least triple positive solutions
to the following m-point boundary value problems on time scales

(
φ
(
uΔ(t)

))∇
+ h(t)f

(
t, u(t), uΔ(t)

)
= 0, t ∈ (0, T)

T
, (1.1)
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uΔ(0) = 0, u(T) =
m−2∑

i=1

aiu(ξi), (1.2)

where φ : R → R is an increasing homeomorphism and φ(xy) = φ(x)φ(y) for x, y ∈ R.
Multipoint boundary value problem (BVP) arise in a variety of different areas of

applied mathematics and physics, such as the vibrations of a guy wire of a uniform cross
section and composed ofN parts of different densities can be set up as amultipoint boundary
value problem [7]. Small size bridges are often designed with two supported points,
which leads to a standard two-point boundary value condition. And large size bridges are
sometimes contrived with multipoint supports, which corresponds to a multipoint boundary
value condition [8]. Especially, if we let u(t) denotes the displacement of the bridge from the
unloaded position, and we emphasize the position of the bridge at supporting points near
t = 0, we can obtain the multipoint boundary condition (1.2). The study of multipoint BVPs
for linear second-order ordinary differential equations was initiated by Ilin and Moiseev
[9], since then many authors studied more general nonlinear multipoint boundary value
problems. We refer readers to [8, 10–14] and the references therein.

Recently, when φ is p-Laplacian operator, that is φ(u) = |u|p−2u(p > 1), and the
nonlinear term does not depend on the first-order derivative, the existence problems of
positive solutions of boundary value problems have attracted much attention, see [10, 12, 15–
22] in the continuous case, see [15, 23–25] in the discrete case and [11, 13, 14, 26, 27] in the
general time scale setting. From the process of proving main results in the above references,
one can notice that the oddness of the p-Laplacian operator is key to the proof. However in
this paper the operator φ is not necessary odd, so it improves and generalizes the p-Laplacian
operator. One may note this from Example 3.3 in Section 3. In addition, Bai and Ge [16]
generalized the Leggett-Williams fixed point theorems by using fixed point index theory. An
application of the theorem is given to prove the existence of three positive solutions to the
following second-order BVP:

u′′(t) + f
(
t, u(t), u′(t)

)
= 0, t ∈ (0, 1), (1.3)

with Dirichlet boundary condition. They also extended the results to four-point BVP in [12].
When φ(u) = |u|p−2u and the nonlinearity f is not involved with the first-order

derivative uΔ(t), in [27], Sun and Li discussed the existence and multiplicity of positive
solutions for problems (1.1) and (1.2). The main tools used are fixed point theorems in cones.

Thanks to the above-mentioned research articles [16, 27], in this paper we consider the
existence of multiple positive solutions for the more general dynamic equation on time scales
(1.1) with m-point boundary condition (1.2). An example is also given to illustrate the main
results. The obtained results are even new for the special cases of difference equations and
differential equations, as well as in the general time scale setting. The main result extends
and generalizes the corresponding results of Liu [18] and Webb [21] (T = R, φ(u) = u, T =
1, m = 3, f(t, u, v) = f(u)), Sun and Li [27] (φ(u) = |u|p−2u, f(t, u, v) = f(t, u)). We also
emphasize that in this paper the nonlinear term f is involved with the first-order delta
derivative uΔ(t), the operator φ is not necessary odd and have the more generalized form,
and the tool is a generalized Leggett-Williams fixed point theorem [16].

The rest of the paper is organized as follows: in Section 2, we give some preliminaries
which are needed later. Section 3 is due to develop existence criteria for at least three and
arbitrary odd number positive solution of the boundary value problem (1.1) and (1.2). In the
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final part of this section, we present an example to illustrate the application of the obtained
result.

