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Coupled nonlinear dynamical systems have been widely studied recently. However, the dynamical properties of these systems are
difficult to deal with. The local activity of cellular neural network (CNN) has provided a powerful tool for studying the emergence
of complex patterns in a homogeneous lattice, which is composed of coupled cells. In this paper, the analytical criteria for the local
activity in reaction-diffusion CNN with five state variables and one port are presented, which consists of four theorems, including a
serial of inequalities involving CNN parameters. These theorems can be used for calculating the bifurcation diagram to determine
or analyze the emergence of complex dynamic patterns, such as chaos. As a case study, a reaction-diffusion CNN of hepatitis B Virus
(HBV) mutation-selection model is analyzed and simulated, the bifurcation diagram is calculated. Using the diagram, numerical
simulations of this CNN model provide reasonable explanations of complex mutant phenomena during therapy. Therefore, it is
demonstrated that the local activity of CNN provides a practical tool for the complex dynamics study of some coupled nonlinear
systems.

1. Introduction

Coupled nonlinear dynamical systems have been widely
studied in recent years. However, the dynamical properties
of these systems are difficult to deal with. Although the re-
search on emergence and complexity has gained much atten-
tion during the past decades, the determination, prediction,
and control of the complex patterns generated from high-
dimensional coupled nonlinear systems are still far from
perfect. Nature abounds with complex patterns and struc-
tures emerging from homogeneous media, and the local
activity is the origin of these complexities [1, 2]. The cellular
neural network (CNN), firstly introduced by Chua and
Yang [3] as an implementable alternative to fully connected
Hopfield neural network, has been widely studied for image
processing, robotic, biological versions, and higher brain
functions, and so on [3]. Many of the coupled nonlinear
systems can be modeled and studied via the CNN paradigm

[4]. The local activity proposed by Chua asserts that a wide
spectrum of complex behaviors may exist if the cell param-
eters of the corresponding CNN are chosen in or nearby the
edge of chaos [2, 4]. There have been quite a few new meth-
ods developed for complex systems [5–8], and local activity
has attracted the attention of many researchers. Now, local
activity has been successfully applied to the research of com-
plex patterns generated from several CNNs in physical,
biological, and chemical domains, such as Fitzhugh-Nagumo
equation [9], Brusselator equation [10], Gierer-Meinhart
equation [11], Oregonator equation [12], Hodgkin-Huxley
equation [13], Van Der Pol equation [14], the biochemical
model [15], coupled excitable cell model [16], tumor growth
and immune model [17], Lorenz model [18], advanced im-
age processing [19], Rossler equation [20], images analysis
[21, 22], data prediction [23], neutron transport equation
[24], vision safety [25], retinomorphic model [26], and
theory research [27–30], and so forth.
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Although Chua presents the main theorem of local activ-
ity at a cell equilibrium point [1, 2], it is actually difficult to
“test” directly the complex patterns of the high-dimensional
coupled nonlinear systems, since the theorem contains no
recipe for finding whether a variable actually exists or not. It
is necessary to develop some mathematical criteria according
to the numbers of the variables and ports; that is the topic
addressed in this paper.

The remaining of this paper is organized as follows.
The local activity of CNN is introduced in Section 2. A set
of theorems for testing the local activity of reaction-diffu-
sion CNN with five state variables and one port are set up
in Section 3. As an application of the theorems, a cou-
pled reaction-diffusion CNN of hepatitis B Virus (HBV)
mutation-selection model is introduced, aiming at describ-
ing HBV mutation in the therapeutic process. The bifurca-
tion diagrams of this CNN are developed and some numer-
ical simulations are presented in Section 4. Concluding re-
marks are given in Section 5.

