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Analytical and computational results suggest that one can control the growth of cell 
populations by exposing them to certain dosing frequencies of cell-cycle phase-specific 
cytotoxic agents. Thus, it has been shown theoretically that a resonance effect, manifesting 
itself in maximal population sizes, can be created, if the period of the drug pulse and that 
of the population are commensurable. Based on this theory a method (denoted The Z- 
Method) is suggested for improving the efficacy of cancer therapy. The underlying idea 
of the Z-method is to improve treatment efficacy by selecting treatment periods that create 
resonance for the limiting normal cell population, and by avoiding resonance for the cancer 
cells. These theoretical results are supported by in 11ivo murine experiments. mggesting 
that intermittent delivery of cell-cycle phase-specific drugs at intervals equivalent to the 
mean cell-cycle time, might minimize harmful toxicity without con~promising therapeutic 
effects on target cells. A new implementation of the theory, to be denoted the (inti- 
resonance effect, is suggested in the present work. In essence, anti-resonance is a practical 
method of preventing resonance in systems where cancer cell kill needs to be maximized 
and toxicity to normal cells is marginal. The idea here is to reduce the effective number 
of cell lines whose period will resonate with the treatment period, by creating a stochastic 
treatment protocol. An algorithm has been developed for computing the efficacy of specific 
treatment protocols. The algorithm is independent of the assumptions of the Z-Method. It 
supports this method by showing theoretically that one can increase treatment success 
by generating a resonancekanti-resonance relationship between the frequency of drug 
administration and those of the involved cell populations. 
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1 INTRODUCTION 

Cancer is an increasingly prevalent disease. For 
example, in Israel, whose total population size is 
over 4 million, 11,000 new cases were diagnosed 
in 1989, over 13,000 in 1991 and over 14,000 
in 1994. As gene therapy still faces significant 
hurdles before it becomes an established therapeutic 
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strategy, present control of cancer depends entirely 
on chemotherapeutic methods. 

Chemotherapy is a problem involving many inter- 
active nonlinear processes which operate on differ- 
ent organizational levels of the biological system. It 
usually involves genomic dynamic5, namely. point 
mutations, gene amplification or other changes on 
the genomic level, which may result in increasing 
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virulence of the neoplasia, or in the emergence of 
drug resistance. Chemotherapy affects many events 
on the cellular level, such as cell-cycle arrest at 
different checkpoints, cell transition in and out 
of the proliferation cycle, etc. Chemotherapy also 
interferes with the function of entire organs, most 
notably, with bone marrow homeostasis. In recent 
years molecular biology has made an important step 
forward in documenting many of these processes. 
Yet, for assessing the contribution of specific mole- 
c & u  elements to the great variety of disease profiles, 
experimental biology must be provided with tools 
that allow a formal and systematic analysis of the 
intricate interaction between the genomic, cellular 
and cell population processes in the host and in the 
disease agent. This system is so complex that there 
is no intuitive way to know how small changes in 
the drug protocol will affect prognosis. But in spite 
of this intricacy, attempts to improve chemotherapy 
have been carried out by "trial and error" alone, 
with no formal theory underlying the application of 
specific drug schedules. Such an approach "is apt to 
result in no improvement, only discouragement and 
little useful information for future planning" (Skip- 
per, 1986). 

The research presented in this article focused on 
the development of a formal method for increa- 
sing the efficacy of cancer treatment. The method 
was designed by employing a mathematical theory 
and by testing the theory in laboratory experiments. 
The experimental results are very encouraging; they 
suggest that it is feasible to control host toxicity by 
rational drug scheduling based on the mathematical 
theory. The mathematical method and the experi- 
ments that support it are briefly described below. 

