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In this paper we build on the mathematical model of Ward and King (1998) to study the 
effects of high molecular mass mitotic inhibitors released at cell death. The model assumes 
a continuum of living cells which, depending on the concentration of a generic nutrient, 
generate movement (described by a velocity field) due to the changes in volumes caused by 
cell birth and death. The necrotic material is assumed to consist of two diffusible materials: 
I )  basic cellular material which is used by living cells as raw material for mitosis; 2) a 
generic non-utilisable material which may inhibit mitosis. Numerical solutions of the 
resulting system of partial differential equations show all the main features of tumour 
growth and heterogeneity. Material 2) is found to act in an inhibitive fashion in two 
ways: i) directly, by reducing the mitotic rate and ii) indirectly, by occupying space, 
thereby reducing the availability of the basic cellular material. For large time the solutions 
to the model tend either to a steady-state, reflecting growth saturation, or to a travelling 
wave, indicating continual linear growth. The steady-state and travelling wave limits of 
the model are derived and studied, the regions of existence of these two types of long-time 
solution being explored in parameter space using numerical methods. 
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1 INTRODUCTION 

In the early (avascular) stage of tumour growth, 
tumour cells acquire nutrient through its diffu- 
sion from the host's existing vasculature. Growth 
during this phase is thought to resemble that of 
multicell spheroid cultures, an in vitro model of 
tumour growth (Folkman and Hochberg, 1973). The 
observed growth pattern of these cultures (typically 
three growth phases, exponential, linear and growth 

saturation, see Congar and Ziskin, 1983; Inch et al., 
1970; Carlsson, 1977) is mainly dependent on the 
penetration of nutrient by diffusion from the exter- 
nal medium (Carlsson, 1977): however, other factors 
are known to be involved, including the production 
of chemicals that inhibit mitosis (discussed below) 
and cell shedding (Landry et al., 1982; Weiss, 1978; 
Ward, 1997 and the subject of a future paper). The 
chemicals involved in mitotic inhibition fall into 
two main classes, namely 1) those that affect the 
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pH in the spheroid and 2) large protein molecules, 
often termed chalones, that somehow interfere with 
the process of mitosis. In multicell spheroids, any 
growth factors present are purely endogenous and, in 
the absence of any vasculature, the capacity to expel 
undesirable chemicals is limited to diffusion, lead- 
ing to the accumulation of necrotic and waste pro- 
ducts within the spheroid. Substances such as lactic 
acid, which is produced by the failure of the under- 
nourished cells in the core to complete the respira- 
tory process, lead to the lowering of the overall pH 
in the spheroid, with the effect of restricting DNA 
synthesis so lowering thc mitotic rate (Acker et al., 
1987; Casciari et al., 1992b; Vaupel, et ol., 1981). 
However, the inhibitors at issue in this paper are 
the several growth inhibitory proteins originating in 
the necrotic core or found in the inter-cellular matrix 
(Freyer, 1988; Freyer et al., 1988; Harel et al., 1984; 
Iwata et al., 1985; Levine et al., 1984: Sharma and 
Gehring, 1986 and others: see Iversen, 1991). The 
inhibitive proteins detailed in Freyer et al. (1988), 
Harel et al. (1984), Iwata et al. (1985) and Levine 
et ul. (1984) have a molecular mass of 0(10000), 
this being O(100) times that of glucose, and it is this 
type of inhibitor which will be the focus of study 
in this paper. Such inhibitor ~nolecules are snlaller 
than a single cell by a factor of 0(10"). 

There have been numerous investigations using 
mathematical models of the role of mitotic inhibitors 
in tumour growth. Greenspan (1972) incorporated 
inhibitors into a simple nutrient driven growth model 
as a mechanism for the formation of quiescent 
regions. He considered separately the cases of the 
inhibitor source being the products of necrosis and 
the waste products of living cells. There have been 
several subsequent studies that extend the assump- 
tions of Greenspan, although all predict similar 
qualitative behaviour (Maggelakis and Adam, 1990; 
Maggelakis, 1993; Byrne and Chaplain, 1996). Glass 
(1973) and others since (Shymko and Glass, 1976; 
Adam, 1986; Chaplain and Britton, 1993) simplified 
the Greenspan model and studied only the inhibitor 
distribution. This involved the analysis of a second- 
order ordinary differential equation with an inhibitor 
source term representing tumour heterogeneity. This 

approach allowed the determination of the size of 
the spheroid at which it becomes fully inhibited and 
growth ceases (saturation). However, such results 
contradict experimental observations of a dynamic 
equilibrium at growth saturation, it being known that 
the cells near the surface are still dividing (Folkman 
and Hochberg, 1973; Freyer and Sutherland, 1986; 
Haji-Karim and Carlsson, 1978). All of these models 
assume that the diffusion rate of the inhibitor like 
that of the nutrient, is much faster than the rate of 
spheroid growth; however, for the larger molecules 
(molccular mass of O(10000)) this may not be an 
accurate simplification. Furthermore, many of these 
models assume that the inhibitor is continually being 
produced within the necrotic core, contrasting with 
the model studied in this paper, where the inhibitor is 
released only through cell death. A slightly different 
approach is described in Casciari et (11. (1992aA in 
which a model for the cellular respiratory pathway is 
coupled with a simple spheroid growth model. This 
enabled the study of the inhibitive effects caused by 
the lowering of pH in the spheroid core due to lactic 
acid production by hypoxic cells. The model pro- 
vided reasonable predictions for the distribution of 
each of the chemicals involved, though it failed to 
capture the final saturation phase. We notc that the 
saturation phase of spheroid growth is mainly con- 
trolled by the mechanisms of necrotic volunle loss, 
which is implicit in the Greenspan based models and 
is discussed in detail in Ward and King (1998). 

In Ward and King (1998) a mathematical model 
of spheroid growth was presented which is capable 
of predicting all the main phases of growth 
and heterogeneity (namely necrotic corelquiescent 
layerlproliferating rim). Here the quiescent regions 
result from a time lag in cell death in response 
to deficient nutrient conditions. This model again 
assumes nutrient driven growth, but also accounts 
for the requirement for basic cellular material (DNA, 
large proteins etc.) originating from the nutrient 
matrix and necrotic material. In this paper we extend 
this model by assuming that the cell dissociates into 
two species of necrotic material: 1) basic cellular 
material (such as proteins, DNA), considered in Ward 
and King (1998), which can be utilised by living cells 
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for construction of new cells and 2) a material of 
high molecular mass that is not directly utilisable 
by the cells and may act as a mitotic inhibitor. 
The high molecular mass of this second species, 
as with the basic cellular material, has implications 
on its diffusive properties (contrasting with previous 
studies which implicitly assume that the inhibitor is 
rapidly diffusive). A further difference in the current 
model is that increasing the inhibitor concentration 
is taken to lead to a continuous decrease in the 
mitotic rate, consistent with the findings of Hare1 
et a/.  (1984), rather than mitosis being 'switched off' 
when a certain threshold concentration is reached, 
as in previous studies. We note that the addition of 
an inhibitive species does not in fact significantly 
change the qualitative behaviour of the model, but, 
as will be shown, the presence of even small amounts 
of inhibitor may significantly affect features such as 
the final saturation size. The model is formulated in 
the next section, following a similar course to that 
of Ward and King (1998), resulting with a complex 
system of nonlinear partial differential equations 
to describe spheroid growth and inhibitor action. 
Throughout the paper simpler cases to the full model 
will be discussed. In Section 3 the full model is 
solved numerically, revealing that (in the main) there 
are two important long-time outcomes to the model, 
namely solutions which tend towards a steady- 
state (growth saturation) and those approaching a 
linear growth rate (travelling waves). These long- 
time outcomes are studied in greater detail in 
Sections 4 and 5 where the steady-state and travelling 
wave limits are derived. The bifurcation between 
these solutions is established and the distribution in 
parameter space of the steady-state and travelling 
wave solution., in explored in Section 6. 