2. Local Activity Theory of CNN

The CNN architecture is composed of a two-dimensional
M × N array of cells. Each cell is denoted by C(i, j), where
i = 1, 2, . . . ,M, j = 1, 2, . . . ,N . The dynamics of each cell is
given by the equation:

ẋi j = −xi j +
r∑

k=−r

r∑

l=−r
akl yi+k j+l +

r∑

k=−r

r∑

l=−r
bklui+k j+l + zi j ,

(1)

where xi j , yi j , ui j are the state, output, and input variables
of the cell, respectively. ak,l, bk,l, zi j are the elements of the
A-template, the B-template, and threshold, respectively. r is
the radius of influence sphere. The output yi j is the piece-
wise linear function given by

yi, j = 1
2

(∣∣∣xi, j + 1
∣∣∣−
∣∣∣xi, j − 1

∣∣∣
)

,

i = 1, 2, . . . ,M; j = 1, 2, . . . ,N.

(2)

Clearly, CNN with different template elements may have
different functions.

A vast majority of active homogeneous media that are
known to exhibit complexity are modeled by a reaction-
diffusion partial differential equation (PDE):

∂xi
∂t
= fi(X) + Di

(
∂2xi
∂x2

+
∂2xi
∂y2

+
∂2xi
∂z2

)
, i = 1, 2, . . . ,n,

(3)

where X = (x1, x2, . . . xn) is state variables, (x, y, z) is spatial
coordinates, fi(x1, x2, . . . , xn) is a coupled nonlinear vector
function called the kinetic term, and D1,D2, . . . ,Dn are
constants called diffusion coefficients. Replacing the Laplace
in above formulation by its discrete version yields

∂2xi
∂x2

+
∂2xi
∂y2

+
∂2xi
∂z2

−→ ∇2Xα,β,γ, (4)

where
(
∇2Xα,β,γ

)
i

= xi
(
α− 1,β, γ

)
+ xi
(
α + 1,β, γ

)
+ xi
(
α,β− 1, γ

)

+ xi
(
α,β + 1, γ

)
+ xi
(
α,β, γ − 1

)

+ xi
(
α,β, γ + 1

)− 6xi
(
α,β, γ

)
.

(5)

Chua et al. have introduced reaction-diffusion CNN equa-
tions:

Ẋα,β,γ = f
(
Xα,β,γ

)
+ D∇2Xα,β,γ, (6)

where D = diag(D1,D2, . . . Dn), Ẋα,β,γ denotes the state varia-
ble located at a point in three-dimensional space with spatial
coordinates. Chua refers to the process of transforming a
PDE into a reaction-diffusion CNN [2].

From Chua and his collaborators’ point, PDEs are merely
mathematical abstractions of nature, and the concept of a
continuum is in fact an idealization of reality. Even the
collection of all electrons in a solid does not form a continu-
um, because much volume separating the electrons from the
nucleus represents a vast empty space [2]. Reaction-diffusion
CNNs have been used to model some phenomena with
important practical backgrounds, which were described by
PDEs.

Generally speaking, in a reaction-diffusion CNN, every
cell has n state variables, but only m (m ≤ n) state variables
couple directly to their nearest neighbors via “reaction-dif-
fusion”. Consequently, each cell has the following state equa-
tions:

V̇a = fa(Va,Vb) + Ia,

V̇b = fa(Va,Vb),
(7)

where

Va = [V1,V2, . . . ,Vm]T, Vb = [Vm+1,Vm+2, . . . ,Vn]T,

fa =
[
f1(Va,Vb), f2(Va,Vb), . . . , fm(Va,Vb)

]T,

fb =
[
fm+1(Va,Vb), fm+2(Va,Vb), . . . , fn(Va,Vb)

]T,

Ia =
[
D1∇2V1,D2∇2V2, . . . ,Dm∇2Vm

]T
.

(8)

The cell equilibrium point Qi = (Vi
a,Vi

b)(∈ Rn) of equa-
tion (7) can be determined via

fa(Va,Vb) = 0,

fb(Va,Vb) = 0.
(9)

The Jacobian matrix at the equilibrium point Qi has the
following form:

J(Qi) = [akl(Qi)]n×n =
⎡
⎣

Aaa(Qi) Aab(Qi)

Aba(Qi) Abb(Qi)

⎤
⎦, (10)
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where Akl(Qi) are called cell parameters and

Aaa(Qi) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂ f1
∂V1

· · · ∂ f1
∂Vm

...
. . .

