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We show that the mechanical properties of the outer covering (or capsule) of pig spleen 
can be modelled as a nonlinear elastic membrane with an exponential stress-strain law. 
Knowledge of the capsule's elastic properties is important for the development of a 
virtual reality training package for keyhole surgery. Because capsule tissue is very fragile 
and te'drs when clamped and pulled it is not possible to obtain experimental data for 
which the usual uniform stretch data-fitting approach can be adopted. Instead we perform 
experiments in which the capsule deforms non-uniformly and describe how numerical 
solutions of the corresponding boundary value problem can be fitted to the experimental 
data in order to validate the biomechanical model. 
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1 INTRODUCTION surgical instruments. The surgeon uses the instru- 
ments to perform the operation whilst viewing the 

'Keyhole' (or laparoscopic) surgery is becoming telescopic image via an attached camera and light 
increasingly popular because it is both beneficial to source connected to a high quality video moni- 
patients and cost-effective. A typical laparoscopic tor (the camera is usually controlled by an assis- 
operation involves puncturing the abdominal wall tant). The main benefits to the patient compared 
in four or five places, and inserting ports through to conventional (or 'open') surgery include quicker 
which are put a viewing telescope and various 5 mm recovery, early discharge from hospital, reduced 
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period of short-term disability and minimal scarring 
because of the small wounds. 

The surgical techniques needed to perform this 
type of operation are very different from those 
needed for conventional surgery. The main additi- 
onal difficulties are that 

there is a limited field of view, and the surgeon 
operates from a two dimensional image; and 
the surgical instruments are slender and long 
(30 cm) so there is much less tactile feedback 
(Brown, Satava and Rosen 1994). 

Thus successful endoscopic surgery requires the 
surgeon to be skilled in the manipulation of small 
instruments under guidance of the endoscopic image 
on a video monitor, and these slulls require formal, 
specialised training. Centres exist to run training 
courses in these techniques. The courses typically 
consist of a range of activities including watching 
vidcns of (both successful and ~~nsuccessful) opera- 
tions, 'live' video links to operations in progress, 
and gaining practical experience on restructured 
animal tissue or synthetic models (Carter, Russell, 
Dunkley and Cuschieri 1994). Whilst excellent basic 
training can be achieved by these means, neither 
the restructured nor synthetic tissues are completely 
realistic since they do not bleed or have the same 
handling characteristics as living tissue. In some 
countries (although not the UK) training also takes 
place on live animals, which has the advantage that 
the trainee surgeon is able to practice control of 
bleeding. The disadvantages are that the anatomy 
is different, and that it is only possible to repeat the 
procedure a limited number of times. There are also 
ethical considerations involved in using live animals 
for training. 

It is envisaged that computer simulation of laparo- 
scopic operations (i.e. virtual reality (VR) keyhole 
surgery) could provide a more realistic and flexible 
training environment. In order to do this the simula- 
tion package will have to fulfil the following criteria 
(Satava 1993): 

I .  the VR surgical instruments ~ L I S ~  interact with 
the VR organs and tissue in a physically real- 
istic way. In particular, organs must deform 

appropriately when grasped, lifted or cut (this 
includes bleeding or leaking fluids); 

2. what the trainee surgeon sees and feels when 
using the simulator must be realistic. The image 
must have high enough resolution to appear real, 
and the forces required to lift or cut the VR tissue 
should match those felt in reality; and 

3. the properties (size, shape and condition) of the 
VR organs must be able to be changed in order 
to reflect the changes caused by disease, as well 
as the variability of different 'normal' tissues. 

If a computer simulation is to be effective then 
it must be based on clinical measurements. It is 
obviously not possible to construct a database that 
contains the 'result' of all possible interactions with 
the tissues of live human subjects. Hence probably 
the best solution is to use mathematical models to 
predict the response of tissues to a range of defor- 
mations. Many authors (for example Fung (1967, 
1993), Demiray (1972, 1981, 1983), Wang, Wang, 
Yan and Liu (1992), Humphrey and Yin (1989)) 
have examined mechanical models for various types 
of soft animal tissue, noting that the response of such 
materials is extremely nonlinear. There has been 
particular interest in modelling bovine pericardium 
tissue, which is used in the manufacture of replace- 
ment heart valves e.g. (Trowbridge, Black and 
Daniel 1985, Trowbridge and Crofts 1987, Zioupos, 
Barbenel, Fisher and Wheatley 1993, Zioupos and 
Barbenel 1994). A comprehensive history of bio- 
mechanical modelling in this area can be found in 
(Trowbridge et nl. 1985). 