2 THE RESONANCE PHENOMENON 
IN POPULATION SURVIVAL AND ITS 
APPLICATION IN CHEMOTHERAPY 

Mathematical models that allow for harsh changes 
in the environmental conditions suggest that persis- 
tence of populations is a non-monotone function 
of the ratio between the characteristic population 

periodicity and that of the environmental pertur- 
bation. In particular, analysis of nonlinear differ- 
ential equations models of populations undergoing 
periodic loss process which is effective only during 
a portion of the population life-cycle, pinpoints the 
phenomenon of resonance in population survival. 
Resonance arises when the period of the imposed 
loss process coincides with the inherent repro- 
ductive periodicity of the population. When this 
coincidence occurs there is a preferential enhance- 
ment of the population growth (Agur, 1982, 1985). 
This mathematical description has been applied to 
various population dynamics processes (Agur and 
Deneubourg, 1985; Agur, 1988), and most notably 
for devising a method, denoted the Z-Method, for 
increasing the efficacy of cancer and AIDS treatment 
(Agur, 1986; Agur, 1989; Agur et al, 1988; Cojo- 
caru and Agur, 1992). The realizations of the phe- 
nomenon of resonance in models of cell population 
growth under chemotherapy is described hereafter. 

2.1. A Simple Stochastic Model for the Effect 
of Cell-cycle Phase-specific Drugs on the 
Growth of a Non Age-structured 
Population 

A simple model for predicting the effect of cell- 
cycle phase-specific drugs on population growth is 
presented in Agur et al(1988). In this model we 
assume that cells are sensitive to the drug only 
during the negligibly short moment of replication: 

where N ( t )  is the number of cells in the drug- 
sensitive phase at time t. The duration of the cell- 
cycle is s, and, since the duration of the susceptible 
life-phase is taken here as negligibly short, r repre- 
sents also the duration of the resistant phase. The 
reproduction rate is a, and the drug protocol is 
represented by A, which is a stochastic process 
assuming values 0 and 1; the value 1 corresponds to 
the occurrence of a drug dose that eliminates from 
the system all the drug-sensitive cells; the value 0 
corresponds to ineffective drug doses. 
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By applying (1) recursively we obtain the sum of the probabilities for these two possible 

N(t + n t )  = acnN(t)[l - A(t + izt)] 

The probability that cells, susceptible to the drug at 
time t, 0 < t < r ,  have progeny at time t + n t  is 
given by 

If A is a Markov process, this equals 

P{A(t) = 0 ) .  . . P{A(t+nr) = OjA[t+(n-1)t = 01). 

(4) 
If, further we assume that the transitions A = 0 + 
A = 1 and A = I + A = 0 occur at constant rates, 
k and k', and if the initial equilibrium distribution is 

we can obtain the average number of drug-sensitive 
cells in the nth generation in terms of the average 
duration of the drug pulse and the drug-free interval. 
Let us denote the average duration, of the states A = 
0 and A = 1 as o = I lk  and 6 = ilk', respectively, 
whose probability densities are given by 

In the above model both the states A = 1 and 
A = 0 have a stochastic duration, 6 and w respec- 
tively. However, as drugs have characteristic half- 
life it will be more realistic to consider a model in 
which 6 is a constant, while (*, is an exponentially 
distributed random variable. The Markov property 
remains valid for this process provided the time dif- 
ferences, t,, - tn-l, . . . , tz - t l  are all larger than the 
"memory" 8.  For t > 6 > t / 2  the transitions, A = 0 
at t = 0 + A = 0 at t = t ,  can occur only if, either, 
there is no disturbance in the interval [0, t]. or, there 
is one disturbance starting at a point t in the interval 
[0, r - 61 and no disturbance in the interval [t + 6, t]. 
The probability P{A(t + t )  = OlA(t) = 0) is thus 

situations: 

Integrating the sum of these probabilities and imple- 
menting in (2) we finally obtain (assuming N(t) = 
No for 0 5 t 5 t): 

By computing (8) we show that the average pop- 
ulation size increases with 6 and is maximized for 
t = S + w.  The latter result was generalized, and 
it was analytically shown that for any distribu- 
tion of the environmental process, the extinction 
time and the extinction period index in environ- 
ment B are stochastically lager than those in envi- 
ronment A, given that ( tA/2) 5 6 < tg  < t~ 

(Agur, 1985). Moreover, it can be shown that max- 
imum synchronization of the population with the 
stochastic environmental process is achieved when 
( t l (8  + urn,,)) -+ 1, where w,,, is the minimum 
interval between two successive disturbances. 