2 THE MATHEMATICAL MODEL 

2.1 Formulation 

The approach to the modelling follows that of Ward 
and King (1997 and 1998), based on tumour cells 
forming a continuum. Local volume changes through 
birth, death and diffusion of material contribute to 

movement of the cells within the spheroid, this being 
described by a velocity field. The birth and death rates 
are assumed to be governed by the local concentra- 
tion of a generic nutrient (e.g. oxygen and glucose) 
and also by the availability of the basic cellular mate- 
rial used to construct new cells. At cell death it is 
assumed that the cell dissociates into fixed quantities 
of diffusible necrotic material of two types: 1) basic 
cellula~ material (such as proteins, DNA) which can 
be utilised by living cells for construction of new 
cells and 2) high molecular mass generic material 
that may act as an inhibitor. We note that it will be 
shown that the mere presence of the second type of 
material has 'inhibitive' effects by reducing the con- 
centration of basic cellular material. The inhibitive 
material can be viewed as a second generic necrotic 
species containing a mixture of inhibitive molecules 
(which reduce the mitotic rate) and material that is 
not utilised by and has no direct effect on living cells. 
For the remainder of the paper, however, we shall 
simply refer to the second necrotic species as the 
inhibitor. Assuming that the molecular volumes of 
the (generic) basic cellular material and the (generic) 
inhibitor are V ,  and Vl,  respectively, we have 

where V D  is the volume of a dead cell and P,, and 
pi, are dimensionless constants, being the number 
of cellular and inhibitive molecules released by 
each drying cell. We note that we have assumed 
that the amount of cellular material and inhibitor 
released at cell death is the same whether the cell 
has died through necrosis or through apoptosis. As 
in Ward and King (1998), a total volume of AV, 
of cellular material is required at mitosis. leading to 
the expression 

net volume volume of cellular 
volume of 

change during = - material consumed 
a new cell 

mitosis during mitosis 

wherc the constant V L  is the live cell volume and 
the dimensionless constant h is the total number 
of molecules of cellular material consumed. It is 
assumed that the living cells have some capacity 
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for brealung down the inhibitive material, for which 
these breakdown products is assumed to consist 
molecules of negligible volume and, for generality, 
cellular material. This inhibitor breakdown process 
leads to volume change described by 

volume of 
net volume loss volume of 

cellular material 
by inhibitor = an inhibitor - 

gained from 
breakdown molecule 

breakdown 

where v is a dimensionless constant, representing 
the number of cellular material molecules produced 
for every inhibitor molecule broken down, such that 
vV,, 5 Vh implies an overall volume loss. Here, 
the molecules of negligible volume produced by 
such a breakdown process are assumed to diffuse 
rapidly out of the tumour and do not contribute 
to its volume. We note the case v = 0 implies that 
no cellular material is produced by the breakdown 
process. Assuming that all space in the tumour is 
occupied by living cells and cellular and inhibitive 
material leads to the no void condition 

where n is the live cell density and p and h are 
the concentrations of cellular and inhibitive material. 
We note that these assumptions generalise those 
of the model of Ward and King (1998), which 
corresponds to setting p!, = 0 in the current model. 

Using the above relations, together with the 
assumptions given in Ward and King (1998), the 
following system of equations can be derived 

an 
- + V .  (vn) = (k,,,(c, p ,  h) - k,l(c))n, 
at 

(5 

ac 
- + V . (vc) = D V ' ~  - k(c, p ,  h)n, 
at 

(6) 

ap + V (vp) = D , V : ~  + p,,kd(c)n 
at 

- A.k,,,(c, p, h)n + v$ hn, (7 

ah 
- + V . ( ~ h ) = ~ ~ ~ ~ h + p ~ k d ( ~ ) n - @ h n ,  (8) 
at 
V . v = (VL - hVp)kIrr(c, p ,  h)n - (VL - V~)kd(c)n 

- (Vh - vVp)$hn + V,D,V~P + vhDhv2h, (9) 

where the variables c and v are the nutrient con- 
centration and the velocity field, respectively. These 
equations have the following interpretation: 

Equation (5) states that the rate of change in live 
cell density is given by the difference in rates of 
birth (k,,,(c, p,  h)) and death (kLi(c)), the forms 
of these rate functions being given below. The 
divergence term on the left-hand side accounts, 
in the usual way, for the influence of advec- 
tive effects (v . Vn) and local volume changes 
(n V . v ) on the live cell density. 

Equation (6) states that the rate of change of nutri- 
ent concentration is governed by the rates of con- 
sumption by the living cells, (k(c, p, h)n) and by 
diffusion, which is assumed to satisfy Fick's Law 
with a constant diffusion coefficient D. 

Equation (7) states that the rate of change of cellu- 
lar material concentration is governed by the rates 
of release at cell death (p,,kLi(c)n), production 
through inhibitor breakdown (v$hn), consump- 
tion during mitosis (hkl,,(c, p,  h)n) and diffusion 
(described by Fick's Law with constant diffusion 
coefficient D,). The constants p,,, A. and v are 
those introduced above in the formulating (I), (2) 
and (3). The non-negative constant $ governs the 
rate of cellular conversion of the inhibitor, so that 
if $ = 0 no conversion is occuring. 

Equation (8) states that the rate of change of 
inhibitor concentration is governed by the rates 
of release at cell death (pl,kLi(c)n), breakdown 
by the living cells ($hn) and diffusion (again 
described by Fick's Law with constant diffusion 
coefficient D , ) ,  (1) and (3) being used in con- 
structing the forcing terms. 

Equation (9) can be derived from Equations (4), 
(3, (7) and (8) and accounts for volume generated 
through birth and death and from the diffusion of 
cellular and inhibitive material. 

In the remainder of this paper we shall assume 
spherical symmetry, avoiding the need to include 
constitutive equations for the velocity field, so that 
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Equations (5)-(9) together with suitable boundary 
and initial conditions form a closed system. 

The expression for the mitotic rate function ex- 
tends that used in Ward and King (1998) to include 
the effects of the inhibitor. It is assumed that the 
mitotic rate remains bounded and is monotonic 
decreasing with the inhibitor concentration and the 
form for k,,, adopted is 

where A is a positive constant, c,, p, and h, are 
'critical' concentrations of nutrient, cellular mate- 
rial and inhibitive material, respectively, ml,  rn3 and 
m~ are positive constants and P  is a dimensionless 
constant, with 0 5 P 5 I .  We note that for P = 0 
the presence of the inhibitor does not directly affect 
mitosis. We further note that if we take P = 1 and 
m4 + oo (reducing the inhibitor part of (10) to a 
step function), then if h > h, mitosis is completely 
inhibited; h, then plays a similar role to the threshold 
concentration adopted in the assumptions of previ- 
ous models. The expression for the death rate is 
the same as that used in Ward and King (1997), 
namely 

where B. o, cd and m2 are non-negative constants, 
with 0 5 a 5 1. This form for the death rate func- 
tion, kc),  implies cell death occurs even at opti- 
mal nutrient levels, reflecting cell loss via apop- 
tosis. Using similar ideas to those of Ward and 
King (1998) in constructing the consumption rate, 
the form 

Defining r = 1x1, we study the above system 
of equations in a spherical geometry. The initial 
state is a matter of choice but in the si~nulations 
which follow we start with a single cancerous cell 
(although the continuum model will not then be real- 
istic in the very early stages, it is expected to be 
acceptable as soon as significant number of cells 
is present). The external medium is assumed to 
contain cellular material at concentration po and, 
for generality, some inhibitor at concentration ho. 
To model experiments concerning the effects of 
externally introduced inhibitors on spheroids (for 
example Freyer et al. (1988)) it would be appro- 
priate to set ho at some non-zero value; in all of the 
simulations which follow except those illustrated in 
Figure 13 we take ho = 0. The initial and boundary 
conditions are therefore 

a p  at r = S c = cu, D,: = Q,,(po - p ) ,  
dr 

where S ( t )  is the radius of the spheroid and is 
the coordinate of an unknown moving boundary. 
Robin type boundary conditions have been imposed 
for both p and h at r = S(t), whereby the flux 
of material across the tumour surface is assumed 
to be proportional to the concentration difference 
there, with Q,, and el, being non-negative constants. 
For Q ,  > 0 and Qr, > 0 the cellular and inhibitive 
material is able to escape from the spheroid. 

