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The design and implementation of new configurations of mental health services to meet local needs is a challenging problem. In
the UK, services for common mental health disorders such as anxiety and depression are an example of a system running near
or at capacity, in that it is extremely rare for the queue size for any given mode of treatment to fall to zero. In this paper we
describe a mathematical model that can be applied in such circumstances. The model provides a simple way of estimating the
mean and variance of the number of patients that would be treated within a given period of time given a particular configuration
of services as defined by the number of appointments allocated to different modes of treatment and the referral patterns to and
between different modes of treatment. The model has been used by service planners to explore the impact of different options on
throughput, clinical outcomes, queue sizes, and waiting times. We also discuss the potential for using the model in conjunction
with optimisation techniques to inform service design and its applicability to other contexts.

1. Introduction

Health treatment activities where arriving patients might
have to wait for treatment and where duration of treatment
follows a certain probability distribution have often been
modelled using queueing theory. A classic example is the
study of accident and emergency departments in acute hospi-
tals [1, 2]. However in situations where “treatment” consists
of a set of distinct treatment types, with the possibility
of queues at each treatment stage, and the possibility of
receiving a given type of treatment more than once, the use
of queueing theory becomes very complex [3, 4].

The provision of mental health care for depression and
anxiety in the primary care system is one such complex
system. A configuration for mental health care delivery
called “stepped care” is advocated for patients with common
mental health problems [5, 6] to replace traditional systems
(see Figure 1). Stepped care [7] is based on two principles:
(a) “least burden,” so that an intervention received by a
patient should be effective and appropriate whilst burdening
the patient and the health care system as little as possible

[8] and (b) “self-correction,” the provision of a system in
place to detect lack of improvement, which in turn leads
to alternative more intensive treatments being offered [9].
Thus, in a stepped care system, patients are typically first
considered for low-intensity interventions such as guided
self-help, group work, or a short course of individual therapy.
High-intensity interventions typically involve many sessions
with a highly trained professional, such as a cognitive
behavioural therapist. There are many different types of
both low-intensity and high-intensity interventions, and
an individual patient can step both “up” to, or between,
high intensity treatments and “down” to, or between, low-
intensity treatments.

The introduction of stepped care within an existing
mental health care framework is challenging. Planning the
delivery of stepped care requires decisions concerning the
treatments to be offered, the number and type of staff, the
protocol for how patients transfer between treatments, and
the balance of provision between low and high intensity
treatments. The other key feature of mental health care
systems other than their complexity is that they are often



2 Computational and Mathematical Methods in Medicine

Intense therapyGP careTraditional 
models

Low- 
intensity 
therapies

Stepped 
care

GP care Intense therapy

Figure 1: A diagram highlighting the difference between a tra-
ditional care model and the stepped care model. GP: General
Practitioner.

operating at capacity. This is more feasible than in acute
hospital environments since patients in the queue effectively
wait “at home” using little resource.

In this paper we describe a mathematical model we have
developed to help planners design a stepped care mental
health system [10, 11], by providing rapid estimates of
throughput and changes in waiting times for different poten-
tial configurations. This model was implemented within a
software tool that was distributed to pilot primary mental
health care providers [11]. We note that the mathematics
presented here, although discussed in the specific context
of mental health care delivery, is intended to be generic
and is suitable for many other systems that meet certain
assumptions.

2. Methods: Mathematical Model

The approach used is complementary to traditional queueing
theory and is most suited to systems where traffic intensities
are greater than or equal to one or to a system where the
starting states have large queues. It complements recent work
on queueing systems where some of the servers are always
busy [12]. Additionally, this analysis is not dependent on the
distributions of arrivals or duration of treatment. We note
that where the traffic intensity is greater than one, there is
no mathematical steady state to the system (since queues will
increase indefinitely). However, the features of the system can
still be explored within a specified time frame to understand
better the distribution of demand between servers and the
potential impact of increased or redistributed capacity.