Throughout this paper, the following hypotheses hold:

(H1) 0, T ∈ T, 0 < ξ1 < ξ2 < · · · < ξm−2 < ρ(T), ξi ∈ T, ai ≥ 0 for i = 1, . . . , m − 2, and
d = 1 −∑m−2

i=1 ai > 0;

(H2) η = max{t ∈ T : 0 < t ≤ T/2} exists and h ∈ Cld((0, T)T
, [0,∞)) such that 0 <

∫T
0 h(s)∇s < ∞ and f : (0, T)

T
× [0,∞) × (−∞,∞) → [0,∞) is continuous.

2. Preliminaries

In this section, we first present some basic definition, then we define an appropriate Banach
space, cone, and integral operator, and finally we list the fixed-point theoremwhich is needed
later.

Definition 2.1. Suppose P is a cone in a Banach space B. The map α is said to be a nonnegative
continuous concave (convex) functional on P provided that α : P → [0,∞) is continuous
and

α
(
λx + (1 − λ)y

) ≥ (≤)λα(x) + (1 − λ)α
(
y
) ∀x, y ∈ P, 0 ≤ λ ≤ 1. (2.1)

Let the Banach space B = C1
ld([0, T]T

) be endowed with the norm ‖u‖ =
max{‖u‖0, ‖uΔ‖0}, where

‖u‖0 = max
t∈[0,T]

T

|u(t)|,
∥
∥
∥uΔ
∥
∥
∥
0
= sup

t∈[0,T]
T

∣
∣
∣uΔ(t)

∣
∣
∣, (2.2)

and choose the cone P ⊂ B as

P =
{
u ∈ B : u(t) ≥ 0 for t ∈ [0, T]

T
, uΔ(0) = 0 and u is concave in [0, T]

T

}
. (2.3)

Now we define the operator A : P → B by

Au(t) = −
∫T

t

φ−1
(

−
∫s

0
h(τ)f

(
τ, u(τ), uΔ(τ)

)
∇τ

)

Δs

− 1
d

m−2∑

i=1

ai

∫T

ξi

φ−1
(

−
∫s

0
h(τ)f

(
τ, u(τ), uΔ(τ)

)
∇τ

)

Δs.

(2.4)

From the definition of A and the assumptions of (H1), (H2), we can easily obtain that for
each u ∈ P,Au(t) ≥ 0 for t ∈ [0, T]

T
and (Au)Δ(0) = 0. From the fact that

(
φ
(
AuΔ(t)

))∇
= −h(t)f

(
t, u(t), uΔ(t)

)
≤ 0, t ∈ (0, T)

T
, (2.5)
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we know that Au is concave in [0, T]
T
. Thus A : P → P and Au(0) is the maximum value of

Au(t). In addition, by direct calculation, we get that each fixed point of the operator A in P
is a positive solution of (1.1) and (1.2). Similar as the proof of Lemma 2.3 in [27], it is easy to
see that A : P → P is completely continuous.

Suppose α and β are two nonnegative continuous convex functionals satisfying

‖x‖ ≤ L max
{
α(x), β(x)

}
, x ∈ P, (2.6)

where L is a positive constant, and

Ω =
{
x ∈ P | α(x) < r, β(x) < l

}
/= ∅, r > 0, l > 0. (2.7)

Let r > a > 0, l > 0 be given, α, β nonnegative continuous convex functionals on P
satisfying the relation (2.6) and (2.7), and γ a nonnegative continuous concave functional on
P . We define the following convex sets:

P
(
α, r; β, l

)
=
{
u ∈ P : α(u) < r, β(u) < l

}
,

P
(
α, r; β, l

)
=
{
u ∈ P : α(u) ≤ r, β(u) ≤ l

}
,

P
(
α, r; β, l; γ, a

)
=
{
u ∈ P : α(u) < r, β(u) < l, γ(u) > a

}
,

P
(
α, r; β, l; γ, a

)
=
{
u ∈ P : α(u) ≤ r, β(u) ≤ l, γ(u) ≥ a

}
.

(2.8)

In order to prove our main results, the following fixed point theorem is important in
our argument.