Tissue from human spleens is similar to that from 
pigs (Carter et nl. 1994), and Carter and Davies 
(1996) contains a description of how data from 
compression experiments for ex-vivo pig spleen is 
modelled extremely well by a two-parameter expo- 
nential stress-strain law developed by Fung (1967) 
and Demiray (1972). The spleen is completely 
surrounded by a tough fibrous outer membrane 
or capsule. The capsule mainly consists of ran- 
domly oriented elastin and collagen fibres, and plays 
an important role in maintaining the structure of 
the organ. Knowledge of its elastic properties is 
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therefore essential in predicting the response of a 
spleen to interactions with surgical probes and other 
instruments. In this paper we focus on modelling the 
spleen capsule as an elastic membrane, and we show 
that the membrane version of the 3D Fung-Demiray 
model (Fung 1967, Demiray 1972) used for the inte- 
rior tissue in (Carter and Davies 1996) predicts its 
elastic behaviour well. 

The capsule is too fragile to be clamped and 
pulled as described in the classical experiments on 
rubber reported in (Rivlin and Saunders 1951) (it 
tears very easily), and so we have had to devise 
another way to measure its resistance to deforma- 
tion (see Section 2.1). The resulting deformation is 
not homogeneous, and so fitting the model to the 
experimental data is non-trivial (it involves solv- 
ing the appropriate membrane equilibrium equations 
numerically), but possible. The deformation is a 
simple type of the class considered by Roxburgh, 
Steigmann and Tait (1995) for a (known) Mooney- 
Rivlin material (see also Fulton and Simmonds 
(1986)). 

The paper is organised as follows. We begin 
with a report of the experimental procedure and 
observations. Section 3 is devoted to a brief descrip- 
tion of nonlinear elasticity and membrane theory, 
and the boundary value problem satisfied by the 
membrane corresponding to the experimental sit- 
uation is derived at the start of Section 4. The 
equations are similar to those studied in (Fulton 
and Simmonds 1986, Roxburgh et al. 1995), and in 
Sections 4.2-4.3 we show how the shooting method 
approach of Roxburgh et nl. (1995) can be modi- 
fied to solve them. and then present some numerical 
results. We conclude with a short discussion of our 
results. 

2 EXPERIMENTS 

We begin the section by describing how the capsule 
tissue is prepared and then loaded in order to 
obtain force-displacement data. The second sub- 
section describes the results of varying the rate 

of loading the tissue, the tissue's behaviour on 
unloading (there is a small amount of hysteresis), 
and how it behaves when it is subjected to repeated 
loading cycles. 

2.1 Experimental Procedure 

Fresh pig spleen was obtained from a local abattoir 
and frozen until use. The outer capsule is strongly 
attached to the underlying tissue and it is difficult 
to remove a sizeable piece by conventional dissec- 
tion methods. For these experiments the capsule was 
removed using an ultrasonic dissection device (Selec- 
tor, Surgical Technology Group, Andover. UK) and 
then stored in isotonic saline solution (to prevent 
it drying out) until tested. It should be noted that 
there is not a clear distinction between capsule and 
underlying tissue, rather that the tissue's mechanical 
properties change rapidly in a thin boundary layer 
just below the surface. Hence the capsule samples 
tested were of slightly different thickness and there 
was some variation in the physical properties of their 
lower surfaces. 

Membrane models for thin materials are usually 
obtained from data in which the deformation is a 
uniform stretch (Rivlin and Saunders 1951), since 
in this case the membrane equilibrium equations 
are identically satisfied and the model can be inves- 
tigated by a simple best fit of parameter values to 
the data. When the capsule is removed from the 
underlying material it is very fragile, and tears if 
it is clamped and then stretched. This means that 
it is not possible to use the usual uniform data 
fitting approach in order to find a suitable mem- 
brane model for the capsule. However it is possible 
to obtain force-displacement data by clamping it 
securely between two square steel plates that have 
had a circular hole cut in them and then lowering 
a small circular probe into the centre of the mem- 
brane. This causes the capsule to deform into a shape 
that looks roughly like a truncated cone, as shown 
schematically in Figure 2.1. Small dots of methy- 
lene blue dye are placed around the circular edge 
of the exposed membrane, so that it is possible to 
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FIGURE 2.1 Schematic illustration of the force-displacement experiments performed on the outer capsule membrane. The capsule 
originally occupies a circle of radius A in its unstressed state, clamped between two steel plates (the left hand hgurc is a plan view). 
Tt i s  deformed into n shape that looks roughly likc a truncated conc (r~ght  hand figure) by displacing a circular probe of radius (1 

vertically through a distancc d as \hewn. 