2.2 A Probabilistic Model of Asynchronous 
Age-structured Populations in the 
Intermittent Presence of Cell-cycle 
Phase-specific Drugs 

A more detailed model of age-structured cell popula- 
tions undergoing chemotherapy confirms the above 
results (Cojocaru & Agur, 1992). In this model we 
consider an arbitrary cell of age a at treatment initia- 
tion, and define by p(t, a )  the probability that the 
progeny of this cell will survive to moment t, so that 

p(t + At, a )  = [l - g(t, a)At]p(t, a) .  (9) 

In (9) the function g(t, a) ,  the toxic effect of the 
drug, is a prodbct of the drug's killing efficacy 
K(t) and the cell susceptibility at time t, g(t, a )  = 
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K(t)x(t + a). The function ~ ( a )  describes the drug 
susceptibility of a cell whose age is a ,  

1, a E susceptible phase 
x(a) = 0,  a E resistant phase. (10) 

If 6 denotes the duration of the drug susceptible 
cycle phase, and p denotes the duration of the drug 
resistant cycle phase. so that t = 6 + p, and t ,  6 
and p are constant, then ~ ( a )  is periodic, so that 
x ( a + n t )  = x ( a ) , n  = 1 , 2 ,  . . .  

Now look at the state of the cell, or its progeny, 
at each new dosing; where the dosing interval is 
1. (1 = w+6; w and 6, defined above, are constants): 

{a. (a + 1)mod t ,  (a -t 2l)mod t. . . . 

(a + (q - 1)l)mod r}. (11) 

The average time during q dosings spent in the 
susceptible phase by the progeny of a cell whose 
age was a at treatment initiation is given by 

q measures the periodicity created by superposition- 
ing the drug protocol on the cell population. If the 
first dosing hits a cell at age a ,  then the next dosing 
that will hit its progeny at age a is the qth. q is the 
smallest integer satisfying ( t / l )  = (qlp) .  

If ~ ( a )  is periodic and if l l t  is rational, then 
~ ( ( s  + a + i1)mod t) is periodic with period T = 
p t  = ql where p ,  q are co-prime integers. In this case 
a necessap and suficient condition for the complete 
elimination of a cell population is given by (9). 

In a < - K(s)A,(s, a)ds,  for all a ,  (13) I '  1 .  

where K(s) being the efficacy of the drug, namely, 
the proportion of the cell population eliminated by 
the drug at any given moment. 

Equation (13) clearly demonstrates that the suc- 
cess of the treatment depends not only on the effi- 
cacy of the drug and on the availability of suscepti- 
ble cells but also on the relation between the internal 
periodicity of the cell population and the dosing 
interval, that is the periodicity of the environment. 

Thus, this model provides a method for predicting 
the success of specific protocols. Note that the ini- 
tial age distribution of the cell population does not 
appear in (13). Thus, we can conclude, that our 
result holds for cell population with any continuous 
initial cell age distribution. 

Webb (1990) arrives at similar results by the 
use of models formulated by differential equations. 
Webb considers an age-structured model and a 
maturity-structured model of cell population growth. 
In the maturity-structured model, he shows expli- 
citly that resonances occur exactly at integral and 
fractional multiples of the common age at which 
the cells divide. As the division probability den- 
sity function approaches a delta function, the age- 
structured model approaches the maturity model. 
Johnson and Webb (1996) present a rigorous mathe- 
matical analysis of the model and demonstrate 
the resonance phenomenon for a general class of 
chemotherapy functions. Their analysis shows that 
the drug dosing interval, rather than the drug dose, 
is crucial in determining the efficacy of treatment. A 
different analysis of a similar model (Dibrov et al, 
1985) confirms our result by noting that the optimal 
drug schedule should have a periodicity close to the 
mean cell-cycle time of the normal cells. 

We have analysed the mathematical properties 
of the Z-Method by applying {@n} series, where 
0 < 4 < 1 and {#n] is the fraction part of @n. 
Using continued fractions we have put forward a 
fast method for computing the treatment duration 
and the desired number of drug dosings under a Z- 
Method protocol (Agur and Dvir, 1994). Results on 
the sequence {#n} and on continued fraction can be 
found in Halton (1965), Slater (1967), Swierckowski 
(1958) and van Ravenstein et a1 (1990). 