Lemma 2.2 (see [16]). Let B be Banach space, P ⊂ B a cone, and r2 ≥ d > b > r1 > 0, l2 ≥ l1 > 0.
Assume that α and β are nonnegative continuous convex functionals satisfying (2.6) and (2.7), γ is a
nonnegative continuous concave functional on P such that γ(u) ≤ α(u) for all u ∈ P(α, r2; β, l2), and
A : P(α, r2; β, l2) → P(α, r2; β, l2) is a completely continuous operator. Suppose

(C1) {u ∈ P(α, d; β, l2; γ, b) : γ(u) > b}/= ∅, γ(Au) > b for u ∈ P(α, d; β, l2; γ, b);

(C2) α(Au) < r1, β(Au) < l1 for u ∈ P(α, r1; β, l1);

(C3) γ(Au) > b for u ∈ P(α, r2; β, l2; γ, b) with α(Au) > d.

Then A has at least three fixed points u1, u2, u3 ∈ P(α, r2; β, l2) with

u1 ∈ P
(
α, r1; β, l1

)
, u2 ∈

{
P
(
α, r2; β, l2; γ, b

) | γ(u) > b
}
,

u3 ∈ P
(
α, r2; β, l2

) \
(
P
(
α, r2; β, l2; γ, b

) ∪ P
(
α, r1; β, l1

))
.

(2.9)

3. Main Results

In this section, we impose some growth conditions on f which allow us to apply Lemma 2.2
to the operator A defined in Section 2 to establish the existence of three positive solutions of
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(1.1) and (1.2). We note that, from the nonnegativity of h and f , the solution of (1.1) and (1.2)
is nonnegative and concave on [0, T]

T
.

First in view of Lemma 2.4 in [27], we know that for u ∈ P , there is u(t) ≥ ((T−t)/T)‖u‖
for t ∈ [0, T]

T
. So we get

u(t) ≥ T − η

T
‖u‖ ≥ 1

2
‖u‖ for t ∈ [0, η]

T
. (3.1)

Let the nonnegative continuous convex functionals α, β and the nonnegative
continuous concave functional γ be defined on the cone P by

α(u) = max
t∈[0,T]

T

|u(t)|, β(u) = sup
t∈[0,T]

T

∣
∣
∣uΔ(t)

∣
∣
∣, γ(u) = min

t∈[0,η]
T

u(t), u ∈ P. (3.2)

Then, it is easy to see that ‖u‖ = max{α(u), β(u)} and (2.6), (2.7) hold.
Now, for convenience we introduce the following notations. Let

S = φ−1
(∫T

0
h(τ)∇τ

)

, M =
(
T − η

)
φ−1
(∫η

0
h(τ)∇τ

)

,

N =
∫T

0
φ−1
(∫ s

0
h(τ)∇τ

)

Δs +
1
d

m−2∑

i=1

ai

∫T

ξi

φ−1
(∫s

0
h(τ)∇τ

)

Δs.

(3.3)

Theorem 3.1. Assume f(t, 0, 0)/≡ 0 for t ∈ [0, T]
T
. If there are positive numbers r2 ≥ 2b > b > r1 >

0, l2 ≥ l1 > 0 with b/M ≤ min{r2/N, l2/S}, such that the following conditions are satisfied

(i) f(t, u, v) ≤ min{−φ(−r2/N),−φ(−l2/S)} for (t, u, v) ∈ [0, T]
T
× [0, r2] × [−l2, 0];

(ii) f(t, u, v) > −φ(−b/M) for (t, u, v) ∈ [0, η]
T
× [b, 2b] × [−l2, 0];

(iii) f(t, u, v) < min{−φ(−r1/N),−φ(−l1/S)} for (t, u, v) ∈ [0, T]
T
× [0, r1] × [−l1, 0].

then the problem (1.1), (1.2) has at least three positive solutions u1, u2, u3 satisfying

max
t∈[0,T]

T

u1(t) < r1, sup
t∈[0,T]

T

∣
∣
∣uΔ

1 (t)
∣
∣
∣ < l1,

b < min
t∈[0,η]

T

u2(t) ≤ max
t∈[0,T]

T

u2(t) ≤ r2, sup
t∈[0,T]

T

∣
∣
∣uΔ

2 (t)
∣
∣
∣ ≤ l2,

max
t∈[0,T]

T

u3(t) < 2b with min
t∈[0,η]

T

u3(t) < b, sup
t∈[0,T]

T

∣
∣
∣uΔ

3 (t)
∣
∣
∣ ≤ l2.