2.1. A Single Treatment Slot

2.1.1. Assumptions. The unit of capacity we consider in this
analysis is a time slot in a diary (e.g., a therapy session) and
we assume that patients are treated in discrete sessions. A
given time slot in a diary is assumed to be devoted to one,
and only one, distinct treatment type. We further assume
that a patient takes at least one session to be treated, and
that at the start of the modeled period there is no patient
currently undergoing treatment (i.e., at t = 0 the time slot
is either empty or a patient has just started their treatment).
We assume that durations of treatment of different patients
are independent of one another.

2.1.2. Notation. For x ≥ 1, let px denote the probability that
a patient’s treatment time is exactly x time units. Define p0 =
0.

For x ≥ 1, let sx denote the probability that a patient’s
treatment time is strictly longer than x time units. Define
s0 = 1.

For i ≥ 1, t ≥ 1 let ri,t be the probability that exactly
i patients have completed their treatment and that no other
patient has started their treatment by time t. Define ri,0 = 0
for i ≥ 1.

For i ≥ 1, T ≥ 1, let fi,T be the probability that at time
T exactly i people have completed their treatment. Note that
another patient may have started. Define fi,0 = 0 for i ≥ 1.

2.1.3. The Distribution for the Number of People Who Have
Completed Treatment by Time T . We begin by considering
r1,t, the probability that by time t ≥ 1 exactly one person has
arrived and left and no one else has yet started

r1,t = pt. (1)

We can then define ri,t iteratively:

ri,t =
t∑

k=1

ri−1,kr1,t−k =
t∑

k=1

ri−1,k pt−k. (2)

Thus we have derived an expression for the probability
that at some time t, i people have been treated and no one else
has yet started. To relax this latter condition, we now consider
fi,T , the probability that at some time T , exactly i people have
completed their treatment. We use ri,k to calculate this and
for a given time T :

fi,T =
T∑

k=1

ri,ksT−k. (3)

2.2. A Network of Treatment Slots. We now extend the
concept of a single treatment slot to a network of treatment
slots that can be thought of as representing a given system.

2.2.1. Notation. Consider a treatment slot of type i, for i =
1 · · ·L and absorbing exit states of type i, for i = L+1 · · ·M.
There are a constant number, Ni, of each type of treatment
slot or exit state for i = 1 · · ·M where Ni = 1 for i = L +
1 · · ·M.

Let αi j be the probability that a person leaving a slot of
type i, for i = 1 · · ·M goes to a treatment slot or exit state of
type j for j = 1 · · ·M. Define αi j = 0, for all i = L+ 1 · · ·M
and j = 1 · · ·M (i.e., no one leaves an exit state).

Define the random variable Xi as the number of people
who have left a single treatment slot of type i, in a given time
period for i = 1 · · ·L. The expectation and variance of Xi

are denoted E(Xi) and Var(Xi), and we assume that these
quantities are well defined.

Let λi be the Poisson arrival rate from outside the system
to a slot of type i. Define λi = 0, for all i = L + 1 · · ·M (i.e.,
no arrivals to exit states from outside the system).

Define the random variable Wij as the number of people
who have arrived at the queue for any slot of type j from
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a single treatment slot i, in a given time period for j =
1 · · ·M and i = 1 · · ·L.

Define the random variable Yij as the number of people
who have arrived at the queue for any slot of type j from all
Ni treatment slots i, in a given time period for j = 1 · · ·M
and i = 1 · · ·L.

Define the random variable Yj as the number of people
who have arrived at the queue for any slot of type j in a given
time period for j = 1 · · ·M.

Define B(p) as the Bernouilli distribution with parameter
p, where 0 ≤ p ≤ 1.

Define GY (s) as the generating function associated with
any given probability distribution Y .

2.2.2. General Results from Probability Theory. For a constant
number Ni of independent random variables Xi,

E

⎛
⎝

Ni∑

k=1

Xi

⎞
⎠ =

Ni∑

k=1

E(Xi) = NiE(Xi),

Var

⎛
⎝

Ni∑

k=1

Xi

⎞
⎠ =

Ni∑

k=1

Var(Xi) = Ni Var(Xi).