FIGURE 2.2 Schematic illustration of the testing rig used for the force-displacement capsule experiments. See text for details 

tell that the capsule is clamped securely between The probe is connected to a 5 Kg load cell and 
the plates. For all our experiments the radius of the linear transducer connected in series, and to a wind- 
circular hole in the plates is A = 22.35 mm, and ing mechanism (Figure 2.2 shows the experimental 
that of the probe is a = 2.25 mm. testing rig). The position marked 'X' is clamped in 
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place, and turning the winding mechanism lowers 
the load cell and probe into the tissue (one full rota- 
tion advances the probe 1 mm). The output from 
the sensors is amplified and passed through an ana- 
logue to digital conversion card fitted in a computer. 
The data is then scaled, to give a series of force 
(f k )  and displacement ( d B )  readings. The force is 
the total force exerted by the probe on the material, 
and the displacement is the vertical displacement of 
the probe into the tissue. 

2.2 Experimental Observations 

We have observed that the spleen capsule samples 
respond to loading in qualitatively the same way as 
reported in the literature for other animal membrane 
tissues, e.g. (Fung 1967, Trowbridge et al. 1985, 
Trowbridge and Crofts 1987, Zioupos et ul. 1993) 
and (Fung 1993, Chapter 7). The capsule exhibits 
'tissue relaxation' (Fung 1993, Trowbridge et al. 
1985), that is, if the probe is depressed into the tissue 

and then held fixed the amount of force exerted on 
the probe by the tissue gradually decreases. 

We are primarily interested in modelling and 
predicting the initial response of the capsule to a 
surgical probe or scalpel, and so we need to move 
the probe fast enough so that the tissue does not 
have time to relax significantly between loading 
increments. We found probe depression rates of 60 
and 120 rprn to be suitable for this. The mechanical 
response of the capsule does not seem to depend on 
the speed at which the probe is lowered, provided it 
is fast enough to prevent the tissue relaxing, as illus- 
trated in Figure 2.3 (see also Trowbridge and Crofts 
(1987)). This shows force-displacement curves for 
33 different capsule samples (17 at 60 rpm and 16 at 
120 rprn), and there i q  clearly more variation within 
the data at each rate than between data obtained at 
the two different rates. 

The capsule exhibits a small amount of 
hysteresis - the loading and unloading force- 
displacement curves are different, as shown in 

capsule indentation data 

0 5 10 15 20 25 30 
displacement (mm) 

FIGURE 2.3 Force-displacement plots obtained for various capsule samples. The probe is adrmced at a rate of 60 rpm (solid grey) 
and 120 rprn (dashed black). 
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FIGLTRE 2.4 FOI-ce-di\placement graphs slio\ving hyrtere\ir ohrained Sol. lour typical capwle  \anipleh. In each plot the black linc i \  
the loading curve and the y c )  linc ir the unloading curve. 

Figure 2.4. These graphs are very similar to those 
obtained for uniaxial stretches of rabbit mcscntcry 
in (Fung 1967), and to the many loadingl~~nloading 
curves shown in (Fung 1993, Chapter 7) and 
(Trowbridge et al. 1985, Trowbridge and Crofts 
1987). The fact that the loading/unloading curves 
contain a hysteresis loop means that capsule tissue 
is not a perfectly elastic material, and so there 
is no stored energy function (see Section 3) that 
(approximately) characterises its behaviour in all 
stress regimes. However, since our aim is to predict 
the capsule's response to initial loading, we shall 
seek a stored. energy function that models the 
behaviour of the tissue shown in the black curves 
of Figure 2.4. If the response to primary unloading 
were required, then a model for this could be 
obtained from the unloading data (the grey curves) 
by using a dijjer-eat stored energy function. Fung 
( 1  993) terms this- approach 'pseudo-elasticity'. 

We have also investigated the effects of repeated 
loading on the capsule tissue, again with similar 
results to those rcported elsewhere (Fung 1991, 
Trowbridge et al. 1985, Zioupos et 01. 1993). 
Figure 2.5 shows the outcome of repeated loading 
experiments performed on four capsule samples. In 
each of these graphs there is a marked difference 
between the first loading curve (solid grey line) and 
the second and third curves (black dashed and dotted 
lines respectively). The fourth plot is somewhat 
anomalous in the sense that its fourth and fifth 
loading curves occur to the left of the first one, but 
this could perhaps be due to experimental error. 

