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The presence of carriers usually complicates the dynamics and prevention of a disease. They are
not recognized as disease cases themselves unless they are screened and they usually spread the
infection without them being aware. We argue that this has been one of the major causes of the
spread of human immunodeficiency virus (HIV). We propose, in this paper, a model for the
heterogeneous transmission of HIV/acquired immunodeficiency syndrome in the presence of
disease carriers. The model allows us to assess the role of screening, as an intervention program
that can slow the epidemic. A threshold value c *, for the screening rate is obtained. It is shown
numerically that if 80% or more of the carrier population is screened, the epidemic can be
contained. The qualitative analysis is done in terms of the model reproduction number R. The
model has two equilibria, the disease free equilibrium and a unique endemic equilibrium. The
disease free equilibrium is globally stable of R , 1 and the endemic equilibrium is is locally
stable forR . 1. A detailed discussion of the model reproduction number is given and numerical
simulations are done to show the role of some of the important model parameters.
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1. Introduction

The acquired immunodeficiency syndrome (AIDS) epidemic is a serious, growing public health

problem worldwide. The cause is known and the principal routes of transmission understood but

resources for treating human immunodeficiency virus (HIV) infected patients and for combating

the spread of the virus are limited. Public health planning continues to be hampered by

uncertainties about key epidemiological parameters such as the typical duration and intensity of

infectiousness; the fraction of those infected who progress to develop AIDS and the progression

time. Control of the epidemic therefore depends on promoting behavioural change among the

subgroups of populations where infection is taking place and on optimum use of available therapy

for those infected. Both approaches require a quantitative understanding of the dynamics of the

epidemic in the population. The basis for such an understanding is two-fold. Firstly, we need to

generate information on the evolving state of HIV infection and HIV risk behaviour in the

population, by the elaboration of appropriate monitoring systems, secondly, the development

of mathematical models and methods, which can fully exploit the information generated.

ISSN 1748-670X print/ISSN 1748-6718 online

q 2009 Taylor & Francis

DOI: 10.1080/17486700802653917

http://www.informaworld.com

*Corresponding author. Email: sdmusekwa@nust.ac.zw

Computational and Mathematical Methods in Medicine

Vol. 10, No. 4, December 2009, 287–305



This highlights the need to develop mathematical models that help in the understanding of

HIV/AIDS disease and help policy makers to make rational policy decisions.

Many mathematical models have been developed to monitor the epidemic and explore the

impact of intervention strategies that are being implemented [2,3,6,12,14,15,17,18,22]. The

most recent work on modelling the role of screening unaware infectives is given in Ref. [26].

This paper extends these models by incorporating carriers, some of whom will be screened.

In addition, treatment of screened cases and individuals with AIDS is also incoporated.

According to Ref. [1], a major complication of many diseases is the existence of carriers,

i.e. individuals who, although apparently healthy themselves, are already infected and are

capable of transmitting the infection to others. In fact, they are not themselves usually

recognized as actual cases. The potential danger posted by carriers is apparent since they spread

infection without the awareness of their disease status and are usually not under any disease

surveillance. However, the exact role carriers play in the transmission dynamics of the disease is

not so easy to predict or pinpoint. It is of great epidemiological significance to investigate,

qualitatively and quantitatively, the role of disease carriers in the transmission dynamics using

mathematical models. The role of carriers may be significant in the AIDS epidemic, especially in

the light of new HIV drug developments and various intervention programmes.

Upon infection by HIV, an individual enters the primary (acute) HIV infection stage. Some

people experience very strong symptoms upon contraction of HIV, while others experience none

at all. Because of the non-specificity of symptoms of primary HIV infection, diagnosis and

identification of cases depends on individuals’ understanding of HIV infection dynamics after

risky sexual contacts. Primary HIV infection can, but does not always, progress to early

symptomatic HIV infection that can eventually advance to AIDS [20,24]. We, however,

assumed in this paper that primary HIV infection leads to symptomatic HIV infection. Once

primary infection is over, individuals become symptomatic for 5–10 years. If no screening

leading to treatment is done, individuals eventually progress to AIDS.

Highly active antiretroviral therapy (HAART) is a very potent combination of antiretroviral

(ARV) drugs, that can significantly prolong HIV infected patients’ lives. The negative effect of

drug treatment may be that partially recovered patients can resort back to risky sexual behaviour

and hence undermine the effectiveness of the drug over the whole population. Although under

HAART the proportion of primary resistance cases decreases transiently, the epidemic worsens

because the actual numbers of infected individuals and of drug resistant carriers increases [21].

This is because of the increase in risky behaviour, both on the part of the newly infected who has

higher viral loads and is more likely to transmit the virus, and also the carriers who are unaware

of their HIV status. Therefore qualitative studies, like this one, on how carriers can impact the

AIDS transmission dynamics in the population are important for the evaluation of the impact of

HIV treatment and education campaigns. The main focus is on determining the effects of carriers

and randomly screened carriers, who are aware of their status, on the transmission of HIV. The

results of this study have implications on the validity of the parameters estimated for models

without carriers. We formulate the model as a system of ordinary differential equations in

Section 2 and the analysis of the model is given in Section 3. By setting some parameters to zero,

the model exhibits various scenarios, such as model without carriers and model with no

intervention, that are presented and discussed in Section 4. Numerical simulations of the model

are done in Section 5 and some concluding remarks are made in the last section.