...

∂ fm
∂x1

· · · ∂ fm
∂xm

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

Aab(Qi) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂ f1
∂Vm+1

· · · ∂ f1
∂Vn

...
. . .

...

∂ fm
∂xm+1

· · · ∂ fm
∂xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

Aba(Qi) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂ fm+1

∂V1
· · · ∂ fm+1

∂Vm
...

. . .
...

∂ fn
∂x1

· · · ∂ fn
∂xm

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

Abb(Qi) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂ fm+1

∂Vm+1
· · · ∂ fm+1

∂Vn
...

. . .
...

∂ fn
∂xm+1

· · · ∂ fn
∂xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(11)

The local state equations at the cell equilibrium point Qi are
defined via

V̇a = AaaVa + AabVb + Ia,

V̇b = AbaVa + AbbVb.
(12)

Definition 1.

YQ(s) = sI − Aaa − Aab(sI − Abb)−1Aba (13)

is called the admittance matrix at the cell equilibrium point
Qi.

Lemma 2. A reaction-diffusion CNN cell is called locally active
at the equilibrium point Qi if and only if, its admittance matrix
at Qi satisfies at least one of the following four conditions [4].

(1) YQ(s) has a pole in Re[s] > 0.

(2) YH
Q (iω) = YQ(iω) + YQ(iω) < 0 for some ω = ω0,

where ω0 is any real number.

(3) YQ(s) has a simple pole s = iωp on the imaginary axis,
where its associated residue matrix:

k1 =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

lim
s→ iωp

(
s− iωp

)
YQ(s), if ωp <∞

lim
ωp→∞

YQ

(
iωp

)

iωp
, if ωp = ∞

(14)

is either a complex number or a negative real number.

(4) YQ(s) has a multiple pole on the imaginary axis.

Definition 3. The cell equilibrium point Qi is called stable
if and only if, all the real parts of eigenvalue λi of Jacobian
matrix at the equilibrium point Qi are negative [2].

Definition 4. A “reaction-diffusion” CNN with n state vari-
ables and m ports is said to be operating on the “edge of
chaos” with respect to an equilibrium point Qi if and only
if, Qi is both locally active and stable when Ia = 0 [4].

Using the above lemma and definitions, the bifurcation
of CNN with respect to an equilibrium point can be divided
into three parts: the edge of chaos domains (the locally active
and stable domains), the locally active and unstable domains,
and the locally passive domains. Numerical simulations
indicated that many complex dynamical behaviors, such as
oscillatory patterns, chaotic patterns, or divergent patterns,
may emerge if the selected cell parameters are located in or
nearby the edge of chaos domains.

3. Analytical Criteria for Local Activity of CNN
with Five State Variables and One Port

For the reaction-diffusion CNN with five state variables and
one port, its local state equations have the form

V̇a = AaaVa + AabVb + Ia,

V̇b = AbaVa + AbbVb,
(15)

where

Va = [V1], Vb =
[
V2 V3 V4 V5

]T
, Ia = [I1],

Aaa = [a11], Aab =
[
a12 a13 a14 a15

]
,

Aba =
[
a21 a31 a41 a51

]T
,

Aba =

⎡
⎢⎢⎢⎢⎢⎢⎣

a21

a31

a41

a51

⎤
⎥⎥⎥⎥⎥⎥⎦

, Abb =

⎡
⎢⎢⎢⎢⎢⎢⎣

a22 a23 a24 a25

a32 a33 a34 a35

a42 a43 a44 a45

a52 a53 a54 a55

⎤
⎥⎥⎥⎥⎥⎥⎦
.

(16)

The corresponding CNN cell admittance matrix YQ(s) is
given by [1].

YQ(s) = sI − Aaa − Aab(sI− Abb)−1Aba

= s− a11 − T1s3 + K1s2 + L1s + Δ1

s4 + Ts3 + Ks2 + Ls + Δ
,

(17)

where T ,T1,K ,K1,L,L1,Δ,Δ1 are the parameters of ai j ’s.