Henceforth, we decouple p from the system of 
equations using the no void condition (4), giving 
p = (1 - V L n  - Vhh)/V,, ,  and focus on the equa- 
tions for live cell density, inhibitor concentration, 

Cni I Ptn' nutrient concentration and velocity. 
k(c. P ,  h )  = A (c:,l + c,,,) ( P I  + 8 2  ( p r q  + p , f n )  

(11) 
2.2 Non-Dimensionalisation 

1 - P  

Denoting dimensionless quantities with carets, the 
is used, where and P2 are positive constants. following rescalings based on the initial conditions 
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are made 

where ro = S(0)  = ( 3 ~ ~ / 4 n ) ' l ' .  For reasons noted 
in Ward and King (1997), we can adopt a quasi- 
steady simplification for c resulting in the follow- 
ing non-dimensional system of partial differential 
equations 

A A A  + 2 ((2, ) - ( 2 ,  1 - h - 1 ,  h ) ) )  . (16) 

where D,, = D,,/,A, t)ll = D ~ , / ~ ; A  and D(&)  = 

D , ~ ~ ( D ~  - Dl,) is non-negative. The dimensionless 
functions 2, 6 have the same physical interpretations 
as in Ward and King (1997), representing net birth 
and volume production rates respectively, and are 
given by 

where = V / , h / V L ,  6 = V D / V , ,  $ = +/AVL,  G = 
V,,v /VI ,  and the functions i,,, and L,i are given by 

where jl,. = V,,p,, and h,. = VI7h,.. The dimension- 
less consumption rate, k,  is 

where 31 = l - , $ I ~ / ~ ~ L ~ O  and b2 = r i p z A / ~ ~ L c o  
and the dimensionless production rate of the inhi- 
bitive species, i, is defined by 

where p = V l r p h / V L .  We note that the choice of 
scalings imply that p _( 8 (from (1)) and 5 1 
(from (3)). 

The full set of dimensionless initial and boundary 
conditions is 

a; 
a t i - = O  - - 

a;. a i  
- 0 , - = O , C = O  - = o  a; a; a ;  ' 

where Q,, = Q, , rd ,  Qi, = Q i l r d r  = V,,po and 
Inlo = V J , ~ O .  The boundary condition for h at i = i 
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results from the substitution of the no void condition 
into the Robin condition for p. 

The system of equations thus consists of two non- 
linear reaction-diffusion-convection Equations (13) 
and (16), a second order differential Equation (14) 
and a first-order partial differential equation for the 
velocity (15), defined in the region 0 < i < :(?I, the 
unknown :(?) being a moving boundary coordinate. 
It will be shown that the degeneracy of the diffusion 
terms (see (13)) can generate steady-state solutions 
with n - 0 in the core, i.e. having a fully deve- 
loped necrotic core. However, as with the model of 
Ward and King (1998), steady-state solutions with 
n > 0 throughout the spheroid (i.e. with only a par- 
tially developed necrotic core) can also occur and 
the fully/partially necrotic core bifurcation is dis- 
cussed in more detail Sections 4-6. 

The model has four mechanisms for growth retarda- 
tion, namely volume loss at cell death, material leak- 
age, consumption of the cellular material and mitotic 
inhibition. Listed below are various special cases that 
can arise on 'switching off' individual mechanisms 
by appropriate choices of parameter values. 

Basic Model, i.e. the model of Ward and King (1997). 
This can be derived by dropping the diffusion 
terms for the necrotic products (D,, = D~ = O), the 
live cell dependency of cellular material (i = 0. 
$, = 0) and the effects and consumption of the 
inhibitor (P = I )  = 0). With the dead cell density 
defined by = $ + i ,  the dimensionless form of 
the Basic Models is then recovered. We note that 
neglecting the diffusion terms requires the removal 
of the boundary conditions for h and n .  

Inhibitor-free Model. i.e. the model of Ward and 
King (1998). This can be derived by setting 
k = 0. SO that none of the second species is 
produced during necrosis, and by the removal 
of its external supply by setting either Q,, = 0 
or ho = 0. 

Leakage-inhibitor Model. This is derived by set- 
ting h = 0 and $,. = 0, so mitosis neither depends 
on nor consumes cellular material. 

Consumption-inhibitor Model. Here we set Q ,  = 

Q,, = 0, thus preventing any escape or influx 
of material, with b, > 0 and > 0. Non-trivial 
solutions can then exist only if 6 - (1 - G)p ( i, 
the derivation of this result being described in 
Section 5. 

Inhibitor-only Model. This is derived by pre- 
venting leakage (Q, = QI, = 0), cellular material 
consumption (h = j ,  = 0) and volume loss by 
inhibitor conversion ($ = 1). It will be shown 
in Section 5 that steady-state solutions then exist 
only in the case 6 = 0. 

The carets on all the dimensionless quantities will 
be dropped for brevity in the rest of the paper. 

3 NUMERICAL RESULTS 

Many of the effects of the inhibitor on spheroid 
growth predicted by the model are best illustrated 
by the long-time solutions, and for this reason only 
a short survey of the transient behaviour is given 
here. The numerical procedure for the solution of 
(13)-(16) subject to (18) is essentially the same 
as that described in Section 3.1 of Ward and King 
(1998) and we omit the details of the methods used. 
The parameter set used as the standard in this section 
is derived from a combination of experimental val- 
ues (see Ward and King, 1997, 1998) and best 
estimates. The parameter values of Ward and King 
(1998) are again used, i.e. 

B / A = 0 . 5 , o = 0 . 9 . c C  =O.l ,c , ,=O.l . rnl  = 1, 

m2 = 1, = 0.01, ,flz = 0.6 = 1, h = 1, 

D , = 3 0 0 , Q , , = l O , p ~ = O . l , p , = O . l . m ~ = 1 ,  

(19) 
and the remaining parameters are 

p = 0.1, @ = 1, u = 1, P = 0.3, 

D,, = 300, Q,, = lo ,  ho = 0, h, = 0.1, rnj = I .  (20) 
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There is very little relevant data available to estab- 
lish suitable parameter values for the inhibitor and 
those given here are for the most part estimates lead- 
ing to reasonable results; only the diffusion coeffi- 
cient D,, and a value for P could be obtained from 
the experimental literature. The values chosen imply 
that inhibitor forms 10% of the necrotic material 
produced (p = 0.1) and can be completely con- 
verted by the live cells to make the same volume 
of usable material ( u  = 1 ) .  The value used for P is 
derived from Figure 2 of Hare1 et al. (19841, which 
suggests there is about 30% mitotic inhibition of 
3T3 mouse fibroblast cultures at saturated lcvels of 
the inhibitory factor IDFN. The inhibitor is taken to 
have the same diffusive and leakage properties as 
the cellular material, with no inhibitor being present 
in the external medium. Based on the power law 
expressions given in Nugent and Jain (1984), relat- 
ing molecular masses and the diffusion coefficient, 
the value chosen for the diffusion coefficient Dl, rep- 
resents inhibitive molecules of molecular mass of 
about 10000. 