2. Model formulation

A population of size N(t), which varies with time, is divided into seven classes consisting of

individuals who are susceptible to the disease S(t), infectious and symptomatic primary HIV
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infectives I(t), whom we will call normal infectives, carriers of the disease who are asymptomatic

and infectious C(t), randomly screened carriers Cs, under HIV treatment T, with full blown AIDS

A(t) and those with AIDS but under treatment At. The total population is thus given by

NðtÞ ¼ SðtÞ þ IðtÞ þ CðtÞ þ CsðtÞ þ TðtÞ þ AðtÞ þ AtðtÞ. The model incorporates the transmission

of HIV infection by the normal infectives, carriers, treated individuals and those who have full

blown AIDS, i.e. those in the classes I(t),C(t), T(t) andA(t), respectively. Primary HIV infection is

assumed to be symptomatic following [19] and the references cited therein (see also, Primary HIV

infection and post exposure prevention. Available at http://www.ccspublishing.com/journals2a/

Primary_HIV.html and HIV early symptoms. Available at http://www.hivsymtomsonline.com/

hiv-early-symptoms.html). However, the duration of infectivity is short [8]. Soon after primary

infection, individuals can either become asymptomatic with respect to HIV infection or are given

HAART, if detected early. The asymptomatic HIV infectives are regarded as carriers and those on

HAART join the class of those under treatment. Those in the class of carriers are subjected to

screening. However, we assume that those who have been screened from the carrier class will not

transmit the disease since they are counselled during screening. The counselling is assumed to be

very effective in preventing high-risk sexual behaviour. Those in theAt class are also assumed not

to engage in HIV spreading activities. The population mixes homogeneously. This means that

susceptible individuals are equally likely to be infected by an infectious individual in the case of a

contact.

We give a brief description of the model parameters used in the model. We firstly consider the

probability of infection b. This is the probability of transmission from an infectious individual to a

susceptible individual which is formed from two components, namely the likelihood of close

contact between two individuals, such that transmission can occur (dependent upon the pattern of

mixing in the population) and the probability that transmission will occur as a result of the close

contact (dependent upon the innate contagiousness of the infectious organism and perhaps on the

genetic or behavioural susceptibility of the individual host). The probability of infection is

significant in measuring the force of infection, i.e. the per capita rate at which susceptible

individuals acquire infection. b is difficult to determine since it is related to attitude factors and

therefore an individual’s risk of acquiring HIV is to a large extent determined by an individual’s

attitude and the role played during sexual intercourse [2]. Suppose p is the probability of

transmission per contact, the probability that a susceptible individual will not be infected by a single

contact with an infected individual is 1 2 p. Therefore, the probability that infection is avoided,

when n contacts have been made is (1 2 p)n, giving us the transmission probability per partner

b ¼ 1 2 (1 2 p)n [18]. We assume that b1, b2, b3 and b4 are the probabilities of infection by the

symptomatic infectives, unscreened carriers and individuals under HIV treatment, respectively.

However, we assume that the probability of infection of a susceptible by an individual in the

primary symptomatic stage, b1, is greater than all the other infection probabilities [7]. The

probabilities thus satisfy the following relation, b1 . b4 . b2 . b3.

Also of importance is the average number of sexual partners k an individual can have.

The mean number of sexual partners is a key parameter for epidemiological projections. Sexual

partnerships and disease spread are co-evolving dynamic processes and the number of sexual

partners is important for the determination of epidemic thresholds. The rate of acquisition of new

partners depends largely on social and environmental factors that determine the living

conditions, resources and social opportunities [9]. Cultural and religious beliefs have an

influence on the number of new partners one can acquire. In some cultural settings, men are

allowed to have as many partners as they wish and this has a significant impact on the value of k.

Many people indulge in risky behaviours due to poverty, need to get financial support, revenge

for having been infected unjustifiably and lack of knowledge on disease dynamics [13]. The total
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number of new symptomatic infectious individuals, at time t is given by

k b1

IðtÞ

NðtÞ
þ b2

CðtÞ

NðtÞ
þ b3

TðtÞ

NðtÞ
þ b4

AðtÞ

NðtÞ

� �
SðtÞ:

The introduction of triple-drug therapies has lead to a subsequent increase in risky sexual

behaviour, which in turn has lead to an increase in the number of new HIV infections [16]. Risk

behaviour change can be measured by measuring the trends of the value of k, with a decline in

the value of k indicating an increase in behavioural change.

In a bid to model specific forms of interventions, we include the intervention rates g and c.

The rate at which carriers are screened c, will largely depend on individuals wanting to know

their status. This is also based on the anticipated potential benefits of screening. It is thus

important to promote the screening of carriers. c is a measure of the success of voluntary testing

campaigns that are being advocated in the fight against the HIV/AIDS pandemic, especially

in sub-Saharan Africa. The rates at which the infected seek treatment are given by gi, where

i ¼ 1, . . . ,3, for those in the normal infective class, the screened carriers and the AIDS classes,

respectively.

Assuming that all those recruited into the population are susceptible, we can assume a

constant recruitment rate P. This rate of recruitment also covers juveniles who become sexually

active. We assume heterosexual transmission of the disease with no vertical transmission, blood

transfusion and needle sharing. We also assume that there is no recruitment of individuals

resistant to HIV. In the absence of a disease, individuals in a population die of natural causes,

assumed to occur at a constant rate m. Diseases such as HIV/AIDS impact mortality rates and it

is always plausible to assume that individuals with AIDS die from both natural causes and from

the disease. We assume disease-caused mortality rates d1 and d2 for individuals with AIDS, and

are under no treatment and those with AIDS but under treatment, respectively.

We assume individuals progress from the normal infectives to become carriers at a rate s.