3 IMPLEMENTATION OF THE 
"RESONANCE PHENOMENON" 
IN CHEMOTHERAPY - THE 2-METHOD 

The implementation of our mathematical results in 
clinical chemotherapeutic protocols is not straight 
forward. One of the main reasons is that drugs 
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seldom have a unique target population. Most signi- 
ficantly, many cell-cycle-phase-specific drugs, such 
as Taxol (paclitaxel), ara-C (Cytosine arabinoside), 
5-FU (5-fluorouracyl) etc., administered for elimi- 
nating cancer cells, are also toxic to normal human 
cells. Another important reason is the variability in 
cell-cycle duration, which is significantly larger in 
cancer cells (e.g. Retsky et al., 1990; Larsson and 
Zetterberg, 1995). These two facts, put together with 
the mathematical results brought forward above, 
suggest the following policy (the Z-Method): 

1. For minimizing damage to normal host tissues 
the drug dosing frequency should resonate with 
the limiting host tissue. but should minimize res- 
onance for the cancer cells (Agur et al., 1988, 
Cojocaru and Agur, 1992). As a first approxi- 
mation, a policy by which a single fixed dos- 
ing frequency is selected, has been investigated 
numerically and in mice experiments. 

2. When the therapeutic agent is not toxic to normal 
tissues, efficacy of the treatment can be maxi- 
mized by creating an anti-resonance effect. Now 
the dosing interval should be taken as a stochastic 
process. Such a protocol will be most efficacious 
when the variability in cycle duration of cancer 
cells is relatively large and when there is low 
predictability in the natural and the drug imposed 
transitions from quiescence into the proliferation 
cycle, and vice versa. 

The predictions of the Z-method are supported 
in part by experiments in mice bearing lymphoma 
and treated by repeated pulse delivery of the well 
known S-phase-specific anti-cancer drug, Cytosine 
arabinoside (ara-C). These experiments show that 
when the rhythm of drug delivery roughly coin- 
cides with the characteristic bone-marrow cell-cycle 
time, animals survive and myelotoxicity is signifi- 
cantly reduced (Agur et al, 1992). Similar results are 
obtained in healthy mice treated by the anti-viral cell 
cycle phase-specific drug AZT (Agur et al, 1991). 

To verify if this approach is feasible with meth- 
ods available in clinical practice, Ubezio et al(1994) 
determined the optimal intervals between treatments 
by measuring the effects of single-dose ara-C on 
proliferation kinetics of bone marrow cells in mice. 

Consequently, the treatment schedule was evaluated 
by monitoring the kinetic effects of successive doses 
on toxicity and anti-tumor activity. Results showed 
that ara-C is toxic to S-phase cells, causing an arrest 
at the G11S boundary for about 4-6 h, following 
which cells cross the S-phase in a nearly synchro- 
nized manner. Further results suggest that an optimal 
window for a second ara-C dose, designed to pre- 
serve the bone marrow proliferating pool, would be 
at 14- 16 h (for 5 mg) and 12- 14 h (for 1 mg) after 
the first ara-C dosing, since at this time most of the 
surviving cells will be in the less susceptible phases 
(GI and G2lM). On the other hand, a time interval 
of 7- 11 h is expected to impose maximal toxicity to 
the bone marrow, since at that time surviving cells 
will be crossing to the susceptible S-phase. 

In order to show experimentally that the opti- 
mal ara-C dosing interval in murine chemotherapy 
is 14 h, it was first proved that the kinetic behav- 
ior of bone marrow cells following 2 or 3 ara-C 
dosings remained similar to that observed after a 
single dosing, and that cell-cycle kinetics was not 
affected by the duration of dosing interval. Sub- 
sequently, the proportion of proliferating cells that 
survived different ara-C protocols was evaluated. 
The latter experiment shows that the second and 
third ara-C doses, given at 14 h intervals, did not 
induce a severe damage to the proliferating bone 
marrow cells. In contrast, a second dose at the 7 h 
and 10 h interval caused a considerable decrease in 
the percent of proliferating cells. A close correlation 
between bone marrow damage and mice survival 
was observed. 415 mice died as a result of treatment 
with 4 ara-C doses given at 10 h intervals. Reducing 
the number of doses to 3 did not decrease mortality. 
On the other hand, increasing time intervals to 14 h 
dramatically improved survival since 515 mice sur- 
vived 3 am-C doses given at 14 h intervals, and even 
4 doses caused the death of only 1 out of 5 mice. 