Figure 1 shows the growth in time of the spheroid 
and necrotic radii with the above parameter values. 
The figure demonstrates that the main features 

of growth are maintained when the inhibitor is 
included. Close inspection reveals an initial phase 
of accelerating growth, soon retarding to an appa- 
rent linear growth regime, and eventually retarding 
further (from about t = 100) to saturate at a size 
S x 112. Despite the fairly low level of inhibitor 
production (p  = 0.1) and fairly weak inhibitory 
effects on mitosis (P = 0.3) the saturation size has 
dropped sharply from the value S = 168 which 
occurs for the uninhibited spheroid (Ward and IOng, 
1998). Inspection of the dashed curve in Figure 1 
shows that the necrotic core initially expands faster 
than the spheroid, consistent with the experimental 
observations of Groebe and Mueller-Klieser (1996) 
and Tannock and Kopelyan (1986). Eventually the 
necrotic core size saturates, resulting in a viable rim 
(taken to be the region with n 0.1) width of about 
30 cells for the above parameters. 

The 'exponential' and 'linear' phases of growth 
predicted by the model can be made explicit using 
the same approach to the asymptotic analysis as 
that described in Appendix 2 of Ward and King 
(1998) for the limit BIA = E + 0 with Dl,, D,,, Q,,, 
Q,, = 0 ( 1 / ~ ) .  Exponential growth can be shown 
by considering the additional limit of PI,  ,B2 + 0 

FIGURE 1 Plot of dimensionless turnour radius (solid line) and the necrotic core radius (dashed, defined to be where rl = 0.1) 
against time. 
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where we have, following an initial transient, c -- 1, 
n - 1 - po - ho, h - ho and 

for some positive constant So, provided t << ln( l /  
(@I + 82)). More generally, an equivalent system 
to Equations (65)-(67) in Appendix 2 of Ward 
and King (1998) can be derived for the t = O(1) 
time-scale and, following the initial acceleration of 
growth, we find that 

as t + m, where rl= (pt'/(py'3 + pY3))(1 - Phg'.'/ 
(h:"" hh"'-' )). B = (1 - PII - hd(B1 + B2v) and 90 
(mi,  c,) is given by q = qo(rn1, c, )/fl'12, where q is 
defined in Ward and King (1997). The expression 
(21) demonstrates that, on the time-scale r = 0(1) ,  
linear growth is approached in this limit. We note, 
however, that the expression (21) does not always 
represent growth in the travelling wave regime dis- 
cussed in the later sections. Analysis of the longer 
time-scales (on which growth saturation rather than 
a travelling wave may occur) leads to a complex 
system of nonlinear partial differential equations on 
which limited analytical progress can be made. 

The evolution of the live cell density for the 
simulation of Figure 1 is illustrated in Figure 2. 
We observe the eventual formation of a plateau 
of live cells in the viable rim, decreasing deeper 
into the spheroid to form the necrotic core. The 
live cell distribution tends to a steady-state with 
a fully necrotic core, indicated by the solid curve 
which was obtained from the numerical solution of 
the appropriate system derived in the next section. 
The steady-state mitotic rate distribution is given by 
the dotted curve which demonstrates the existence 
of a quiescent region of cells towards the edge of 
the necrotic core. Figure 3 shows the development 
of the inhibitor distribution in time, about 5.5% of 
the material in the necrotic core eventually being 
inhibitive. The inhibitor profiles are monotonically 
decreasing in r, and are non-zero at the surface, 
implying that inhibitor leakage is non-negligible and 
contributes to the volume loss. Even though the 
concentration of the inhibitor is low, its presence 
has a significant effect on the overall growth. Using 
the parameters given above, the maximum inhibitor 
concentration of about 0.055 will reduce the mitotic 
rate only by about lo%, which is unlikely on its own 
to be sufficient to cause such a significant change in 
saturated spheroid size. The fact that the inhibitor is 

FIGURE 2 Evolution ol' live cell density distribution in time. The steady-state li\e cell density and rrlilolic rate distribution are 
depicted bq thc solid and dotted curves respectively. 
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FIGURE 3 Eiolution of mitotic inhibilor distribution in  time. The solid curve i s  the steady stute wlution. 

FIGURE 4 Spheroid radius againsl timc for \arlous values oS P. Thc growth of the spheroid without any inhibitor production i \  
depicted by the solid curve. ~ \ h i c h  is taken Srorn Figure I of Ward and King (1998). 

occupying space that would otherwise be taken LIP the inhibitive strength parameter P are studied, the 
by the cellular material is another important feature. rest of the parameters being given by (19)-(20). 
The physical presence of the inhibitor reduces the Comparison of the uninhibited growth curve and the 
availability of cellular material and consequently the P = 0 curve clearly demonstrates this feature. Here, 
mitotic rate is reduced. P = 0 implies there is no mitotic inhibition and the 

The role of inhibition by 'space-occupation' is marked reduction in saturation size (from S x 168 
better illustrated in Figure 4, where the effects of to S "-- 130) is due purely to the lowering of cellular 
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FIGURE 5 Spheroid radiuc against time for \arious ialues of / r  fol- the Lcakage-inhibitor Model. The ex-entual saturation size i\ 
indicated by the da\hed lines on the right-hand {ide. 

material availability. This is despite the fact that the 
inhibitive material can be converted to usable cel- 
lular material by the living cells. The figure shows 
that increasing P has the expected effect of reducing 
the eventual saturation size. We observe that up to 
about t = 100 the curves are indistinguishable, due 
to the relatively low levels of cell death, and hence 
of inhibitor production, over this period. 

In Figure 5 the effects of the inhibitor produc- 
tion factor p on spheroid growth are shown for the 
Leakage-inhibitor Model. The parameters are given 
by (19) and (20), except for D,, = Dl, = 800, Q,, = 
Qi7 = 100 and \I, = 0, so that there is no breakdown 
of inhibitor by the living cells. The curves for p = 0 
and p = 0.1 ultimately tend to travelling waves while 
saturation occurs for p = 0.25,O.S and 1; by solving 
the large-time equations derived in the next section 
numerically, the bifurcation between these situations 
can be shown to occur at p 0.1 1. It will be shown 
in the next section that inhibition as a growth slowing 
mechanism is inadequate to force growth saturation 
on its own. However, this figure demonstrates that the 
amount of inhibitor that is produced may nevertheless 
be a vital factor in producing growth saturation. 

4 LONG TIME BEHAVIOUR: 
FORMULATION 

The numerical solutions suggest that, depending on 
the parameter values, the large-time behaviour is 
given by either a travelling wave (i.e. continual 
growth at a linear rate) or a steady-state solu- 
tion (i.e. growth saturation): as with the Inhibitor- 
free Model (Ward and King, 1998), the latter may 
have either a fully or partially developed necrotic 
core. We note that to our knowledge there is no 
experimental evidence of the continual growth of 
spheroids and so that the travelling wave solu- 
tions may not be physically relevant. However, 
their study is necessary to determine the parame- 
ter regimes in which continual growth of spheroids 
is or is not possible; such studies could sug- 
gest conditions enabling continued growth to be 
achieved experimentally. In order to investigate the 
distribution of these solution types in parameter 
space, the long time system is now studied. The 
derivation of the appropriate equations is similar 
to that of the long time systems for the Inhibitor- 
free Model. 
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4.1 The Travelling Wave Limit 

The formulation of the relevant system of equations 
is achieved in the usual manner: we assume the 
spheroid to be growing at an undetermined con- 
stant speed U > 0,  so that S - Ut as t + GO. 
Translating to the travelling wave coordinates using 
z = r - S(t) ,  with z < 0,  the following system of 
ordinary differential equations is obtained 

D(h)h" = -D,hn"+(v - U)hr -n (1 - bh),  (25) 

where ' denotes dldz;  r-lalar terms are negligible 
compared to a2/ar2 terms as S + oo. The boundary 
conditions for this system are 

as z --+ -GO n',  c', v ,  h' -+ 0 ,  

The travelling wave system (22)-(25) is seventh 
order with eight boundary conditions, which are 
sufficient to determine the seven dependent vari- 
ables n ,  n' ,  c, c', v, h and h' and the unknown wave 
speed U .  