Variable disease progression rates between individuals have been documented, with progression

categorized as rapid, intermediate and long-term non-progression [10]. Individuals progress

from the normal infectives, carriers, screened carriers and treated classes to the AIDS class at

rates ri, where i ¼ 1, . . . ,4, respectively. Our model is governed by the following system of

nonlinear ordinary differential equations

dS
dt
¼ P2 lðI;C; T;AÞS2 mS; Sð0Þ ¼ S0;

dI
dt
¼ lðI;C; T ;AÞS2 ðmþ sþ r1 þ g1ÞI; Ið0Þ ¼ I0;

dC
dt
¼ sI 2 ðmþ r2 þ cÞC; Cð0Þ ¼ C0;

dCs

dt
¼ cC 2 ðmþ r3 þ g2ÞCs; Csð0Þ ¼ Cs0;

dT
dt
¼ g1I þ g2Cs 2 ðmþ r4ÞT ; Tð0Þ ¼ T0;

dA
dt
¼ r1I þ r2C þ r3Cs þ r4T 2 ðmþ g3 þ d1ÞA; Að0Þ ¼ A0;

dAt

dt
¼ g3A2 ðmþ d2ÞAt; Atð0Þ ¼ At0;

ð1Þ

where

lðI;C; T;AÞ ¼ k b1

I

N
þ b2

C

N
þ b3

T

N
þ b4

A

N

� �
:
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From the summation of equations in system (1), we have the rate at which the total

population is changing,

dN

dt
¼ P2 mN 2 d1A2 d2At; Nð0Þ ¼ N0:

In the absence of AIDS related deaths or individuals with AIDS, the population size

approaches P/m as t ! 1. It can be shown that for the system (1), the region

G ¼ ðS; I;C;Cs; T;A;AtÞj{S; I;C;Cs; T;A;At} $ 0;N #
P

m

� �

is positively invariant, making sure that the model is well posed and biologically meaningful.

All dependent variables and the parameters are taken to be non-negative. We can omit the last

equation of (1), since the At compartment is not involved in the dynamics of the disease.

3. Model analysis

In this section, we look at the equilibria and the qualitative features of the model by carrying out

the stability analysis of the model. This analysis will enable us to determine the threshold

conditions for the persistence or eradication of the disease.

3.1 Model steady states

The model has steady (equilibrium) states obtained by setting the right hand sides of system (1)

to zero such that

P2 l*S* 2 mS* ¼ 0;

l*S* 2 ðmþ sþ r1 þ g1ÞI
* ¼ 0;

sI * 2 ðmþ r2 þ cÞC * ¼ 0;

cC * 2 ðmþ r3 þ g2ÞC
*
s ¼ 0;

g1I
* þ g2C

*
s 2 ðmþ r4ÞT

* ¼ 0;

r1I
* þ r2C

* þ r3C
*
s þ r4T

* 2 ðmþ g3 þ d1ÞA
* ¼ 0;

g3A
* 2 ðmþ d2ÞA

*
t ¼ 0;

ð2Þ

where l* ¼ lðI *;C *; T *;A*Þ. From (2), the steady state expressions for C *;C*
s ; T

* and A* in

terms of I * are given by,

C * ¼ v1I
*; C*

s ¼ v2I
*; T * ¼ v3I

* and A* ¼ v4I
*;

where,

v1 ¼
s

mþ r2 þ c
; v2 ¼

c

mþ g2 þ r3

v1;

v3 ¼
g1ðmþ g2 þ r3Þðmþ r2 þ cÞ þ g2sc

ðmþ r4Þðmþ g2 þ r3Þðmþ r2 þ cÞ
and

v4 ¼
1

mþ g3 þ d1

ðr1 þ v1r2 þ v2r3 þ v3r4Þ:
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From (3), we also have

l* ¼ f
I *

N *
; where f ¼ kðb1 þ b2v1 þ b3v3 þ b4v4Þ: ð3Þ

Substituting for l * in the second equation of (2), we have either I * ¼ 0 or

fS* 2 ðmþ sþ r1 þ g1ÞN
* ¼ 0: ð4Þ

From (4), we have

S*

N *
¼

mþ sþ r1 þ g1

f
:

The total population N at the steady state can be written as

N * ¼ S* þ jI *; where j ¼ 1 þ v1 þ v2 þ v3 þ v4:

Substituting for N * in (4), we obtain

I * ¼
R2 1

j

� �
S*; where R ¼

f

mþ sþ r1 þ g1

: ð5Þ

Substituting (3) and (5) in the first equation of (2) gives

S* ¼
PRj

Rmjþ fðR2 1Þ
:

The first case I * ¼ 0, results in the disease-free equilibrium point. This scenario corresponds to

the situation, where there are no infectious individuals in the population who interact with the

susceptible. The system thus has a disease-free equilibrium point given by, E0 ¼ ((P/m), 0, 0, 0,

0, 0). In this case, the population size approaches the steady state value P/m.

The second case gives the endemic equilibrium point, E1 ¼ (S *, I *, C *, C*
s , T *, A *), where

S* ¼
PRj

Rmjþ fðR2 1Þ
; C * ¼ v1I

*; C*
s ¼ v2I

*;

I * ¼
R2 1

j

� �
PRj

Rmjþ fðR2 1Þ

� �
; T * ¼ v3I

*; A* ¼ v4I
*:

ð6Þ

It is important to note that we can determine the expression for A*
t from A*

t ¼ ðg3=ðmþ d2ÞÞA*.

We thus have the following result on the existence of the endemic equilibrium point.