The reason for the difference in loading curves 
is discussed by Fung (1993, Chapter 7). He says 
that in general the loading curves shift to the right 
with cach cyclc and that if the samplc is loaded and 
~mloadcd indelinitely then the dilltrence betwecn 
~ w o  successive loading curves becomes vanishingly 
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FIGURE 2.5 Force-displncemcnt graphs obtained for four tqpical capsule samplcs showing the el'fecla 01' repeated loading. Each plot 
contain\ between three and f i ~ e  loading curbes (thc number o l  loading cycles is given at the top of thc plot) obtained in the order: 
( 1  grey solid: ( 2 )  black dashed: ( 3 )  black dotted: (4) black solid: (5) grey dotted. 

small. He calls this phenomenon 'preconditioning' effects) then the force-displacement curves seem 
and states that "The reason that preconditioning to be independent of the loading rate; 
occurs in a specimen is that the internal structure 0 there is a small hysteresis loop in the load- 
of the tissue changes with the cycling. By repeated 
cycling, eventually a steady state is reached at which 
no further change will occur unless the cycling 
routine is changed". 

Again we emphasise that it is the capsule's initial 
response that we are interested in and so our aim is 
to produce a biomechanical model for the primary 
loading curve and not for the loading behaviour of 
the preconditioned tissue. It is conceivable that there 
are situations in which it would be advantageous to 
be able to predict the behaviour of a piece of capsule 
tissue that had been subjected to repeated loading, 

inglunloading curves; and 
0 repeated loading changes the tissue's mechanical 

properties. 

These observations indicate that spleen tissue is 
not perfectly elastic. However, since our objective is 
to obtain a mathematical model that describes only 
the initial loading response of the capsule, we shall 
regard it as being a (nonlinear) elastic material and 
determine a mathematical model that fits the primary 
loading data. 

and if this is the case then it would be appropriate 3 NONLINEAR ELASTICITY AND 
to instead use a model for preconditioned tissue. MEMBRANE THEORY 

In summary, we have seen that 

splecn capsule exhibits tissue relaxation; Recall that our aim is to model the capsule tissue 
0 as long as the capsule is loaded moderately in its primary loading regime as an elastic material. 

quickly (so there are no noticeable relaxation The figures in the previous section show that the 
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capsule stretches a relatively large amount during 
the experiments and that the loading curves are 
far from being linear. Indeed, the mathematical 
theory of elastic materials capable of undergoing 
large deformations is inherently nonlinear - that 
is, the stress (force per unit area) depends non- 
linearly on the deformation. Comprehensive treat- 
ments of the theory are given for example in (Atkin 
and Fox 1980, Gurtin 1983, Ogden 1984, Beatty 
1987). We begin by briefly giving some notation 
relating to the (static) theory of nonlinear elasti- 
city, and then describe the basic parts of membrane 
theory necessary for modelling the capsule (see 
for example Green, Naghdi and Wainwright (1965), 
Naghdi (1972) for a fuller description of this). We 
pay particular attention to the membrane version of 
the three dimensional biomechanical model consi- 
dered by Demiray in (1972) (this is a generalisation 
of the one dimensional model of Fung (1967); see 
also (Beatty 1987, Fung 1993. Humphrey and Yin 
1989, Trowbridge et al. 1985)). 

Suppose that an elastic material occupies the 
region S2 E R' in its natural unstressed state. Points 
x = ( x , ,  X?, x 3 )  = (x,) E '2 are called the material 
or reference coordinates. A deformation of S2 is a 
smooth one-to-one map 

wherey = (y l .  1'2 ,  yi) = (yr) E R3. The 3 x 3  matrix 
F with components given by F; , ,  = ayi/ihx-, is 
called the deformation gradient. The principal values 
of F (i.e. the eigenvalues of 2/FIF) are called the 
principal stretches, and denoted by v l ,  v.1 and v'. 

We suppose that S2 is deformed very slowly 
(quasistatically) so that the deformation y and all 
forces can be assumed to be independent of time, 
and denote the force per unit area acting at a point 
y on the surface of the deformed body with out- 
ward unit normal rz by s (y , n ) - the Cauchy stress 
vector. It can be shown that s (y . n ) = Un for 
a symmetric 3 x 3 matrix U called the Cauchy 
stress tensor. The constitutive assumption of non- 
linear elasticity is that the stress tensor at a pointy 
in the deformed body depends only on the mater- 
ial and on the deformation gradient at y .  Although 

the capsule is not elastic over a complete load- 
inglunloading cycle (Figure 2.4), we shall assume 
that it behaves elastically whilst being loaded and 
that it can be regarded as a hyperelastic material 
during its first loading cycle. 