(4)

If a positive integer-valued distribution Z has generating
function GZ(s) and a probability distribution Y has generat-
ing function GY (s) then the distribution W = ∑Z

k=1 Y has
generating function:

GW (s) = GZ(GY (s)). (5)

Additionally the expectation and variance of Y are given
by

E(Y) = G′Y (1),

Var(Y) = G′′Y (1) + E(Y)− E2(Y).
(6)

Proof of these results can be found in Grimmett and
Stirzaker [13].

2.3. Flows through a Treatment in a General Network.
Consider a treatment in a general network as shown in
Figure 2. Here we consider flows in and out of a constant
number, Nj , of units of capacity of type j. In this “always full”
system, people arriving at a treatment slot of type j will first
enter a queue of unlimited size. The number of people in a
queue waiting to enter any treatment slot of type j is denoted
Qj . In what follows, we assume that there is no balking,
but balking could be added to the system by specifying a
maximum queue size.

As shown in Figure 2, flows into the queue for any slot of
type j can come from either other units of capacity of type
i /= j or from outside the system for j = 1 · · ·L. In the special
case of an exit state, there are no external arrivals and only
one state of each type.

2.3.1. Inputs from a Treatment Slot of Type i. For each person
leaving a particular treatment slot of type i, for i = 1 · · ·L,

λj

αi j

Xi

Xi

Xj

Xj

Xj

Xj

Q
u

eu
e

Arrivals from
outside
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Figure 2: Flows in and out of treatment slots of type j.

we can consider their destination as a Bernouilli trial, where
they will enter the queue for a slot of type j with probability
αi j . Over a given time period, we thus have a random number
Xi of Bernouilli trials. Then

Wij =
Xi∑

k=1

Bk

(
αi j
)
. (7)

From (5) and (6) we obtain the following (a more
detailed derivation is given in the appendix):

E
(
Wij

)
= αi jE(Xi),

Var
(
Wij

)
= αi j

2 Var(Xi) + αi j
(

1− αi j
)
E(Xi).

(8)

Equation (8) give the expectation and variance for the
total number of people who have arrived at the queue for a
treatment slot of type j from a particular treatment slot of
type i over the given time period. However, we have a block
of Ni units of capacity of type i so we use (4) to derive the
total number of people, Yij , who arrive at the queue for any
treatment slot of type j from the block of units of capacity of
type i over the given time period:

E
(
Yij

)
= Niαi jE(Xi),

Var
(
Yij

)
= Ni

(
αi j

2 Var(Xi) + αi j
(

1− αi j
)
E(Xi)

)
.

(9)

Thus

E
(
Yj

)
= λj +

∑

i /= j

αi jNiE(Xi),

Var
(
Yj

)
= λj +

∑

i /= j

(
αi j

2Ni Var(Xi) + αi j
(

1− αi j
)
NiE(Xi)

)
,

(10)

where the sum is over all different types of treatment slot
i, i = 1 · · ·L. Note that αi j and λj can equal zero.

In circumstances where the network is always full, the
output from units of capacity of type j for j = 1 · · ·L is not
dependent on the input into the queue. Thus the expected
output from units of capacity of type j for j = 1 · · ·L is

E(out) = NjE
(
Xj

)
,

Var(out) = Nj Var
(
Xj

)
.

(11)
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Table 1: Flows of patients between different types of appointment and two endpoints of the stepped care system.

From\To Assessment Low intensity High intensity
Completed
treatment

Dropped out of
treatment

Assessment 0% 40% 20% 10% 30%

Low intensity 0% 0% 20% 50% 30%

High intensity 0% 0% 0% 80% 20%

We are now in a position to consider the expectation and
variance of the change in the queue size Qj :

E
(
ΔQj

)
=
∑

i /= j

αi jNiE(Xi) + λj −NjE
(
Xj

)
,

Var
(
ΔQj

)
=
∑

i /= j

(
αi j

2Ni Var(Xi) + αi j
(

1− αi j
)
NiE(Xi)

)

+ λj + Nj Var
(
Xj

)
.