The next step was to examine the above scheme 
in tumor bearing mice. In this case, both 4 x 14 h 
and 4 x 16 h protocols were tested and compared 
to a treatment in which 4 drug doses were applied 
at random (unequal) time intervals. The random 
protocol included time intervals longer than 16 h 
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and shorter than 14 h to reach the same overall 
duration of treatment as in the 14 h schedule. Here 
mice were inoculated with 38C-13B lymphoma cells 
and treatment was initiated 3 days later. Results 
were indisp~~table as the 4 x 14 h was not only less 
toxic, but it also delayed tumor development, nearly 
doubling survival time as compared to the control. 
The 16 h protocol was similar to the 14 h (except 
for the death of 114 mice) defining the width of the 
bone marrow preserving time window. In contrast, 
the Control group of untreated mice died within 
14 days due to tumor development whereas the 
random treatment was highly toxic causing 100% 
deaths within 7 days. 

The above experiments show that protocols 
employing a dosing interval that is similar to that 
of the normal bone-marrow cells protect the bone 
marrow rather well, whereas protocols employing 
different intervals are extremely toxic. The work 
suggests that it is feasible to control toxicity in the 
bone marrow by rational drug scheduling based on 
the Z-method. 

4 TUNING UP THE Z-METHOD 

An algorithm has been developed for checking 
the efficacy of specific treatment protocols in well 
defined hostlcancer. The algorithm is completely 
independent of the Z-Method assumptions. Never- 
theless, it supports this method by showing theore- 
tically that one can increase treatment success by 
generating an intricate resonancelanti-resonance 
relationship between the frequency of drug admin- 
istration and those of the involved cell popula- 
tions. Moreover, using this algorithm one can show 
numerically that a pulsed drug administration is 
superior to a continuous administration (bolus) when 
the treatment optimization problem is defined as 
minimizing the size of the cancer, while keeping 
the size of the drug-susceptible host cell population 
above a well specified threshold (Levy, Hassin, 
Agur, in preparation). 

The algorithm has been implemented for many 
case studies that vary in the definition of the 

optimization problem, as well as in the host and in 
the cancer cell-cycles and pharmacokinetic param- 
eters. Its implementation involves a pre-definition 
of a parameter set, which includes the distributions 
of the host and cancer cell-cycles, the distributions 
of their drug-susceptible phases, the total duration of 
the treatment and a resolution factor, that determines 
the length of a single time unit. 

The user is asked to set the kill-rate before each 
treatment. With this rate set, the program simulates 
the progress of one entire treatment, allowing the 
user to view the cells status and producing a graphi- 
cal representation of the cell distribution at the end 
of the treatment (see, for example, Figure 1). The 
user then sets the time for the beginning of the next 
treatment, and the process is repeated. 

The main parts of the program are two proce- 
dures that simulate the growth of the cells during 
treatments and when no treatment is given. The life 
cycles are separated into small time units, and the 
number of both normal and cancer cells is consi- 
dered to be constant over that time unit. Here logistic 
growth rate has been assumed for the normal host 
cells, while the growth rate of the cancer cells has 
been taken as exponential. This assumption is rea- 
sonable for hematologic malignancies, or for very 
small solid tumors. However, for larger tumors the 
law of growth is still a matter of some dispute (e.g., 
Retsky et al., 1990). Recently, large scale mam- 
mography screening trial data have been used to 
deduce the growth law of primary breast cancer and 
it was shown that the data are inconsistent with 
the exponential, logistic and Gompertz laws, but 
support power law growth (exponent ~ 0 . 5 )  (Hart, 
Shochat and Agur, 1998). Indeed when chemother- 
apy of large solid tumors is considered it becomes 
essential to implement a growth which is slower than 
exponential. 