Theorem 3.1. If R # 1, system (1) has a unique equilibrium point E0 as the only equilibrium

point. However, if R . 1, there exists a unique endemic equilibrium point E1 in the interior of G,

whose coordinates are given by (6).

R is thus a threshold quantity, the model reproduction number. This is defined as the mean

number of secondary cases generated by a typical infective in a population that is entirely

susceptible. The existence of an endemic equilibrium point is used to determine the model

reproduction number R. We discuss the model reproduction number and the local stability of the

disease free point E0 in the next subsection.
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3.2 The reproduction number and local stability of E0

The reproduction number is a key parameter, which determines the behaviour of the model.

The model reproduction number can also be determined by the decomposition technique in

Ref. [29]. A reproduction number obtained in this way determines the local stability of the

disease free equilibrium point with local asymptotic stability for R , 1 and instability for R . 1

[11]. The technique is based on the fact that the reproduction number cannot be determined from

the structure of the model alone but also on the decomposition of the model into infected and

uninfected compartments. The ability to distinguish new infections from other changes being

tracked in the model becomes crucial. Using matrix theory, R is the spectral radius of the next

generation matrix for the model. This means that R tracks the growth and decline of successive

generations of infectives when the epidemic begins. If R , 1, then the disease free equilibrium is

locally asymptotically stable, leading to the eradication of the disease. However, if R . 1, the

disease free equilibrium is not stable signalling an epidemic outbreak [5]. For a detailed analysis

on the decomposition technique, we refer the readers to Ref. [29].

This implies that the long-term expected average number of secondary cases per generation

produced by an infected individual is,

R ¼ R0I þ n1R0C þ n2R0T þ n3R0A; ð7Þ

where,

R0I ¼
kb1

mþ sþ r1 þ g1

; R0C ¼
kb2

mþ r2 þ c
;

R0T ¼
kb3

mþ r4

; R0A ¼
kb4

mþ g3 þ d1

;

and

n1 ¼
s

mþ sþ r1 þ g1

� �
;

n2 ¼
g1

mþ sþ r1 þ g1

� �
þ n1

g2

mþ g2 þ r3

� �
c

mþ r2 þ c

� �
;

n3 ¼
r1

mþ sþ r1 þ g1

þ n1

r2

mþ r2 þ c

� �
þ

r3

mþ r3 þ g2

� �
c

mþ r2 þ c

� �� �

þ n2

r4

mþ r4

� �
:

R0I is the reproduction number due to infectives I, R0C is the reproduction number due to

the carriers C, R0T is the reproduction number due to the treated individuals T and R0A is the

reproduction number due to the individuals with full blown AIDS A. We can thus state the

following result.

Theorem 3.2. The disease free equilibrium point E0 is locally asymptotically stable, if R , 1

and unstable for R . 1.

The terms in (7) can be explained as follows:

. 1=ðmþsþr1þg1Þ, 1=ðmþr2þcÞ, 1=ðmþg2þr3Þ, 1=ðmþr4Þ, 1=ðmþg3þd1Þ are the

average times an individual spends in, the infected class I, the carriers class C, the screened

carriers class Cs, the teaded class T and the AIDS class A.
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. s=ðmþsþr1þg1Þ is the proportion of individuals who become carriers by progression

from compartment I to compartment C.

. g1=ðmþsþr1þg1Þ is the proportion of individuals who seek treatment and progress

from compartment I to compartment T.

. r1=ðmþsþr1þg1Þ is the proportion of individuals who develop AIDS from

compartment I.

. r2=ðmþr2þcÞ is the proportion of carriers who develop AIDS.

. r4=ðmþr4Þ is the proportion of individuals under treatment who develop AIDS.

It is interesting to note that the following expressions can equally be interpreted in a similar way

even though they are products. This will give a clearer interpretation of n2 and n4.

. ðr2=ðmþ cþ r2ÞÞðs=ðmþ sþ r1 þ g1ÞÞ is the proportion of those individuals who

develop AIDS from compartment C having come from compartment I.

. ðr4=ðmþ r4ÞÞðg1=ðmþ sþ r1 þ g1ÞÞ is the proportion of those individuals who develop

AIDS from compartment T having come from compartment I.

. ðs=ðmþ sþ r1 þ g1ÞÞðc=ðmþ r2 þ cÞÞðr3=ðmþ r3 þ g2ÞÞ is the proportion of individ-

uals who develop AIDS having started in compartment I via compartments C and Cs.

. ðs=ðmþ sþ r1 þ g1ÞÞðc=ðmþ r2 þ cÞÞðg2=ðmþ g2 þ r3ÞÞðr3=ðmþ r3 þ g2ÞÞ is the

proportion of individuals who develop AIDS having started in compartment I via

compartments C, Cs and T.

3.3 Global stability of the disease-free equilibrium

To prove globally stability of the disease-free equilibrium point, we use the approach in

Ref. [25]. For a bounded real-valued function g on [0, 1), we define

g1 ¼ lim
t!1

inf gðtÞ; g1 ¼ lim
t!1

sup gðtÞ;

and therefore, we state the following lemma.

Lemma 3.3. Let g : ½0;1Þ! R be bounded and twice differentiable with a bounded second

derivative. Let tn ! 1 and g(tn) converges to g1 or g 1, for n ! 1 then, g0(tn) ! 0, n ! 1 [25].

Theorem 3.4. If R , 1, then E0 is globally asymptotically stable.