Spleen capsule tissue is relatively uniform, does 
not have a noticeable preferred direction, and it 
is likely that its volulne changes little when it is 
deformed (interior spleen tissue is certainly vir- 
tually incompressible (Carter and Davies 1996)). 
It is therefore physically reasonable to make some 
further simplifying assumptions and we take it to be 
homogeneous, isotropic and incompressible. In this 
case the stress-strain relationship takes the form (see 
e.g. Atkin and Fox (1980)) 

where p is the hydrostatic pressure (it is a Lagrange 
multiplier corresponding to the incompressibility 
constraint det F = 1 in a ) ,  and W ( F )  is a scalar 
function called the stored energy function. Our aim 
is to show that the membrane version of the three 
dimensional model considered by Demiray in (1972) 
matches the biomechanical properties of the capsule 
well. Demiray's stored energy function is 

where p and y are positive constants. 
We now derive a membrane model for spleen 

capsule based on (3.1). We assume that S2 is very 
thin in the x3-direction and that its centre-plane S lies 
flat along xl = 0 in its natural unstressed state. We 
shall approximate deformations of S2 by regarding S 
as a homogeneous elastic surface (an elastic mem- 
brane) that is endowed with a function that specifies 
the stored energy per unit referential area. Points on 
the surface are represented by the reference coor- 
dinates x = (xI , x 2 )  E S.  In a deformation of the 
membrane the point originally at x is displaced to 
the point with position y (x ) E R! This deformation 



KEYHOLE SURGERY SIMULATIONS 255 

induces a natural basis (91, $2) defined by 

ay 4, = - for a = 1, 2. 
ax, 

The strain tensor is 

c = (Cop> = C 2 )  
where #,p = 4, . q5p for a ,  B E {1,2}. We adopt 
the usual constitutive assumption of homogeneous 
isotropic membrane theory (Naghdi 1972). namely 
that W, the stored energy per unit area of S ,  depends 
only on the principal invariants of C. The principal 
invariants of the strain are its trace I, = C I 1  + C2? 
and determinant I? = Cll CZ2 - CIZC21.  Because 
C is positive definite and symmetric it has two real 
positive principal values X: and hi ,  where h l  and X2 
are called the (membrane) principal stretches. The 
stored energy can also be expressed as a symmetric 
function of these stretches, i.e. 

for some function w satisfying w(X 1, h.2) = w(h?, X 1 ). 
Following Roxburgh et ul. (1995) we suppose that 

t is the contact force per unit length across a material 
curve on S ,  and let v be the unit normal to the curve 
lying in the tangent plane of S .  Then 

where T = [TI; T ~ ]  and the a th  column T" of T is 
given by 

T f f = @  .P q5 P. (3.3) 

for a = 1 , 2 ,  where we use the summation conven- 
tion that repeated indices (here B)  are summed, and 
where aw aw 

@,p -- - + -. 
ac,p dCp, 

(The tensor T is analogous to the Piola-Kirchhoff 
stress of 3D elasticity, although here it gives a 
measure of the force per unit length rather than per 
unit area.) 

The elastostatic membrane equations in the ab- 
sence of internal forces are 

These can be written in terms of w by using (3.3) 
and the identities 

and 
aw a w a h l  a w a h 2  -- - -- + - ---- . a ~ , ~  ahl ac,, ah2 ac,, 

Here we investigate the membrane model that 
is analogous to the 3D model (3.1). Incompressi- 
bility implies that the principal stretches of three 
dimensional deformations satisfy V I V ~ V ~  = 1. The 
stretches vl and v2 are approximated by the mem- 
brane stretches h l  and h2 respectively, and so v3 
is approximately equal to (hlh2)-'.  Substituting for 
the v,'s in the 3D stored energy function (3.1) yields 
the membrane model 

/A. 
w(hl. h2) = - {exp(y(Il + 1/12 - 3)) - 11, 

2~ 
(3.5) 

7 1 

where Il = h: + h! and I7 = hih-. 
This is the membrane stored energy that we use 

for the capsule during its first loading cycle. In the 
rest of the paper we show how to calculate the 
values of the parameters y and /A. that best match 
our experimental data (in a least squares sense), and 
demonstrate that this 'best fit' model gives a good 
representation of the initial mechanical behaviour of 
capsule tissue. 