Theorem 5. A necessary and sufficient condition for YQ(s) to
satisfy condition (1) in Lemma 2 is that ∃s, such that g(s) =
0 (Re[s] > 0), and any one of the following conditions holds.

(1) f (s) /= 0.

(2) f (s) = 0, and m > n, where s is m and n orders zero
point of g(s) and f (s), respectively, where f (s) = T1s3+
K1s2 + L1s + Δ1, g(s) = s4 + Ts3 + Ks2 + Ls + Δ.
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Proof. Obviously proved.

Denote

E = −a11, F = −TT1 + K1 − a11
(−2K + T2),

P = LL1 − KΔ1 − ΔK1,

Q = Δ1 + KK1 − TL1 − LT1,

G = −a11
(
2Δ + K2 − 2LT

)−Q,

H = −a11
(
L2 − 2ΔK

)− P,

I = −a11Δ
2 − ΔΔ1,

g(Q) = EQ4 + FQ3 + GQ2 + HQ + I ,

h(λ) = −(TT1 − K1)λ3 −Qλ2 − Pλ− ΔΔ1,

λ∗1,2 =
−Q ± √Q2 − 3(TT1 − K1)P

3(TT1 − K1)
,

p = − 3F2

16E2
+

G

2E
, q = F3

32E3
− FG

8E2
+

H

4E
,

w1,2 = −1± i
√

3
2

,

D = q2

4
+

p3

27
, Aj =

(
−q

2
±D1/2

)1/3

,

x1 = A1 + A2, x2 = w1A1 + w2A2,

x3 = w2A1 + w1A2, Ωi = xj − F

4E
, i = 1, 2, 3.

(18)

Theorem 6. Let the following parameters be defined as in
Theorem 5, then YH

Q (iw) < 0 for some w = w0 ∈ R if any
one of the following conditions holds.

(1) a11 > 0.

(2) a11 = 0, TT1 − K1 > 0.

(3) a11 = 0, TT1 − K1 = 0, Q > 0.

(4) a11 = 0, TT1 − K1 = 0, Q < 0, ΔΔ1 > 0.

(5) a11 = 0, TT1 − K1 = 0, Q < 0, P ≥ 0, ΔΔ1 −
P2/Q/4 > 0, ΔΔ1 ≤ 0,

(6) a11 = 0, TT1 − K1 = 0, Q = 0, P > 0.

(7) a11 = 0, TT1 − K1 = 0, Q = 0, P ≤ 0, ΔΔ1 > 0.

(8) a11 = 0, TT1 − K1 < 0, ΔΔ1 > 0.

(9) a11 = 0, TT1 − K1 < 0, ΔΔ1 ≤ 0, and λ∗j ≥
0, h(λ∗j ) < 0, for j = 1 or 2.

(10) a11 < 0, D > 0, Ω1 > 0, g(Ω1) < 0.

(11) a11 < 0, D < 0, and Ω j ≥ 0, g(Ω j) < 0, for j = 1, 2
or 3.

(12) a11 < 0, D = 0, p = q = 0, g(−F/4E) < 0.

(13) a11 < 0, D = 0, q2/4 = −p3/27 /= 0, and Ω j ≥ 0,
g(Ω j) < 0, for j = 1 or 2.

Proof. YH
Q (iω) = YQ(iω)+YQ(iω) = 2 Re[YQ(iω)], so YQ(iω)

to satisfy condition (2) in Lemma 2 equals to Re[YQ(iω)] < 0,

Re
[
YQ(iω)

] = Re

[
iω − a11

− T1(iω)3 + K1(iω)2 + L1(iω) + Δ1

(iω)4 + T(iω)3 + K(iω)2 + L(iω) + Δ

]

= Eω8 + Fω6 + Gω4 + Hω2 + I

(ω4 − Kω2 + Δ)2 + (Lω − Tω2)
.