(3.4)

Proof. By the definition of operatorA and its properties, it suffices to show that the conditions
of Lemma 2.2 hold with respect to the operator A.

We first show that if the condition (i) is satisfied, then

A : P
(
α, r2; β, l2

) −→ P
(
α, r2; β, l2

)
. (3.5)
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In fact, if u ∈ P(α, r2; β, l2), then

α(u) = max
t∈[0,T]

T

|u(t)| ≤ r2, β(u) = sup
t∈[0,T]

T

∣
∣
∣uΔ(t)

∣
∣
∣ ≤ l2, (3.6)

so assumption (i) implies

f
(
t, u(t), uΔ(t)

)
≤ min

{

−φ
(
− r2
N

)
,−φ
(

− l2
S

)}

, t ∈ [0, T]
T
. (3.7)

On the other hand, for u ∈ P , there isAu ∈ P ; thenAu(t) is concave in [0, T]
T
, andAuΔ(t) ≤ 0

for t ∈ (0, T)
T
, so

α(Au) = max
t∈[0,T]

T

|(Au)(t)| = Au(0)

= −
∫T

0
φ−1
(

−
∫s

0
h(τ)f

(
τ, u(τ), uΔ(τ)

)
∇τ

)

Δs

− 1
d

m−2∑

i=1

ai

∫T

ξi

φ−1
(

−
∫ s

0
h(τ)f

(
τ, u(τ), uΔ(τ)

)
∇τ

)

Δs

≤ r2
N

(∫T

0
φ−1
(∫ s

0
h(τ)∇τ

)

Δs +
1
d

m−2∑

i=1

ai

∫T

ξi

φ−1
(∫ s

0
h(τ)∇τ

)

Δs

)

= r2,

β(Au) = sup
t∈[0,T]

T

∣
∣
∣(Au)Δ(t)

∣
∣
∣ = −AuΔ(T)

= −φ−1
(

−
∫T

0
h(τ)f

(
τ, u(τ), uΔ(τ)

)
∇τ

)

≤ l2
S
φ−1
(∫T

0
h(τ)∇τ

)

= l2.

(3.8)

Therefore, (3.5) holds.
In the same way, if u ∈ P(α, r1; β, l1), then condition (iii) implies

f
(
t, u(t), uΔ(t)

)
< min

{

−φ
(
− r1
N

)
, φ

(

− l1
S

)}

for t ∈ [0, T]
T
. (3.9)

As in the argument above, we can get that A : P(α, r1; β, l1) → P(α, r1; β, l1). Thus, condition
(C2) of Lemma 2.2 holds.

Next we show that condition (C1) in Lemma 2.2 holds. We choose u(t) = 2b for t ∈
[0, T]

T
. It is easy to see that

u ∈ P
(
α, 2b; β, l2; γ, b

)
, γ(u) = 2b > b, (3.10)
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and consequently

{
u ∈ P

(
α, 2b; β, l2; γ, b

)
: γ(u) > b

}
/= ∅. (3.11)

Therefore, for u ∈ P(α, 2b; β, l2; γ, b), there are

b ≤ u(t) ≤ 2b,
∣
∣
∣uΔ(t)

∣
∣
∣ ≤ l2 for t ∈ [0, η]

T
. (3.12)

Hence in view of hypothesis (ii), we have

f
(
t, u(t), uΔ(t)