As with model of Ward and King (1998), analysis 
of the far-field demonstrates that n decays exponen- 
tially as z -+ -oo, implying necrosis in the core. 
In the special cases of 1) PI = 0 ,  so that k = B2k,1, 
and 2 )  S = h, using the same approach described in 
Ward and King (1998) this condition can be used in 
reducing the order of the system by one. 

4.2 The Steady-State Limit 

Here the time derivatives are taken to vanish as 
t -+ oo and the spheroid to saturate to some unde- 
termined finite radius S,. The steady-state system 

consists of the ordinary differential equations 

dn + 7'- dr - n (u  - bn) ,  

d h 
+ v - - n  ( I  - bh). 

dr 

defined on the domain 0 < r < S,. This system 
is seventh order with seven dependent variables, 
n ,  dn ldr ,  c,  dcldr,  v, h and dhldr to be determined. 
The solution can have either a fully or a partially 
developed necrotic cores and the relevant boundary 
condition for each casc are listed below. 

Partially necrotic core solutions: The boundary 
conditions are 

d h 
Dh- dr = Qh(hO - h) .  

These eight boundary conditions are sufficient to 
determine the seven dependent variables and the 
unknown free boundary S,. 

Fully necrotic core solutions: Here there exists 
another free boundary R,, where n becomes 
zero, and for r < R,  we have n  - 0,  v r 0, c = 

Co - c(R,) and h = H o  = h(R,), where C o  and 
H o  are positive constants. The relevant boundary 
conditions for the system (27)-(30), defined on 
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the region R,  < r < S,, are 

For this problem there are now nine boundary con- 
ditions to determine the seven variables and the two 
free boundaries R,  and S,. 

Fullylpartially necrotic core bifurcation: The bi- 
furcation between these two types of solutions 
occurs when n ( 0 )  = 0 and the boundary conditions 
are exactly as in (32),  with R, = 0. This results in 
nine boundary conditions to determine the seven 
variables and the unknown S,; as expected, the 
bifurcation problem is thus over-specified since 
some relation between the parameters must hold 
in order to lie on the bifurcation curve. 

As with the 
the system can 
noted above. 

4.3 Travelling 

travelling wave case, the order of 
be reduced by one in the two cases 

WaveISteady-State Bifurcation 

As with the model of Ward and King (1998), 
the transition between the two types of large time 
behaviour corresponds both to vanishing travelling 
wave speed, U -+ 0, and to steady-state spheroid 
radius tending to infinity, S ,  + cc, the two-large 
time outcomes corresponding to non-intersecting 
sets of parameters. We locate this bifurcation curve 
by seeking steady-state solutions with a fully deve- 
loped necrotic core in the limit of S, + oo. Focus- 
sing on the viable rim region the steady-state Equa- 
tions (27)-(30) are translated using x = r - S,, so 
as S ,  + cc the following system is obtained 

DI1nn" = n(Dil - D,)h" + un' - n(a  - b n ) ,  (33)  

c" = kn,  (34)  

v' = bn - DpnU + (Dl, - D,)hf', (35)  

D(h)hU = -D,,hnl' + vh' - n ( l  - bh). (36)  

where the rp'd/dr terms are of O(S;') and are 
therefore neglected as S ,  -+ oo. Defining the free 
boundary coordinate X to be the necrotic core inter- 
face, so that for x < X we have n = v = 0 ,  then for 
x > X we subject Equations (33)-(36) to the bound- 
ary conditions 

at x = 0 D,n' = Q,(l - n - h - po)  - D,kl, 

c =  1 , v =  U .  (37)  

Dhhl = Ql,(ho - h).  

Here there are nine boundary conditions to deter- 
mine the seven variables and the unknown constant 
X; this problem is also over-specified, as is again to 
be expected, since the parameters must satisfy some 
relation in order for the solution to lie on the bifur- 
cation curve. We note that the order of the system 
(33)-(36) can be reduced by one in the special case 
of B,  = 0. 

5 LONG TIME BEHAVIOUR: EXISTENCE 
OF NON-TRIVIAL SOLUTIONS 

In this section we shall examine the existence of 
solutions to the long time systems of equations. 

5.1 Existence of Solutions to the 
Consumption-Inhibitor Model 

Here we examine the existence of non-trivial solu- 
tions for the Consumption-inhibitor Model. It will 
be demonstrated that, except in a very special case, 
the passage of either cellular or inhibitive material 
through the surface of the spheroid is essential for 
the existence of steady-state solutions. 

Focussing on travelling wave solutions first, we 
combine (24) with (22) and (25) to obtain the system 
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subject to (26); these equations 

u l =  (6 -  h -  (1 - v)p}k,,,n + 

J .  P. WARD A N D  J.  R. KIN(; 

give 

(1 - 6 - (I  - v)p) 

Integrating this using (26) and the no flux condi- 
tion on z = 0 (recalling that Q,, = Q,, = 0 here) we 
finally obtain 

0 

(6 - h - (1 - v)p) / k,!$ d:. (39) 
- r 

Unless v = 0 and h(-co) = 1, positivity of the left- 
hand side and the non-negativity of the functions n 
and k,,, implies the following necessary condition for 
the existence of travelling wave solutions 

which is needed to ensure positivity of the right- 
hand side of (39). We note here that at cell death 
a volume 6 - p of cellular material is produced, 
and a further volume vp can be gained through 
conversion of inhibitive material by the living cells. 
Thus the existence condition (40) simply states that 
the total amount of cellular material that can be 
produced through cell death (namely 6 - (1 - u ) p )  

must exceed that required for birth (A) in order for 
travelling wave solutions to exist in the case of no 
material leakage from the spheroid. 

Using a similar approach for the steady-state 
system, (27)-(30)], reveals that non-trivial solutions 
can only exist if 6 - (1 - v)p = h. As with the 
Inhibitor-free Model, when 6 - (1 - v)p  = h the 
zero flux conditions on n and h at r = S, imply 
v(S,) = 0, so that the system is effectively one 
boundary condition short: the steady-state system in 
this case is under-specified and there is an infinite 
number of solutions parametrised by the saturation 
size S,. That the 6 - (1 - v ) p  = h case is rather 
special can also be seen as follows. Using the zcro 
flux conditions for n and 11 at r = S(t), the time- 
dependent model can be manipulated to give the 

following expression for S 

which in the special casc of 6 - (1 - v)p  = A ,  
reduces to an exact derivative, namely 

Recalling that p is the concentration of cellular 
material, so that p = 1 - n - h, this equation may 
be rewritten to give 

implying that the value of the integral remains 
fixed for all time. This integral js the total amount 
of cellular material contained within the spheroid, 
meaning both the 'free-floating' material ( p )  and the 
material that can be produced via cell death ((6 - 
p(1 - v ) ) M )  and breakdown of the existing inhibitor 
(vh). Equation (43) thus states that the total amount 
of cellular material in the spheroid is conserved 
during growth as to be expected since 6 - (1 - 
v)p = h implies that the total amount of cellular 
material that can be produced is equal to the amount 
required for cell birth. Integrating Equation (42) and 
taking the limit r -+ m, leads to 

.$, 

S: - 3 I(T r2[( l  - h)n (r. co) + (I - li) h(r, s ) ] d r  

giving an expression for the steady-state quan- 
tities wholly in terms of the initial conditions. 
Equation (44) provides the extra condition needed 
for the steady-state case to be a closed system, 
enabling the saturation size to be determined in 
terms of the initial conditions. We note that the 
travelling wavelsteady-state bifurcation curve for 
the Inhibitor-consumption Model is simply the line 
6 - (1 - U)/L = h. 
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For 6 - (1 - v ) p  (h there are no non-trivial 
large-time solutions of the Consumption-inhibitor 
Model; more cellular material is consumed than 
the maximum amount of cellular material that can 
be generated by cell death and inhibitive material 
breakdown, so the tumour must eventually die out. 