Proof. Suppose R , 1 and we choose a sequence t1n ! 1, such that C(t1n) ! C 1 and

dC(t1n)/dt ! 0 as n ! 1, then

C1 # v1I
1: ð8Þ

The sequence {t1n} is chosen in such a way that C(t1n) converges to C 1 as n ! 1. Choosing

a second sequence t2n ! 1, such that Csðt2nÞ! C1
s , we have

C1
s # v2I

1: ð9Þ

Choosing a third sequence t3n ! 1, such that A(t3n) ! A 1, we have

A1 # v4I
1: ð10Þ
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A fourth sequence t4n ! 1, such that T(t4n) ! T 1 will enable us to write the following

relation

T 1 # v3I
1: ð11Þ

Finally, choosing a fifth sequence t5n ! 1, such that I(t5n) ! I 1 and dI(t5n)/dt ! 0.

Substituting Equations (8)–(11) into the second equation of (1), we have

f
I1

N *
S* 2 ðmþ sþ r1 þ g1ÞI

1 $ 0: ð12Þ

Thus,

ðmþ sþ r1 þ g1ÞðR2 1ÞI1 $ 0:

Since R , 1, it implies that I 1 # 0, which is only possible if I 1 ¼ 0, but I1 $ 0 and thus, we

have I 1 ¼ I1 ¼ 0 ) I(t) ! 0 as t ! 1. From (8) to (11), we have C(t), T(t) and A(t) ! 0 as

t ! 1.

We thus have, from the equation dN/dt ¼ P 2 mN 2 dA, N1 ¼ P/m. But for N . P/m,

dN/dt # 0. We therefore consider the solution for which N 1 # P/m, which gives

N1 ¼ N 1 ¼ P/m. Hence, E0 is globally asymptotically stable. A

3.4 Local stability of the endemic equilibrium

The standard technique of determining the local stability of the endemic equilibrium is by

finding the eigenvalues of the Jacobian matrix evaluated at the endemic equilibrium from which

one can infer the stability of the equilibrium point. Such an approach would be mathematically

cumbersome for system (1). We therefore resort to the centre manifold theory presented in

Refs. [4,23,29]. In particular, we use theorem 4.1 in Ref. [4] which was reproduced in Ref. [23].

We rewrite system (1) by letting the variables S ¼ x1, I ¼ x2, C ¼ x3, Cs ¼ x4, T ¼ x5 and

A ¼ x6. We also let h1 ¼ m þ s þ r1 þ g1, h2 ¼ m þ r2 þ c, h3 ¼ m þ g2 þ r3, h4 ¼ m þ r4

and h5 ¼ m þ g3 þ d1. In vector form, system (1) is of the form dX=dt ¼ F ðXÞ where

X ¼ ðx1; x2; x3; x4; x5; x6Þ
T and (·)T denotes the matrix transpose. We can thus write the system as

dx1

dt
¼ P2 k

b1x2 þ b2x3 þ b3x5 þ b4x6P6
i¼1xi

 !
x1 2 mx1 U f 1;

dx2

dt
¼ k

b1x2 þ b2x3 þ b3x5 þ b4x6P6
i¼1xi

 !
x1 2 h1x2 U f 2;

dx3

dt
¼ sx2 2 h2x3 U f 3;

dx4

dt
¼ cx3 2 h3x4 U f 4;

dx5

dt
¼ g1x2 þ g2x4 2 h4x5 U f 5;

dx6

dt
¼ r1x2 þ r2x3 þ r3x4 þ r4x5 2 h5x6 U f 6:

ð13Þ
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The Jacobian matrix of (13) at the disease free equilibrium point is given by

JE0
¼

2m 2kb1 2kb2 0 2kb3 2kb4

0 kb1 2 h1 kb2 0 kb3 kb4

0 s 2h2 0 0 0

0 0 c 2h3 0 0

0 g1 0 g2 2h4 0

0 r1 r2 r3 r4 2h5

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
: ð14Þ

We can also obtain the model reproduction number R from (14), so that

R ¼ k
f̂

h1

; where f̂ ¼ b1 þ b2v1 þ b3v3 þ b4v4:

We choose k as our bifurcation parameter, so that, if k , k *, R , 1 and if k . k *, R . 1.

For R ¼ 1, we have k ¼ k * ¼ h1/f̂.

We shall denote JE0
by Jk * when k ¼ k *. The Jacobian matrix Jk * has a right eigenvector

Z ¼ ðz1; z2; z3; z4; z5; z6Þ
T associated with the zero eigenvalue given by

z1 ¼ 2
k *

m
ðb1 þ b2m1 þ b3m3 þ b4m4Þz2;

z2 ¼ z2 . 0 is free;

z3 ¼ m1z2; where m1 ¼
s

h2

� �
;

z4 ¼ m2z2; where m2 ¼
sc

h2h3

� �
;

z5 ¼ m3z2; where m3 ¼
g1

h4

þ
sg2c

h2h3h4

� �
;

z6 ¼ m4z2; where m4 ¼
1

h5

ðr1 þ m1r2 þ m2r3 þ m3r4Þ:

The corresponding left eigenvector of Jk * is given by V ¼ ðv1; v2; v3; v4; v5; v6Þ
T, where

v1 ¼ 0, v2 . 0 (can take any value) and

v6 ¼ z1v2; where z1 ¼
k *b4

h5

� �
;

v5 ¼ z2v2; where z2 ¼
r4k *b4

h4h5

� �
þ

k *b3

h4

;

v4 ¼ z3v2; where z3 ¼
1

h3

� �
½g2z2 þ r3z1�;

v3 ¼ z4v2 where z4 ¼
1

h2

ðcz3 þ r3z1 þ k *b2Þ:

We note that Jk * has at least one eigenvalue with zero as the real part. Thus, we can use the

centre manifold theory for our analysis.
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Using Theorem 4.1 in Ref. [4], we determine the signs of

a ¼
X6

h;i; j¼1

vhzizj
›2f h

›xi›xj
ðE0Þ; b ¼

X6

h;i¼1

vkzi
›2f h

›xi›k
ðE0Þ:

For a complete synopsis of the applications of the centre manifold theory to epidemics such

as TB and HIV/AIDS, the reader is referred to Refs. [4,23,29].