(12)

Note that the variance of the change in queue size can be very
large if there are a large number of potential inputs for that
particular type.

For a patient waiting to receive treatment for a mental
health problem, waiting time in a queue is more likely to be of
concern than the actual number of people waiting. Let 1/μj

represent the mean number of sessions required to treat a
patient in a unit of capacity of type j for j = 1 · · ·L. We can
estimate the change in waiting time, ΔPj for an individual
arriving in the queue Qj as

ΔPj =
E
(
ΔQj

)

μjNj
, j = 1 · · ·L. (13)

2.4. Potential for Optimisation. The linear nature of the
equations above in terms of Nj suggests the possibility that
linear programming techniques might be used to optimise
the configuration of the stepped care system according to
some relevant criteria. An illustrative optimisation is given
below where there are a set of treatment types j and a desired
outcome k (for instance successful discharge) and the inten-
tion is to find the allocation of sessions to types of treatments
that maximises the number of people achieving the desired
outcome. We note that different objective functions can be
defined and that optimisation functionality was not included
in the software tool [11] produced as part of this project.

2.4.1. Objective Function. Maximise:

Z =
∑

j /= k

αjkNjE
(
Xj

)
, j = 1 · · ·L, L < k ≤M. (14)

2.4.2. Constraints.

(1) Nj are positive integers, j = 1 · · ·L
(2) Total number of therapy sessions per week:∑L

j=1 Nj ≤ S for some integer S.

Table 2: Arrivals to the system and allocation of resources within
the system.

Appointment type
Average number of

new, external
arrivals every week

Weekly
appointment slots

allocated

Assessment 20 30

Low intensity 10 40

High intensity 0 30

(3) Total number of sessions for a treatment of type j
is dependent on number of therapists qualified to
deliver that type of treatment and thus there are
capacity constraints for each treatment type: Nj ≤ Sj ,
where Sj are positive integers, j = 1 · · ·L.

(4) Specify a maximum increase in waiting time of W
weeks at each step:

E
(
ΔQj

)
≤WNjμj , j = 1 · · ·L. (15)

3. Results: Illustrative Example

This mathematical model has been implemented as part
of a project examining the implementation of stepped care
systems [11]. Here we give an illustrative example of its
use on a hypothetical mental health care system and the
subsequent potential for optimisation.

In this system there are three types of appointments
available: an initial screening appointment, a low-intensity
therapy appointment, and a high-intensity therapy appoint-
ment. People are either referred by their GP (General
Practitioner) into the system in which case they begin with
an assessment appointment or they can self-refer directly to
low-intensity therapy treatment.

The proportion of patients moving between different
types of appointment is shown in Table 1.

The health system managers have 100 weekly appoint-
ments available to cover all types of appointment. For
the purposes of this example, we assume that the number
of weekly booked sessions a patient uses for each type
of treatment is exponential with means of 1, 3, and 6
for assessments, low-intensity and high-intensity sessions
respectively. The arrivals and capacity allocation for the
current system are given in Table 2.

Although the waiting times for screening and high-
intensity treatments are acceptable, the increase in waiting
time for a low-intensity appointment over 6 months is
unacceptably long (12 weeks) (see columns 2 and 3 of
Table 3). The manager wishes to optimise the allocation of
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Table 3: Example use of optimisation to allocate available treatment slots to treatment types.

Appointment
type/End point

Current weekly
appointment slots

allocated

Average increase in
waiting time (weeks)

Suggested weekly
appointment slots

allocated

Average increase in
waiting time (weeks)

Assessment 30 1.3 26 4

Low intensity 40 11.7 45 6

High intensity 30 7 29 7

Dropped out 257 — 248 —

Completed 292 — 301 —

appointment slots to appointment types to maximise the
number of patients who successfully complete treatment in
a 26-week period, according to the following constraints.