5.2 Existence of Solutions of the Inhibitor-Only 
Model 

For the Inhibitor-only Model we have h = 0 and 
v = 1. and the same analysis leads to 6 = 0 being 
the condition for steady-state solutions to exist. 
Again, there are then an infinite number of solu- 
tions parametrised by S,, dependent on the initial 
conditions. For 6 > 0, using a similar argument to 
that of Section 5.1, it easy to show that travelling 
wave solutions can exist, but steady-states cannot. 
The dependence of the long time outcome on 6 is 
thus similar to that of the Basic Model (Ward and 
King, 1997); however, in that model the steady- 
state solution is expected to be unique, as was made 
explicit in the limit of B / A  + 0, there being suffi- 
cient boundary conditions to completely specify the 
solution. 

5.3 Two Non-Trivial Long Time Solutions 

In Ward and King (1998) it was shown that 
two non-trivial long time solutions exist in certain 
parameter regimes, where the bifurcation between 
the existence of one (Regime I) and two (Regime 11) 
branches of long time solutions was studied by, for 
example, seeking solutions in the limit of h + x. 
It was shown that in Regime I1 the solutions fall 
on two branches which meet at a finite value of 
h, beyond which no non-trivial long time solutions, 
of either type, exist; in Regime I, however, a non- 
trivial long time solution exists for all A. Repeating 
the analysis on the current model in the limit of 
h 4 oo we find that c -- 1, h - ho, n - 170 and 

where no is the solution of k,,, ( 1. 1 - no - ho ho)  = 

k,[(l), so that 

Although these limits are not physically realistic, 
we observe from Equation (45) that positivity of 
S, requires no + po + ho > 1. These expansions 
for h + oo break down when no + p o  + ho < 1 ,  
indicating that solutions only exist for a finite range 
of h, suggesting Regime I1 solutions. Thus the line 
110 + po + ho = 1 marks (in the limit) the bifurca- 
tion between solution Regimes I and 11. The para- 
meters chosen for the numerical work of the next 
section are such that only Regime I occurs, a single 
long time solution existing for all h. 

6 LONG TIME BEHAVIOUR: NUMERICAL 
SOLUTIONS 

6.1 Numerical Methods 

The procedures for the numerical solution of the 
long time systems follow those of Ward and King 
(1998). Each of the above cases is reformulated as 
a two-point boundary value problem and is solved 
using a shooting and matching method, incorporated 
in NAG routine D02AGF. The continuation proce- 
dure described in Ward and King (1998) is used for 
studies in parameter space. 

6.1.1 Travelling wave limit 

The linearised solutions of (22)-(25) as z + -CC 

are used to approximate the variables at a point 
z = -L for a suitably large value of L > 0. Defin- 
ing T = d n l d z ,  9 = dcldz and 0 = dh ldz  and let 
y = z /L  + I ,  we rewrite the (22)-(25) as a sys- 
tem of seven first-order differential equations for 
n ,  Y, c, Q, 2, .  h and 0 to be solved on the region 
v E (0. 1). Linearising thc system (22)-(25) as 
z + - oc provide approximations to the variables 
at z  = -L, leading to the following set of boundary 
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conditions 

at p = 0 n  = Noexp(aL /U) .  

Y = - a n / U ,  c  = Co + ( ~ / a ) ' k n ,  

9 = -a(c - C o ) / U .  v = -Van, 

h = Ho + n u n ,  9 = -al-ton/U, 

a t y = 1  n = N I , Y = 2 , c = l , z 1 = U . h = H I ,  

@ = Qh (ho - Ho)lD11, 

where 

Q 
2='(1-NI - H I - p o )  

D P 

Qil - -(ho - H I ) .  
Dl, 

D,,Q'H~ + ~ ' ( 1  - D H " )  
KO = - 

~ ' D ( H ~ )  - a u 2  

bU D,,a a  
Vo = -- + - - (Dll -Dl , ) -KO,  

n U U 

u is given by a(Co .  1 - H O ,  H o )  and similarly for 
b. k  and 1. Here, the constants N O ,  CO.  H o .  N I  and 
H 1 ,  as well as U ,  are determined as part of the solu- 
tion; thus, fixing L, we have a seventh order system 
with six unknown parameters and thirteen bound- 
ary conditions, and we hence expect the numerical 
problem to be correctly specified. 

6.1.2 The steady-state limit 

The solution domain is dependent on the type of 
steady-state solution and we discuss each of these 
cases separately. The singularities that occur for 
each of these problems are handled in the same 
manner as described in Ward and King (1998). 

Partially necrotic core solutions: To avoid the 
evaluation of r - '  terms as r + 0, the boundary 
conditions are approximated at a point r = E using 
a series expansion of the variables In powers of 
E << 1. We agam define Y = d n l d z ,  9 = dcldz  
and @ = dhld? and let p = ( r  - t ) / L ,  where 
L = S ,  - E ,  SO that (22)-(25) is restated to a 
system of seven first-order differential equations 

for n ,  Y, c, Q, v, h and Q to be solved on the 
region p E ( 0 ,  1 ) .  The first correction terms of the 
series expansions are used for the approximation 
of the boundary conditions at y = 0 ,  giving 

where 

and 2 is given by (46) ,  with a denoting a(Co ,  1 - 
No - Ho. H o )  and similarly for h, k  and I .  Thus we 
have unknown parameters NO, Co, H o ,  N ,, H I  and 
S, and for the usual reawns the problem is expected 
to be well-specified. 

Fully necrotic core solutions: The problem of the 
I / n  term as r -+ R&, due to the degeneracy of the 
'diffusion' term in Equation (27) is dealt with by 
solving from a point r = R,  + E ,  approximating 
the variables for c << I .  Fixing the domain to the 
unit interval using y = ( r  - R,  - E ) / L ,  where 
L = S ,  - R,  - E ,  and defining Y ,  and @ as 
before, leads to the same system of equations as 
for the partially necrotic core case. Using the first 
correction term of the series expansions for small 
E at y = 0 yields the following set of boundary 
values 
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where 

a denotes a(Co. 1 - H o ,  H o )  and similarly fork.  We 
again have the required number unknown constants, 
namely C o , H o , N I , H 1 , S ,  and R,. 

Fullylpartially necrotic bifurcation: For fixed E we 
rescale to the unit interval using y = (r - c ) / L  
where L = S ,  - E ,  resulting in the same system 
as for the partially necrotic core case. To the first 
correction term, the boundary conditions are for 

E << 1 

where the constants Z ,  N2 and 'F12 are defined above, 
n  denotes a(Co. 1 - Ho.  H o )  and k is defined sim- 
ilarly. Here the quantities to be determined include 
Co. Ho .  N 1 ,  H I ,  S, and the relationship which must 
hold between the parameters in order to lie on the 
bifurcation. 

6.1.3 Travelling wavehteady-state bifurcation 

To avoid the difficulty with the l / n  term as x + X+ 
we integrate from x = X + E for t << 1 and map 
the system to the unit interval using y = 1 + x / L ,  
where L = -X - E .  Defining T, \I, and Q, as above 
results in the same system as for the travelling 
wave case, with U = 0, together with the boundary 
conditions (47). The undetermined constants for 
this case are Co, H o ,  N , ,  H I ,  X and a relationship 
between the parameters is obtained, locating the 
bifurcation path. 