We now compute the non-zero expressions for the second partial derivatives of F at the

disease free equilibrium point, so that

›2f 2

›x2›x2

¼ 22
k *b1m

P
;

›2f 2

›x3›x3

¼ 22
k *b2m

P
;

›2f 2

›x5›x5

¼ 22
k *b3m

P
;

›2f 2

›x2›x5

¼ 22
k *m

P
ðb1 þ b3Þ;

›2f 2

›x2›x4

¼ 22
k *b1m

P
;

›2f 2

›x2›x3

¼ 22
k *m

P
ðb1 þ b2Þ;

›2f 2

›x3›x4

¼ 22
k *b2m

P
;

›2f 2

›x3›x5

¼ 22
k *m

P
ðb2 þ b3Þ;

›2f 2

›x2›x6

¼ 2
k *m

P
ðb1 þ b4Þ;

›2f 2

›x3›x6

¼ 2
k *m

P
ðb2 þ b4Þ;

›2f 2

›x5›x6

¼ 2
k *m

P
ðb3 þ b4Þ;

›2f 2

›x4›x6

¼ 2
k *b4m

P
:

Since all the non-zero partial derivatives of F are negative and zi . 0 for i ¼ 2, . . . , 6,

it follows from the above expressions that a , 0.

The following second partial derivatives are used to evaluate b,

›2f 2

›x2›k
¼ b1;

›2f 2

›x3›k
¼ b2;

›2f 2

›x5›k
¼ b3 and

›2f 2

›x6›k
¼ b4:

We thus have

b ¼ v2ðz2b1 þ z3b2 þ z5b3 þ z6b4Þ . 0:

We thus have the following theorem.

Theorem 3.5. The endemic equilibrium point E1 is locally asymptotically stable for R . 1,

when R is close to 1.

4. Various scenarios

We now discuss the various scenarios that the model can exhibit by considering the model

reproduction number. We deliberately avoid writing down model equations for the various

scenarios because ultimately the stability of the models will depend on the reproduction numbers

that can easily be derived from expression (7).

4.1 No screening and treatment (b3 5 0)

If we do not have carriers and any intervention, then our model reduces to a SICAAt (a basic

HIV/AIDS) staged model. This can be done equivalently by setting r3 ¼ r4 ¼ c ¼ g1 ¼ g2 ¼
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g3 ¼ 0. Obviously, R0T ¼ n2 ¼ 0, and the model reproduction number reduces to

R0 ¼
kb1

mþ sþ r1

þ n11

kb2

mþ r2

þ n21

kb4

mþ d1

;

where n11 ¼ s=ðmþsþ r1Þ and n21 ¼ r1=ðmþsþ r1Þþ ðs=ðmþsþ r1ÞÞðr2=ðmþ r2ÞÞ:
Note that, in the absence of screening and individuals under treatment, R , R0. Interventions

such as screening and treatment will thus reduce the reproduction potential of the disease.

4.2 No treatment (b3 5 0)

An important scenario is the case where there is screening but no treatment. This is a common

scenario in poor resource setting where screening for HIV is common but with no provision of

the medication. We thus additionally set r4 ¼ g1 ¼ g2 ¼ g3 ¼ 0. The model reproduction

number reduces to

RC ¼
kb1

mþ sþ r1

þ n11

kb2

mþ r2 þ c

� �
þ n22

kb4

mþ d1

� �
;

where

n22 ¼
r1

mþ sþ r1

þ n11

r2

mþ r2 þ c
þ

r3

mþ r3

� �
c

mþ r2 þ c

� �� �
:

We note that as c ! 0, RC ! R0.

4.3 Treatment in the absence of screened carriers

This is the case where only treatment for primary HIV in the acute phase and AIDS stage is

given. Therefore, we set r3 ¼ c ¼ g2 ¼ 0 giving us

RTsc0 ¼ R0I þ n1

kb2

mþ r2

� �
þ n23R0T þ n33R0A;

where

n23 ¼
g1

mþ sþ r1 þ g1

� �
and n33 ¼

r1

mþ sþ r1 þ g1

þ n1

r2

mþ r2

� �
þ n23

r4

mþ r4

� �
:

Also as g1,g3 ! 0, RTsc0 ! R0.

4.4 Treatment in later stages: treating the AIDS cases only

HAART is usually initiated in later stages of the disease when HIV positive people are at their

most infectious stage. At present in Southern Africa, HAART is only given to AIDS individuals

who have experienced AIDS-defining symptoms or those who have CD4þT-cell count below

200 cells/mm3, which is the recommended AIDS defining stage by World Health Organization.

We therefore consider the effect of treating the AIDS cases only since it has already been pointed

out that early treatment has not given any tangible advantage. This means that g1 ¼ g2 ¼ 0.
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The reproduction number RTA, to denote late treatment, becomes

RTA ¼
kb1

mþ sþ r1

þ n11R0C þ n24R0A;

n24 ¼
r1

mþ sþ r1

þ n1

r2

mþ r2 þ c
þ

r3

mþ r3

� �
c

mþ r2 þ c

� �� �
:

We note that there will not be any contribution from the treated class since treated

individuals from the AIDS class do not join the treated class but rather the treated AIDS class

which does not contribute to the spread of the epidemic.