4 THE BOUNDARY VALUE PROBLEM 

In this section we describe how experimental data 
can be used to investigate the validity of the 
membrane stored energy function (3.5). We begin 
by detailing an appropriate boundary value problem 
that corresponds to the deformation of the capsule 
during the experiments described in Section 2. Then 
in Section 4.2 we show how the shooting method 
approach ~lsed by Roxburgh et 01. (1995) can be 
modified to give a uunierical algorithm that com- 
putes the values of the material parameters y and p 

for which the force-displacement curves predicted 
by (3.5) best match the experimental data. Numeri- 
cal results are given in Section 4.3. 



4.1 Equations and Boundary Conditions 

We now formulate a boundary value problem corres- 
ponding to the capsule force-displacement experi- 
ments described in Section 2. The experimental 
situation has circular symmetry about the centre of 
the probe, and so we assume that the point x = 
(R cos 0, R sin 0) in the x3 = 0 plane is displaced to 

The rnembrane equilibrium equations (3.4) thus 
reduce to a coupled system of nonlinear ordinary 
differential equations for the unknown functions r 
and z .  The boundary conditions (BCs) that we shall 
use are listed below. 
(i) At the probe: 

the capsule is assumed to stick to the probe, and 
so the BCs are taken to be 

(recall that as shown in Figure 2.1, the probe radius 
and displacement are a and d respectively). 
(ii) At R = A :  

the capsule is clamped at R = A and so the 
appropriate BCs are 

The BCs (i) are an approximation of the more 
physically realistic conditions that the tangential 
stress is zero and z(R) = d for r(R) < a. We do 
not use these as boundary conditions because they 
convert the problem into a much more conlplicated 
inverse problem - these BCs depend on the value 
of the unknown solution r(R). 

A deformation of the type (4.1) with boundary 
conditions (4.2)-(4.3) has been considered by Rox- 
burgh et al. (1995) for a Mooney-Rivlin membrane 
(see also Fulton and Simmonds (1986)). For this 
deformation the principal membrane stretches h, are 

where a prime ' denotes d/dR. It is also shown by 
Roxburgh et al. (1995) that the columns T" of the 
membrane stress T are 

I T = t l  { cosy ( s i n q ( 8 ) )  and 

- sin 0 
T' = t2/R ( c;O ) . 

where 

r' = h l  cos y, (4.5) 

z' = h l  sinq, (4.6) 

As shown by Roxburgh et ul. (1995) the mem- 
brane equilibrium equations are thus 

and 
(Rt, sin y)' = 0. 

and the second of these can be integrated to give 

Rtl siny = A (4.10) 

where A is a constant for all R E [a ,  A] (it depends 
only on the material parameters p and y and on the 
probe displacement d). 

The equations to be solved are then (4.5)-(4.10), 
and they can be written as the system 

for R E (a, A) ,  where tl and t l  are the functions 
of h l  and hl = r/R given in equations (4.7)-(4.8) 
above. 
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4.2 The Numerical Algorithm 

For given values of the parameters p and y the 
system of equations (4.11) and boundary condi- 
tions (4.2)-(4.3) can be solved numerically by a 
shooting method using the algorithm described in 
(Roxburgh et al. 1995). The region [a, A] is discre- 
tised into N intervals with nodes R j  = a + j h for 
j = 0 : N, where h = (A - a ) / N ,  and we use the 
shorthand notation that r, = r(R,), ,-,, = z(Rj) etc.. 
The solution strategy is outlined below. 
(1) Guess shooting parameter values. 
Guess values for q(Ro) = q* and h r  (Ro) = A;. 
(2)At R = R o  - a ,  
The boundary conditions (4.2) give zo = d,  ro = a 
and hence hz (Ro) = 1. Evaluate cos go, sin qo and 
cot q, (using the fact that go = q*). Substitute for 
h l  = A.7 and h2 into (4.7)-(4.8) to calculate tl and 
t 2  at R = Ro, and finally compute A = [Rtl sin qlo. 
(3) Loop over j = 1 : N .  

(i) Use Euler's method to numerically integrate the 
three ODES (4.1 1)1,2,3 at Ri to obtain 

(ii) Calculate cos q and sin q (from cot q), hz (from 
(4.4)) and r l  (frorn (4.11))~), all at R = R,. 

(iii) Use the computed value tl(R,) to solve 
equation (4.7) numerically for A I  at R ,  (this is 
always possible because the material satisfies 

for all (h 1, hz)). The solution can be computed 
using a nonlinear equation solving routine (for 
example the NAG routine CO5AGF (Numerical 
Algorithms Group 1996)). 

(iv) USC (4.8) to compute t2(RJ) from h l  and h2. 

(4) At R = R,, = A .  
Set F = ( T ~ .  r,,, -A). 