6.2 Numerical Results 

The model consists of many parameters and a com- 
plete survey of the effects of each of them is imprac- 
ticable. With little data on any inhibitive species 
available, the 'standard' set of parameters given 
below are best guesses. The aim is to assess the qual- 
itative effects of the various parameters and, as in 
Ward and King (1998), we shall focus mainly on the 
paths of the travelling wavelsteady-state bifurcation 
in parameter space. We will be restricting attention 
to solutions under the Regime I parameter scheme 
(discussed in Section 5.3). The behaviour of the 
Regime I1 solutions are not significantly different to 
that of the uninhibited case of the model, which is 
studied in more detail in Ward and Kind (1998). 

In the following set of figures we again use 
(19), except that (see below) we take D,, = Q,, 
and choose D,, = Q ,  = 100; the 'standard' set of 
parameters for the inhibitive species is 

Throughout we shall set Dl, = Q ,  and Dl, = Q , ,  
ensuring that the terms in the Robin boundary con- 
ditions for n and h remain balanced, and changes 
in leakage properties that would result from chang- 
ing D l / Q , ,  do not obscure the effects of the other 
parameters. The choice P = 0.9, rather than P = 

0.3 (used in the numerical solutions of the tran- 
sient model), is made to emphasise the role of the 
inhibitor in the long time behaviour of the model. 

In Figure 6 the locations of travelling waves and 
of both types of steady-state solution are shown 
in (Dh = Qh, p )  space, with the other parameters 
given above. The solid and dashed curves mark the 
bifurcations between travelling wavelsteady-state 
and fullylpartially necrotic core solutions, respec- 
tively. Underneath the solid curve there is insuffi- 
cient inhibitor production, together with insufficient 
leakage of necrotic material, for growth satura- 
tion to result. In fact, for this example if Dl, = 

Qil 1 30.69 then saturation is not possible over 
the physical range of p,  namely 0 5 p 5 1. The 
numerics suggest that both of the bifurcation curves 



J .  P. WARD AND J. R. KING 

part ial ly 
necro t ic  c o r e  

so lu t ions  

\ ', tul ly 
'-.. necrot ic  L o 1  L' 
-1. 
1 l-- m l u t ~ o n s  ---- ---- -_ ---- - 
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FIGURE 6 The distribution oI' steady-statc and travelling wave solutions in (Dl, = Q1,, p) parameter \pace, showing Ihe solution5 
to thc travclling wave/steady-state (solid curve) and fully/partially necrolic corc (dashed curve) bifurcation fotmulations. Thc paths 
for Figures 7 and 8 arc indicated by the dotted l i t m  labclled A-C; wc note that line\ A and B are not asyrnptotcs of the bifurcation 

0 0.2 0.4 0.6 0.8 1 
~nh~bltor product~on factor (14) 

FIGURE 7 Plots of the travelling wavc growth speed against p for fixed ~ a l u c s  of Ul, = Ql, equalling 25 (A),  100 (R) and 300 (C).  

asymptote to a non-zero limit as Dl, = Qh -+ OC. The dotted lines labelled A-C are paths along 
This is to be expected - as the diffusion of the which the travelling wave speed and saturation size 
inhibitor becomes more rapid, less accumulates in have been investigated as functions of p; we note 

the spheroid and the model effectively reduces to that path A lies entirely in the travelling wave 
the Inhibitor-free Model with a modified cell death region. In Figure 7 we observe that the travelling 
contraction factor, 6, given by 6 = 6 - p. wave speed is monotonically decreasing in p, which 
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is to be expected as an increase in inhibitor pro- cellular material, sufficient to ensure that only steady- 
duction in the core leads to reduced growth in the state solutions exist throughout this parameter space. 
viable rim. The expected behaviour that increasing In Figures 10-12 we investigate the effects of the 
the inhibitor production leads to the decrease in sat- inhibitor parameters p, Dl, = Q17 and + on the trav- 
uration size is demonstrated in Figure 8. The travel- elling wavelsteady-state bifurcation curves in ( D ,  = 

ling wavelsteady-state bifurcations are indicated by Q,, h )  space. All other parameters are given by (19) 
the dotted lines, and we see that the saturation size and (481, except that we set p = 0.25. We note that 
initially decreases rapidly on increasing p before the travelling wave solutions lie below each of the 
levelling off. The dashed curves indicate the radius bifurcation curves shown, with steady-state solution 
of the necrotic core, defined to be the position of the lying in the remainder of the quarter space. We note 

necrotic interface; inspection of the figure shows that in Figure 10 that setting p = 0 reduces the current 
the viable rirn increases in width as more inhibitor model to the Inhibitor-free Model, the corresponding 

is produced. This is due to the increase of inhibitor curve being the same as the solid curve of Figure 13- 
in the viable rim lowering the live cell density, of Ward and King (1998). Increasing p leads to a 
allowing greater penetration of adequate nutrients; 
we note B2 = 0 implies that nutrient consumption is 
independent of the inhibitor concentration. 

By suitable choice of parameters, the effects of 
leakage and inhibitor action can be sufficient to 
preclude the possibility of travelling wave solutions 
in (Dl,  = Q,,, p) space. The results of such a case 
are illustrated in Figure 9 where we have used the 

greater concentration of inhibitor in the viable rim 
region, reducing the growth rate and, as shown in 
the figure, resulting in the shrinkage of the travelling 
wave region. It is worth noting that the bifurcation 
curves retain a very similar shape for all /L. Simi- 
lar qualitative behaviour can be observed by varying 
v across the physical range of v, i.e. 0 5 v 5 1, it 
being found that increasing v leads to the shrinkage 

parameter set (19) and (48), except that we have set of travelling wave region due to more inhibitor being 

D,, = Q,, = 300. This enables greater leakage of the converted and then consumed by the living cells. 

0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 1 
lnhlbltor production factor (p) 

FIGURE 8 Plots of saturated spheroid size (sol~d) and necrotic corc radius (dashed: fully necrotic core ~nterface. R,) against /L for 
tixcd 0, = Qi, equalling 100 (B) and 300 (C).  The travelling wave/\tt.ady-state and fully/part~ally necrotic core bifurcations (C only) 
are indicated by the dotted lines and the ' 0 ' .  respectively. The travellin,o wave 5olutions lie to the left of the dotted lines. 
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FIGURE 9 The distribution of the two types of steady-state solutions in (Dl,  = Qi,. p )  space. Parameters given by (48) except for 
D,, = Q,, = 300. 

0 50 100 150 200 250 300 350 400 450 500 
dlffuslon and mass transfer coefflc~ent of cellular material (D, = Q) 

FIGURE 10 The effecta of thc inhibitor production factor /r on the travelling wavelsteady-statc bifurcation in (D,,  = Q,,. A) spacc 
The lravelling wave solutions lie below the bifurcation curves in each of the Figures 10- 12. 