4.5 Treatment in early stages: treating the normal infectives and screened carriers

This is our main model which includes all the above cases and in addition, early treatment to

anyone in the normal infectives who can afford it. It is well known that patients seek treatment

from private doctors who can start the HIV infected individuals even if their CD4þT-cell count

is above 200 cells/mm3. The reproduction number is given by expression (7). It can be shown

that this is the smallest reproduction number, so that R , RTsc0 , RTA , R0 , RC. We now

carry out numerical simulations to assess the impact of the different parameters on the epidemic.

5. Numerical simulations

Mathematical models often include parameters, estimated from experiments, for which their

actual values are not known precisely [19]. Therefore, in this section, we consider the model

predictions of the basic reproduction number of the infection for some specific parameter values

chosen from the Central Statistical Office of Zimbabwe (CSZ) and in Ref. [18]. The numerical

values are tabulated in Table 1.

We begin by considering the reproduction numbers and how they are influenced by the

model parameters. The full qualitative analysis of the reproduction number of our model is

hindered by the complexity of the expressions for the various reproduction numbers. We have

however tried to explain in detail the meanings of each of the terms that constitute the model

reproduction number. We therefore use numerical simulations to illustrate the relationship and

behaviour of the various reproduction numbers to compliment our findings. We consider

approximate values of important parameters in the prediction of the reproduction numbers of

infection and vary the number of sexual partners k, since this affects transmission rates and the

screening rate c, of carriers.

Figure 1 illustrates the behaviour and relationship of the different reproduction numbers as

the number of partners k, increase using parameter values in the Table 1. The trends confirm the

Table 1. Table showing the numerical values of parameters from the CSZ and literature.

Parameter Approximate value/year Parameter Approximate value/year

P P $ 10,000 people s 0.05 # s # 0.3
m 0.01 # m # 0.025 (CSZ) c 1 # c # 10
b1 0 # b1 # 1 b2 0 # b2 # 1
b3 0 # b3 # 1 b4 0 # b4 # 1
g1 0.06 # g1 # 0.2 c 0.3 # c # 0.6
g2 0.1 # g2 # 0.3 g3 0.1 # g3 # 0.4
d1 0.3 # d # 0.36 r1 0.03 # r1 # 0.1
r2 0.06 # r2 # 0.45 r3 0.2 # r3 # 0.4
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analytic result R , RTsc0 , RTA , R0 , RC, for the given set of parameter values. We note that

the presence of carriers without any treatment increases the basic reproduction number.

Figure 2 shows the effect of increased screening on the reproduction numbers RTA and R.

The graph shows the importance of encouraging screening in the fight against HIV/AIDS.

We can also use such an approach to determine the threshold screening rate c *, (the value of c

above which we can effectively bring the model reproduction number below unit). We note in

Figure 2 that the optimal screening rate that would bring the model reproduction number to a

value below one, should give an 80% coverage for the given parameter values.

To further investigate the role of screening, we consider a hypothetical population of initially

500,700 individuals, initial conditions (S(0), I(0), C(0), Cs(0), T(0), A(0)) ¼ (465,000, 20,000,

10,000, 5000, 500, 200). We consider a scenario where interventions to an on going epidemic are

carried out. We present a situation where screening in introduced as a control measure in the

fight against HIV/AIDS after a period of 50 years from the start of the epidemic. The changes of

the populations of the carriers and screened carriers are tracked for c/2, c, 3c/2, 2c and 3c

starting with c ¼ 0.2. The last two cases, 2c and 3c are equivalent to doubling and trebling the

screening rate. If in this particular setting, c is doubled, the number of screened carriers

increases by about 13.6%. The results are presented in Figure 3.

Figure 1. The diagram shows how various reproduction numbers evolve with increasing numbers of
sexual partners. It is important to note the for the reproduction numbers in the legend, RT ¼ RT,
RTsc0 ¼ RTsc0 and RTA ¼ RTA.

Figure 2. The diagram shows the evolution of the reproduction numbers RTA and R as the screening rate c
changes for the following parameter values: k ¼ 1, b1 ¼ 0.2, b2 ¼ 0.08, b3 ¼ 0.02, b4 ¼ 0.19, g1 ¼ 0.08,
g2 ¼ 0.15, g3 ¼ 0.2, r1 ¼ 0.001, r2 ¼ 0.1, r3 ¼ 0.2, r4 ¼ 0.5, s ¼ 0.2, m ¼ 0.02 and d1 ¼ 0.33.
The reproduction number in the legend, RTA ¼ RTA.
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Figure 4 shows that the system settles at an endemic steady state with a reproduction number

R ¼ 1.7895 for the given parameter values in the caption. This confirms the local stability of the

endemic equilibrium point whenever the reproduction number R is above unit. The prevalence

curve for the same parameter values is given in Figure 5.

For the given parameter values, the prevalence of the disease, that is, the proportion of

individuals in a population who have the disease at a specific instant, will be around 22%. This

describes scenario in Southern African countries [28]. If individuals with AIDS are not treated

(setting g3 ¼ 0), the reproduction number increases, so that R ¼ 2.1282 and the endemic

equilibrium population of these individuals also increases. This however is not inline with the

current observed trends. The HIV prevalence in Southern Africa is now showing a downward

Figure 3. The diagrams track the changes in the populations of the carriers when intervention is instituted
after 50 years from the onset of the epidemic for the following parameter values: k ¼ 1.5, b1 ¼ 0.3,
b2 ¼ 0.1, b3 ¼ 0.09, b4 ¼ 0.2, m ¼ 0.022, p ¼ 100,000, s ¼ 0.2, r1 ¼ 0.001, r2 ¼ 0.09, r3 ¼ 0.45,
r4 ¼ 0.2, g1 ¼ 0.3, g2 ¼ 0.15, g3 ¼ 0.3 and d ¼ 0.33.