(5) Check F. 

If F # 0 then adjust the shooting parameters q* 
and h; and go back to (2). If F = 0 (or more realis- 
tically, if IF1 is less than a prescribed tolerance), 
then STOP. 

If F # 0 then the choice of shooting parameters 
q* and A'; does not solve the problem ( F  = 0 
corresponds to satisfying the boundary condition 
(4.3)), and so they have to be adjusted. If the above 
steps (2)-(4) are coded up into a subroutine that 
takes the vector (ql, A';) as input and computes 
and outputs the vector F, then a nonlinear system 
solver (e.g. the NAG routine COSNBF (Numerical 
Algorithms Group 1996)) can be used to calculate 
values of (q*, 17) for which ( F  1 is acceptably small. 
The solution (r .  z)  for these shooting parameter 
values can then be con~puted. 

In summary, the above steps can be used to cal- 
culate the deformation ( r ,  z) for any fixed value 
of the material parametcrs y and /A. However, 
recall that what we are actually trying to do is to 
compute the values of these two parameters that 
best fit the experimental force-displacement data. 
We now describe how this may be achieved by 
incorporating steps (1)-(5) into a subroutine that 
is called by a nonlinear least squares routine (e.g. 
the NAG routine E04FDF (Numerical Algorithms 
Group 1996)). We begin by detailing the relation- 
ship between the deformation ( r ,  z )  and the force 
acting on the probe. 

Recall that the contact force per  n nit length across 
a material curve on the surface S is 

t = Tv, 

where v is the outward unit normal to the curve lying 
in the tangent plane of S .  This implies that the force 
exerted on the membrane by the probe at the point 
(a cos 8, a sin 0, 0 )  is 

cos 8 
t =  (s i I Io)  . 

As noted by Roxburgh et nl. (1995) it follows that 
t = T', and hence (~lsing (4.10)) that thc normal 
component F(8) of the force at the point is 

A 

f (0) = tl sin q = Aln. 
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The total normal force f exerted by the probe on 
* 

the material is f = 2rra f (8) ,  i.e. 

Suppose that we have the set of probe displace- 
ment and force measurements {(dk, fL)}f=l=l. The 
predicted force at a given displacement d is f = 
2 n  A, where A depends (only) on y ,  p d,  and we 
also introduce an offset E to take account of any 
experimental errors due to the position at which the 
zero displacement is measured. The force predicted 
by the model can thus be written as 

The least squares error between the model and the 
data is then 

and the best fit parameter values are those that 
minimise the error E. 

Using a least squares minimisation routine to 
compute the values of y ,  and E that minimise E 
involves supplying a subroutine that takes the values 
of these parameters as input and outputs E. This 
subroutine contains the steps (1)-(5) of the shooting 
method as an inner loop. 

4.3 Numerical Results 

Figure 2.3 shows that there is quite a wide variation 
in the mechanical properties of the spleen capsule 
samples tested. It therefore follows that there will 
also be a wide spread ,in the 'best fit' values of 
the parameters y and p for all the samples. Con- 
sequently we shall show that (3.5)  is a reasonable 
model for the initial loading of spleen capsule by 
just concentrating on a small number of data samples 
that represent the range of possible behaviour shown 
in Figure 2.3. 

We shall use the three samples capl, cap2 and 
cap3, obtained using a probe rate of 60 rpm and 
shown in Figure 4.1. 

-1 0 0 10 20 30 
displacement (mm) 

FIGURE 4.1 Force-diaplaccmcnt plots for the data in samplcs 
capl (dotted). cap2 (solid) and cap3 (dashed). 

Each of these samples contains approximately 
150 data points, and computing the best fit material 
parameters using all the points takes a considerable 
length of time (the computer time taken by the 
nonlinear least squares fitting program increases 
with the number of data points). We shall show 
that the computed values of y and p are reasonably 
insensitive to the number of data points used, and 
that it is sufficient to use a small subset of the total 
data points. 

Suppose that the experimental output for one 
sample is a collection of a large number of displace- 
ment and force values, with the maximum displace- 
ment being d,,,,,. The errors inherent in the algo- 
rithm described in the previous subsection mean 
that there are reasonably large relative errors in the 
shooting method part of the calculation when the 
force is small (Euler's method is used because it 
is an explicit integrator: it is only first order accu- 
rate). We therefore ignore the first part of the data 
set and restrict our attention to points for which the 
displacement is at least 6 mm. An M-point data sub- 
set { d k ,  f k } z I  is chosen by splitting the interval 
(6, dm,,) into M - 1 (approximately equal) intervals 
by setting the kth point dk to be the point closest to 
6 + (k - I )  (d,,,, - 6)/(M - 1) for k = 1 : M (so 
d l  % 6 and dM = dnyax). 