)
> −φ

(

− b

M

)

for t ∈ [0, η]
T
. (3.13)

So by the definition of the functional γ , we see that

γ(Au) = min
[0,η]

T

Au(t) = Au
(
η
)

= −
∫T

η

φ−1
(

−
∫ s

0
h(τ)f

(
τ, u(τ), uΔ(τ)

)
∇τ

)

Δs

− 1
d

m−2∑

i=1

ai

∫T

ξi

φ−1
(

−
∫ s

0
h(τ)f

(
τ, u(τ), uΔ(τ)

)
∇τ

)

Δs

≥ −
∫T

η

φ−1
(

−
∫ s

0
h(τ)f

(
τ, u(τ), uΔ(τ)

)
∇τ

)

Δs

≥ −
∫T

η

φ−1
(

−
∫η

0
h(τ)f

(
τ, u(τ), uΔ(τ)

)
∇τ

)

Δs

>
b

M

∫T

η

φ−1
(∫η

0
h(τ)∇τ

)

Δs =
b

M
M = b.

(3.14)

Therefore, we get γ(Au) > b for u ∈ P(α, 2b; β, l2; γ, b), and condition (C1) in Lemma 2.2 is
fulfilled.

We finally prove that (C3) in Lemma 2.2 holds. In fact, for u ∈ P(α, r2; β, l2; γ, b) with
α(Au) > 2b, we have

γ(Au) = min
[0,η]

T

Au(t) = Au
(
η
) ≥ T − η

T
max
t∈[0,T]

T

|Au(t)| ≥ 1
2
α(Au) > b. (3.15)
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Thus from Lemma 2.2 and the assumption that f(t, 0, 0)/≡ 0 on [0, T]
T
, the BVP (1.1) and (1.2)

has at least three positive solutions u1, u2, and u3 in P(α, r2; β, l2)with

u1 ∈ P
(
α, r1; β, l1

)
, u2 ∈

{
P
(
α, r2; β, l2; γ, b

)
: γ(u) > b

}
,

u3 ∈ P
(
α, r2; β, l2

) \
(
P
(
α, r2; β, l2; γ, b

) ∪ P
(
α, r1; β, l1

))
.

(3.16)

The fact that the functionals α and β on P satisfy an additional relation (1/2)α(u) ≤ γ(u) for
u ∈ P implies that

max
t∈[0,T]

T

u3(t) < 2b. (3.17)

The proof is complete.

From Theorem 3.1, we see that, when assumptions as (i), (ii), and (iii) are imposed
appropriately on f, we can establish the existence of an arbitrary odd number of positive
solutions of (1.1) and (1.2).

Theorem 3.2. Suppose that there exist constants

0 < r1 < b1 < 2b1 ≤ r2 < b2 < 2b2 ≤ · · · ≤ rn, 0 < l1 ≤ l2 ≤ · · · ≤ ln−1, n ∈ N (3.18)

with

bi
M

≤ min
{
ri+1
N

,
li+1
S

}

for 1 ≤ i ≤ n − 1 (3.19)

such that the following conditions hold:

(i) f(t, u, v) < min{−φ(−ri/N),−φ(−li/S)} for (t, u, v) ∈ [0, T]
T
× [0, ri]× [−li, li], 1 ≤ i ≤

n;

(ii) f(t, u, v) > −φ(−bi/M) for (t, u, v) ∈ [0, η]
T
× [bi, 2bi] × [−li+1, li+1], 1 ≤ i ≤ n.

Then, BVP (1.1) and (1.2) has at least 2n − 1 positive solutions.

Proof. When n = 1, it is immediate from condition (i) that A : P(α, r1; β, l1) → P(α, r1; β, l1),
which means that A has at least one fixed point u1 ∈ P(α, r1; β, l1) by the Schauder fixed
point theorem. When n = 2, it is clear that the hypothesis of Theorem 3.1 holds. Then we can
obtain at least three positive solutions u1, u2, and u3. Following this way, we finish the proof
by induction. The proof is complete.