Figure 4. The diagrams shows that the various populations settle at an endemic steady state for the
following parameter values: k ¼ 1.5, b1 ¼ 0.3, b2 ¼ 0.09, b3 ¼ 0.08, b4 ¼ 0.2, m ¼ 0.022, p ¼ 100,000,
s ¼ 0.2, r1 ¼ 0.001, r2 ¼ 0.09, r3 ¼ 0.45, r4 ¼ 0.2, c ¼ 0.2, g1 ¼ 0.3, g2 ¼ 0.15, g3 ¼ 0.3 and d ¼ 0.33.

Computational and Mathematical Methods in Medicine 301



trend especially in Zimbabwe with stabilization observed in the other countries [27].

By prevalence, we mean the total number of HIV cases in the population at a given time

expressed as a ratio of the infected individuals to the total population. We now consider the

variation of the number of infected individuals as the average number of sexual partners change

per given time. The corresponding values of the reproduction number are as shown in Figure 6.

Figure 5. The prevalence curve of the model for the parameter values given for Figure 4.

Figure 6. The figure shows how the number of infectives and the reproduction number R, change with
increasing numbers of sexual partners for the following parameter values: b1 ¼ 0.2, b2 ¼ 0.07, b3 ¼ 0.06,
b4 ¼ 0.2, m ¼ 0.02, p ¼ 20,000, s ¼ 0.1, 0.2, 0.45, r1 ¼ 0.001, r2 ¼ 0.45, r3 ¼ 0.4, r4 ¼ 0.5, c ¼ 0.4,
g1 ¼ 0.08, g2 ¼ 0.15, g3 ¼ 0.1 and d ¼ 0.33.
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6. Discussion and conclusion

The results of this study provide some insights on the benefits of including the carriers in

HIV/AIDS model development and their potential impact on disease transmission dynamics.

The qualitative features of the model were investigated. The model reproduction number R was

determined and its discussion given to highlight the contribution of each infectious class to the

disease dynamics. The model has two equilibria, the disease free equilibrium point, E0 and the

endemic equilibrium point, E1. The results showed that the disease free equilibrium point is

stable (locally and globally) for R , 1 and endemic equilibrium point is locally stable for

R . 1. The local stability of the endemic equilibrium point was proved using the centre

manifold theory. By setting some parameters to zero, the model exhibited a number of

scenarios that gave rise to six reproduction numbers. An analytical comparison of the

reproduction numbers was also done.

The potential danger posed by carriers has been shown. The objective of disease control

and prevention is to lower the basic reproduction number R0 to a level less than unit, so that

the disease clears. Our objective was also to determine the role of screening disease carriers

and the potential impact of increased screening coverage. The effect of the screening rate c on

the reproduction numbers of the model and the case where treatment is offered to individuals

with AIDS only was investigated. We showed that the presence of randomly screened carriers

further reduces the endemicity of the disease, since the basic reproduction number R0 is

further reduced. Further treatment in the presence of screening reduces the spread of the

disease as compared to treatment without screening. Screening helps to counsel and educate

carriers on safe sexual interaction methods and encourage them to seek treatment since there

is a lot of fear of the side effects of using ARV therapy or HAART among people living with

HIV/AIDS. Screening is also important, especially in Southern Africa where many individuals

cannot afford HAART medication. They are likely to benefit from counselling, as they will

learn about various ways of preventing further infection. Similar deductions were made in

Ref. [26].

Our study also shows that the optimal screening rate that would bring the model reproduction

number to a value below one, should give an 80% coverage for the given parameter values.

In tracking the changes of the number of individuals in the screened class, we noted that doubling the

screening rate leads to a 13.6% in the number of screened cases. Other interventions can be

investigated in a similar fashion. The results clearly show that screening alone cannot be used as a

comprehensive HIV fighting strategy. Multiple strategies should therefore be emphasized in the

fight against HIV/AIDS (see Ref. [18]). The equilibrium levels on normal infectives and AIDS can

be maintained at desired levels. A sizeable number of people living with HIV/AIDS cannot afford

treatment because of cost of ARV drugs and the drugs supply has rarely kept pace with demand.

Introducing early treatment can also be beneficial as we note that this gives the smallest reproduction

number.

Numerical simulations using data from the CSZ were carried out. A comparison of the

reproduction numbers arising from the various scenarios was done numerically and similar

results were obtained. Our results also highlight the dangers of increasing the number of

sexual partners in the spread of HIV and the corresponding changes to the model reproduction

number.

Finally, this study shows that using the interventions analysed in this study makes the

prospects of controlling HIV bright. While the use of HAART appears to be more effective in

terms of preventing new cases in the long run, it should be emphasized that ARVs are not readily

available, especially in developing countries. Affordable interventions, such as educational

programs like random screening and counselling can lower the incidence and prevalence levels.
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This helps people to have a positive attitude towards preventive methods against infection. In

conclusion, multiple strategies implemented in combination can be very effective in controlling

the spread of the disease with screening and testing, playing an important role both as a

preventive measure and a barometer for success in the fight against HIV.
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