We have calculated the best fit values of I*. and 
y and the offset E for each data sample when M 
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is 5, 10, 20 and 40, and the results are tabulated cap3 
below. Note that the computed values of p, and y M P Y & 
do not depend strongly on the number M of data 
points used. 5 0.018397 1,04770 -0.023844 

10 0.019563 0.99298 -0.055198 
cap1 20 0.019192 1.05071 -0.051323 

M P Y E 40 0.019379 1.04237 -0.0543 13 

Graphs of the full data set (dotted black), data 
points used (circles) and the force-displacement 
curves predicted by the model (3.5) with the best 
fit parameter values for each sample (solid grey) are 
shown in Figures 4.2-4.4. 

The capsule deformation (i.e. the solution (r. z )  
of the boundary value problem) is qualitatively the 
same for all the data samples. Figure 4.5 shows the 
computed capsule shape for cap2 at four values of 
the displacement d L .  This solution was calculated 
using the best fit parameters for the sample when 
M = 20. Note the similarity to the deformations 

-1 L .__-l 
0 5 10 15 20 

displacement (mm) 

1 
0 5 10 15 20 

displacement (mm) 

-1 1 I 
0 5 10 15 20 

displacement (mm) 

0 5 10 15 20 
displacement (mm) 

FIGlJRE 4.2 Force-displacemcnt plots for various values of M for sample capl.  The graphs show the full data set (black dotted). 
the M data points ( d k .  f k ) ' f ! = l  used in the least squares routines (circles) and the prediction of the model (3.5) (solid grey). 
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-1 . - - -- 

0 5 10 15 20 25 
displacement (mm) 

- l L  - - 2  ,___I 

0 5 10 15 20 25 
displacement (mm) 

-1 :- -- A - -1 -L- - >  1 
0 5 10 15 20 25 0 5 10 15 20 25 

displacement (mm) d~splacement (mm) 

FIGURE 3.3 Force-displacement plots for Larioua ~ a l u e s  of M for sample cap2. The graphs show the full data set (black dotted). 
the M data. points ( d i ,  f i ) i l ,  used in the least rquarei routine\ (circles) and the prediction of the model ( 3 . 5 )  (solid grey). 

1 

10 20 30 
displacement (mm) 

M = 20 
- 

1 

-, -A I 
10 20 30 

displacement (mm) 

-1 L -.-A- 

0 10 20 
displacement (mm) 

-1 L 
0 10 20 

displacement (mm) 

FIGURE 4.4 Force-displacement plots for \'armus values of IM S w  sarnple cap3. The yl-aph\ show the full data set (black dotted), 
the M data points (di. fi.):Ll used in the Icaat squares routines (circle<) and the prediction of the ~nodcl  (3.5) (\(>lid grc) ). 
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FIGURE 1.5 Computed capsule deformation for sample cap2 with M = 20 at four kalues of the probe displacement d.  All units 
used arc mrn 

shown in (Fulton and Simmonds 1986, Roxburgh 
et al. 1995). 

5 DISCUSSION AND FURTHER WORK 

We have shown that the membrane model (3.5) gives 
a good representation of the mechanical behaviour 
of pig spleen capsule samples when they are first 
loaded. As illustrated by Figures 4.2-4.4 the compu- 
ted best fit model matches the data very well (sur- 
prisingly well considering that the capsule is not 
really a membrane and that the boundary conditions 
(4.2) imposed at the probe are not totally realistic), 
and hence the model should be able to predict the 
response of capsule tissue over a wide range of 
deformations. 

The long-term project objective is to develop 
sophisticated biomechanical models for the soft tis- 
sues and organs of the abdominal cavity which can 
be incorporated into software systems for electronic 

tissue simulations. Although vital in the develop- 
ment of such a model for the spleen, the work 
described here and in (Carter and Davies 1996) is 
just the start of the project. The next steps are to 
try to use the membrane model (3.5) to predict the 
amount of stress needed to puncture the capsule and 
to make comparisons with experimental data, and to 
consider a composite model consisting of the mem- 
brane (3.5) surrounding interior tissue of the type 
modelled by Carter and Davies (1996). We then 
aim to obtain suitable data from a small number of 
clinical measurements on living human spleen tis- 
sue (in patients undergoing splenectomy), and use 
it to adjust the pig spleen biomechanical models 
appropriately. 
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