(1) There can be a maximum of 100 total allocated
appointments.

(2) The maximum increase in average waiting time for
an assessment is 4 weeks.

(3) The maximum increase in average waiting time for
either low or high intensity treatment is 8 weeks.

(4) There must be at least 20 assessment sessions, 30 low-
intensity, and 20 high-intensity sessions every week.

We ran this optimisation problem using Microsoft Excel
Solver (version 2003). We note that Microsoft Solver is a
standard add-in to Microsoft Excel and there exist several
resources on its use within Excel (e.g., [14]). The new
allocation and the output parameters calculated using the
model are given in columns 4 and 5 of Table 3.

The suggested appointment schedule has resulted in a
more even distribution of the expected waits for each type of
treatment and increased the expected total number of people
completing treatment over the 6-month time frame.

4. Limitations

A clear limitation is the assumption that the system is always
busy. However, application of the model to any given system
would still provide the maximum possible throughput of
the system over a given period of time. In the context of
a mental health system, other limitations apply. Firstly, all
patients are considered to be homogeneous and no allowance
is made for patients with different characteristics (for
instance presenting problem) having different duration of
stay distributions or different pathways through the system.
Secondly, in this analysis, time is considered to be defined
by the number of treatment slots and thus application to
a system where sessions are not regularly spaced in time
is more complicated. Finally, “holding” or “blocking back”
behaviour is not accounted for in the model, in that both the
duration of treatment and the destination of patients from
each treatment are assumed independent of the state of the
system.

5. Discussion

This mathematical model was developed in response to a
specific problem within the configuration of mental health
care services [10]. As part of that project, the model
(without the optimisation aspect) has been implemented
within a software tool developed to help planners explore the
consequences of different configurations for a given mental
health service. Details of the software tool and its use in
designing stepped care systems can be found in the project
final report [11].

We have described a simple way of analysing throughput
and flows for a networked system in the situation where
a system is always busy or where this is a reasonable
approximation. We note that this is not a steady-state model
and instead considers changes in mean output, queue sizes
and waiting times over a relatively short (6 months) time
period. We have also shown how optimisation techniques
might be applied to the subsequent design of a network in
the context of a mental health system.

This approach could be useful in other health systems
where “servers” (whether beds, clinicians or other resources
are always busy) but a key assumption that needs to be met is
that there will always be a queue. In practice this assumption
is less likely to be valid for systems where queues involve
people waiting in a physical allocated space (for instance, in
an emergency department) than where people can “virtually”
wait at home. Nonetheless, considering such busy systems
over a short amount of time using these sorts of models
can provide insight into the allocation of resources and
management of arrivals to complement standard steady state
queuing theory.

Appendix

Remember that the random variable Wij is defined as the
number of people who have arrived at the queue for any slot
of type j from a single treatment slot i, in a given time period
for j = 1 · · ·M and i = 1 · · ·L.

For each person leaving a particular treatment slot of
type i, for i = 1 · · ·L, we can consider their destination as
a Bernouilli trial, where they will enter the queue for a slot of
type j with probability αi j . Over a given time period, we thus
have a random number Xi of Bernouilli trials. Then

Wij =
Xi∑

k=1

Bk

(
αi j
)
. (A.1)
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From (5) we know that

GXij (s) = GXi(GB(s)). (A.2)

and thus

G′Xij
(s) = G′Xi

(GB(s))G′B(s),

G′′Xij
(s) = G′′Xij

(GB(s))
(
G′B(s)

)2 + G′Xi
(GB(s))G′′B (s).

(A.3)

It is a standard result that GB(s) = (1− αi j) + αi js, and so
using this and (6) we obtain the following:

E
(
Wij

)
= αi jE(Xi),

Var
(
Wij

)
= αi j

2 Var(Xi) + αi j
(

1− αi j
)
E(Xi).

(A.4)
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