In the final part of this section, we give an example to illustrateour results.
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Example 3.3. Let T = [0, 1] ∪ {1 + (1/2)N0}, where N0 denote nonnegative integer numbers
set. If we choose T = 2, η = 1, m = 4, a1 = a2 = 1/3, ξ1 = 1/2, ξ2 = 3/2, and h(t) = 1 and
consider the following BVP on time scale T:

(
φ
(
uΔ(t)

))∇
+ f
(
t, u(t), uΔ(t)

)
= 0, t ∈ [0, 2]

T
,

uΔ(0) = 0, u(2) =
1
3
u

(
1
2

)

+
1
3
u

(
3
2

)

,

(3.20)

where

φ(u) =

⎧
⎪⎨

⎪⎩

u, u ≤ 0;

u2, u > 0.

f(t, u, v) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
120

t +
2
3
u3 +

(
v

100

)3

, t ∈ [0, 2]
T
, u ∈ (−∞, 3], v ∈ (−∞,∞);

1
120

t + 18 +
(

v

100

)3

, t ∈ [0, 2]
T
, u ∈ (3,+∞), v ∈ (−∞,∞),

(3.21)

obviously the hypotheses (H1), (H2) hold and f(t, 0, 0)/≡ 0 on [0, 2]
T
. By simple calculations,

we have

S = φ−1
(∫2

0
1∇s

)

=
√
2, M = φ−1

(∫1

0
1∇s

)

= 1,

Ñ =

(

T +
1
d

m−2∑

i=1

ai(T − ξi)

)

φ−1
(∫T

0
h(s)∇s

)

= 4
√
2.

(3.22)

Observe that

N =
∫T

0
φ−1
(∫ s

0
h(τ)∇τ

)

Δs +
1
d

m−2∑

i=1

ai

∫T

ξi

φ−1
(∫ s

0
h(τ)∇τ

)

Δs

<

(

T +
1
d

m−2∑

i=1

ai(T − ξi)

)

φ−1
(∫T

0
h(s)∇s

)

= Ñ.

(3.23)
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If we choose r2 = 180, b = 2, r1 = 1/3, and l2 = 78, l1 = 10, then f(t, u, v) satisfies

f(t, u, v) ≤ 45
√
2

2
= min

{

−φ
(

− r2

Ñ

)

,−φ
(

− l2
S

)}

< min
{

−φ
(
− r2
N

)
,−φ
(

− l2
S

)}

, (t, u, v) ∈ [0, 2]
T
× [0, 180] × [−78, 78];

f(t, u, v) > 4 =
b

M
for (t, u, v) ∈ [0, 1]

T
× [2, 4] × [−78, 78],

f(t, u, v) <
√
2

24
= min

{

−φ
(

− r1

Ñ

)

,−φ
(

− l1
S

)}

< min
{

−φ
(

− r1

Ñ

)

,−φ
(

− l1
S

)}

, (t, u, v) ∈ [0, 2]
T
×
[

0,
1
3

]

× [−10, 10].
(3.24)

So all conditions of Theorem 3.1 hold. Thus by Theorem 3.1, the problem (3.20) has at least
three positive solutions u1, u2, u3 such that

max
t∈[0,T]

T

u1(t) <
1
3
; sup

t∈[0,T]
T

∣
∣
∣uΔ

1 (t)
∣
∣
∣ < 10,

2 < min
t∈[0,η]

T

u2(t) ≤ max
t∈[0,T]

T

u2(t) ≤ 180; sup
t∈[0,T]

T

∣
∣
∣uΔ

2 (t)
∣
∣
∣ ≤ 78,

max
t∈[0,T]

T

u3(t) < 4 with min
t∈[0,η]

T

u3(t) < 2, sup
t∈[0,T]

T

∣
∣
∣uΔ

3 (t)
∣
∣
∣ ≤ 78.

(3.25)
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