Rather different behaviour of the bifurcation curves travelling wave region is due to the increase of 
as a result of varying Dl, = Qh is shown in Figure 1 I .  the diffusion rate, providing greater penetration of 
The curves for Di, = Qh = 40 and Dh = Q,, = 400 inhibitor into the viable rim from where it may also 
are qualitatively similar and the shrinkage of the leak. However, as Dl, = Q,, is increased to 4000 
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FIGURE 1 i The effects of the inhibitor diffusion and mass transfer coefficients Dl, = Qh on the rra~elling wavelsteady-state 
bifurcation in (D,, = Q,, i,) space. 

c 

0 50 100 150 200 250 300 350 400 450 500 
diffus~on and mass transfer coefficlent of cellular materlal (D, = q)  

FIGURE 12. The effects of the inhibitor conrumption rate II, on the travelling waveisteady-state bifurcation in ( D p  = Qp A) 'pace. 
The dashed curve is the solution of the Inhibitor-free Model with parameters given by (19) and (48). 

the nature of the curve changes somewhat, without due to the mechanism for saturation shifting from 
significantly reducing the area covered by travelling the combined inhibition-leakage process to a leak- 
wave solutions. The increased rate of diffusion has age dominated process. We again note that the qys- 
meant that the inhibitor escapes from the spheroid tem reduces to the Inhibitor-free Model in the limit 
so quickly that its effects on the mitotic cells in the Dl, = Ql, + oo, with a modified value of the cell 
viable rim are small, and the change in the curve is death contraction factor 6 = 6 - p. 
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Figure 12 shows that increasing the inhibitor con- 
sumption rate gives the expected result of expand- 
ing the travelling wave region, and the bifurcation 
curves appear to converge monotonically towards 
the 9 + cc limit. This limit implies that there is 
immediate conversion of inhibitor to cellular mate- 
rial by the live cells, and it can show that h tends to 
zero according to 

~ k ' l ( ~ )  
h - -  

9 
as $ -+ co. The system also tends to the Inhibitor- 
free Model in the limit, with the modified cell death - - 
contraction factor 6 now given by 6 = 6 - (1 - v)p; 
the $ = cc curve is obtained by this means, again 
being the same curve as the solid curve shown in 
Figure 12 of Ward and King ( 1998). 

Shown in the final figure, Figure 13, is the effect 
of an externally supplied inhibitor, ho. on the sat- 
uration size of a spheroid in which no inhibitor 
is released during necrosis. The inhibitor could be 
viewed as a drug, provided it is applied in sufficient 
quantities to contribute a non-negligible proportion 
oT the extcrnal medium. The parameters uscd are 
given by (19) and (20), except that p = 0. 9 = 0 
(ensuring no inhibitor is released during necrosis or 

is broken down) and P = 1 (to maximise inhibitor 
effectiveness). We note that the point ho = 0 is for 
an uninhibited spheroid and corresponds to the case 
illustrated by the solid curve in Figure 4, where 
S, % 168. From Figure 13 we observe the expected 
response that S, decreases on increasing ho. The 
saturation size reduces sharply in the fully necrotic 
core region (ho < 0.0223), descending more gently 
in the partially necrotic core region, before becom- 
ing zero at ho = 0.4; hi, the value of / l o  at which 
S, + 0, is given by kll,(l, po, h i )  = k , , ( l )  (cf. the 
analysis of Section 5.3). For ho > h; there are no 
non-trivial long time solutions, there being suffi- 
ciently large concentration of the inhibitors that the 
death rate always exceeds the birth rate, leading 
to spheroid extinction. We note that this extinction 
is due not to the inhibitor killing the tumour cells 
directly, as would be the case with chemotherapeu- 
tic drugs, but through restricting mitosis to a level 
at which cells die faster than they reproduce. 

7 DISCUSSION 

In this paper we have extended the model of Ward 
and King (1998) to include a second species of 

0 0 05 0 1 0.15 0 2 0 25 0.3 0 35 0 4 
external mhib~tor concentratlon (hJ 

FIGURE 13 The eSSecl ol ex~ernal  inhihitor concentration on the saturated spheroid s i ~ c  (holid cusvc) and necrotic corc r;ldius (d;~\hed 
cur lc ;  lully necrotic corc interface. K ,  1. Thc Sully1pa1-~ially necrotic core bifurcation is indicated by the ' 0 ' .  
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material released at cell death that has inhibitive 
properties. The existence of such materials has been 
demonstrated in numerous experimental studies and 
it is very likely that their contribution to spheroid 
growth is significant. The key conclusions are that 
current of the features of the simpler model of 
Ward and King (1998), but that the inclusion of 
the inhibitor can significantly affect the quantitative 
results. The main difference between the assump- 
tions of the current model and previous models is 
the manner in which the inhibitor is produced and its 
diffusion rate. In previous models (Greenspan, 1972; 
Maggelakis and Adam, 1990) the inhibitor is con- 
tinually being produced in the necrotic core with no 
restriction on the concentration it can attain. This is 
in contrast to our model where there are volumetric 
restrictions (h I: 1 in dimensionless terms) and the 
inhibitor is released only through cell death. How- 
ever, a model very similar to the previous models 
can be derived as a limit case of the current one 
by taking Dh. Qiz + oc. together with h = h / ~ ) , ,  
h, = h; /Dl,, P = I and rn4 -+ w. These assump- 
tions reduce Equation (16) to a quasi-steady elliptic 
equation with a step function form for the inhibitor 
action on the mitotic rate function (10). However, 
the inhibitive protein molecules at issue are large 
(molecular mass of O(10000)) with significantly 
smaller diffusion rates compared to the nutrients, so 
that the D,,, Q,, -+ cc limit may not be physically 
realistic. The current model therefore generalises 
many of the features of previous models and is suf- 
ficiently flexible to account for inhibitor molecules 
of any given size. 

Without imposing any n priori assumptions on 
spheroid structure, the model successfully predicts 
the exponential, linear and, in appropriate parame- 
ter regimes, growth saturation phases together with 
the observed heterogeneity (necrotic core, q~~iescent 
layer and viable rim). The analysis of Sections 5.1 
and 5.2 demonstrated that action of the inhibitors 
alone cannot, except for very a specific set of param- 
eters (namely 6 - (1 - v ) ~  = A), force growth sat- 
uration; this requires the passage of the either the 
cellular or the inhibitive material, or both, across the 
spheroid surface. The numerical solutions show that, 

even at low concentrations, the inhibitors can have 
a significant quantitative effect; see for example 
Figure 4. Figure 4 also demonstrates the two ways 
in which the 'inhibitor' acts: 1) directly, by reduc- 
ing the mitotic rate and 2) indirectly, by occupying 
space, thus reducing the availability of the cellu- 
lar material. Process 2) is illustrated by the reduc- 
tion in saturation size for the case of P = 0 in the 
figure, while process 1) is illustrated by the further 
reduction in size on increasing P. The numerical 
solutions in Section 6.2 demonstrate that increas- 
ing the amount of inhibitor, say by increasing F or 
decreasing @, leads to the region in which the trav- 
elling wave solutions exist being reduced; that is to 
say, the inhibitor significantly increases propensity 
for the spheroid to saturate. Although the role of 
inhibitors may not noticeably effect the behaviour 
qualitatively, such sensitivity of the solutions to 
the presence of inhibitors suggests that they play 
an important complementary role in determining 
spheroid growth. This indicates that the endogenous 
production of mitotic inhibitor must be considered 
in any model intended to give accurate quantitative 
description of avascular tumour growth. 

Our modelling assumes that the inhibitor is pro- 
duced only from the products of necrosis. It is 
well-known that cells in normal tissues also pro- 
duce a number of inhibitory growth factors, and so 
presumably do cancer cells and cells in vitro. This 
effect has been considered in the models described 
in Greenspan (1972) and Maggelakis (1993) and the 
live cell production of inhibitors can easily be incor- 
porated into the current model. The effects of acid- 
ity may also be considered, involving molecules of 
similar size to the nutrient, and presumably requiring 
the modelling of the respiratory pathway in a similar 
manner to Casciari et al. (1992a). These extensions 
are not expected to change the qualitative behaviour 
of the current model, but may be significant quanti- 
tatively. The passage of necrotic material across the 
spheroid surface will certainly still be necessary for 
growth saturation to be predicted. 

The extension to the model of Ward and King 
(1998) has led to a number of new parameters, the 
values of many of which are unpbtainable from data 
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