The graphical representation of the cells status 
shows the two density functions (representing the 
numbers of cells with respect to the initial levels) 
on the same graph. The initial state is that both 
types of cells have a total amount of one, and 
all cells are uniformly distributed along the cell- 
cycle. Under treatments and cell growth, the total 
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Cell age distribution after one fractionated high dose Taxol 
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FIGURE 1 Theoretical computations of the age distribution of bone marrow cells and breast cancer cells following a protocol of 
Taxol (paclitaxel) high dose chen~otherapy. The protocol consists of a single dosing, killing 50% of the cells in the G1 phase or in the 
G21M phaseih, during 10 h. The abscissa represents the age of cells (in the cell cycle) times 4; the ordinate represents the proportion 
of cells. The proportions of host cells and cancer cells surviving the treatment are 0.136848 and 0.147970, respectively. Assumptions 
about the duration of the cell-cycle phases: bone marrow cells: T(S) - 10 h; T(G2/M)+T(G1) - 14 h; breast cancer cells: T(S) - 13 h: 
T(G2M) + T(G1) = 27 h. 

number changes, and the graphs show the change 
in the number of surviving cells at each moment of 
the cell-cycles, with respect to the initial uniform 
distribution of the cells. 

The above algorithm has been employed for 
examining how to improve regimens of high-dose 
chemotherapy (HDC), currently believed to be one 
of the most effective strategies for obtaining higher 
anti-tumor efficacy for breast cancer (BC). In parti- 
cular, a high-dose (210 mg/m2) 3 h infusion of 
Taxol (half-life of 10 to 12 h) is routinely used in 
adjuvant setting for high-risk patients after mastec- 
tomy. Under these regimens dose-limiting myelo- 
suppression is common (e.g., schiller rt al., 1994) 
so that autologous bone marrow transplantation 
becomes mandatory. 

Using the above algorithm the drug's killing 
effect on cancer cells and on host bone-marrow 
cells has been calculated for several protocols. Sub- 
sequently, a comparison has been made between 

protocols of a single dosing of Taxol HDC, and 
protocols of a fractionated dosing with the same or a 
smaller total dose. In the particular setting depicted 
in Figure 1 and Figure 2 we assumed that cells in 
the G1 and G 2 N  phases of the cell-cycle are more 
susceptible to Taxol than S-phase cells (Ubezio, per- 
sonal communication), and that breast cancer cell 
cycle lasts 40 h, while that of bone marrow cells 
is roughly 24 h. The computations, for several sets 
of phamacokinetic and cell-cycle parameters, show 
that by splitting the dose, some advantages on the 
surviving/killing of two targets which proliferate 
with different cycles, are possible. In particular, 
we showed that a HDC protocol in which Taxol 
exerts high cell kill (50%/h) during 10 h reduces 
the bone marrow critical cell population to .I37 
of its initial size and the susceptible cancer pop- 
ulation to .I48 of its initial size (Figure 1) .  This 
drug effect is reversed when the dosing is fraction- 
ated so as to resonate with the susceptible bone 
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Cell age distribution after one fractionated high dose Taxol 
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FIGURE 2 Theoretical computations of the age distribution of bone marrow cells and breast cancer cells following a protocol of 
Taxol (paclitaxcl) high dose chemotherapy. The protocol consists of a fractionated dosing, killing 40% of cells that are in the GI 
phase or in the GYM phaselh (total dose being lower than in Figure 1). First dosing fraction, effective during 8 h, is followed by a 4 h 
interval with no cell kill. and a second dosing fraction. killing 40% of cellsh. which is effective during 2 h. The abscissa represents 
the age of cells (in the cell cycle) times 4: the ordinate represents the proportion of cells. See legend to Figure 1 for assumptions 
about the duration of the cell-cycle phases. The proportions of host cells and cancer cells surviving the treatment are 0.177096 and 
0.1205 I 1 .  respectively. 

marrow cell-cycle: under these circumstances tox- 
icity to normal cells is reduced while cancer cell 
kill i s  augmented (Figure 2). 

However. as information on the cell kinetics of 
human bone marrow is scarce, mainly due to the 
ethical problems involved in human experiments, 
the results of our computations need to be consi- 
dered with caution. A more accurate investigation 
of the kinetic properties of human bone marrow 
(with a representation of its main subpopulations, 
proliferating and quiescent, of stem and progenitor 
cells), as well as its response to Taxol, will be 
necessary in order to design and test a precise 
fractionated protocol of Taxol administration. 
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