(19)

(1) If a11 > 0, then Re[YQ(iω)] < 0 when ω is large
enough (See (1) of Theorem 6).

(2) If a11 = 0, then

Re
[
YQ(iω)

]

= − (TT1 − K1)ω6 + Qω4 + Pω2 + ΔΔ1

(ω4 − Kω2 + Δ)2 + (Lω− Tω2)
.

(20)

Let f (λ) = −Qλ2 − Pλ− ΔΔ1,

(I) If TT1 −K1 > 0, then Re[YQ(iω)] < 0 when ω is large
enough (See (2) of Theorem 6).

(II) If TT1 − K1 = 0, then

(i) If Q > 0, then Re[YQ(iω)] < 0 when ω is large
enough (See (3) of Theorem 6).

(ii) If Q < 0,

(a) If ΔΔ1 > 0, ∃ω0 ∈ R, such that
Re[YQ(iω0)] < 0 (See (4) of Theorem 6).

(b) If ΔΔ1 ≤ 0, solve f ′(λ∗) = 0, we can get
λ∗ = −0.5P/Q, f (λ∗) = 0.25P2/Q − ΔΔ1.
Then when P ≥ 0, ΔΔ1 − 0.25P2/Q > 0,
∃ω0 > λ∗, such that Re[YQ(iω0)] < 0 (See
(5) of Theorem 6).

(iii) If Q = 0, then Re[YQ(iω)] = −Pω2 − ΔΔ1.

(a) If P > 0, then Re[YQ(iω)] < 0 when ω is
large enough (See (6) of Theorem 6).

(b) If P ≤ 0, ΔΔ1 > 0, then ∃ω0, such that
Re[YQ(iω0)] = −ΔΔ1 < 0 (See (7) of
Theorem 6).

(III) If TT1 − K1 < 0, let h(λ) = −(TT1 − K1)λ3 − Qλ2 −
Pλ− ΔΔ1,

(i) If ΔΔ1 > 0, then ∃ω0, such that Re[YQ(iω0)] < 0
(See (8) of Theorem 6).

(ii) If ΔΔ1 ≤ 0, solve h(λ∗) = 0, we can get

λ∗1,2 =
−Q ± √Q2 − 3(TT1 − K1)P

3(TT1 − K1)
. (21)

Then, for i = 1, 2, if λ∗i ≥ 0, h(λ∗i ) < 0, then
∃ω0, such that Re[YQ(iω0)] < 0 (See (9) of
Theorem 6).
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(3) If a11 < 0, let g(Q) = EQ4 +FQ3 +GQ2 +HQ+ I , then
g′(Q) = 4EQ3 +3FQ2 +2GQ+H . Let x = Ω+(F/4E),
then the above becomes g′(Q) = 4E(x3 + px + q) =
4E f (x), then xi, i = 1, 2, 3 are the roots of f (x) = 0,
Ωi are the roots of g′(Ω) = 0. If any one of the (10)–
(13) of Theorem 6 holds, we can get Re[YQ(iω0)] < 0.

So, if any one of conditions (1)–(13) holds, Re[YQ(iω0)] < 0.
YQ(s) Satisfies condition (2) in Lemma 2. This completes the
proof.

Theorem 7. For j = 1, or 2, let

wj =
(√

K + 2
√
Δ + (−1) j

√
K − 2

√
Δ
)

2
,

Aj = L− 3w∗j
2,

w∗j =

√√√√
(
K + (−1) j

√
K2 − 4Δ

)

2
,

Bj = 2Kw∗j − 4w∗j
3, A1 j = Δ1 − K1w

∗
j

2,

B1 j = L1w
∗
j − T1w

∗
j

3.

(22)

Then YQ(s) satisfies condition (3) of Lemma 2, if any one of the
following conditions holds.

(I) Δ > 0, K > 2
√
Δ, T = L = 0, and any one of the

following conditions holds.

(1) K1w
2
1 − Δ1 /= 0.

(2) K1w
2
1 − Δ1 = 0, (L1 − T1w

2
1)(w2

2 −w2
1) > 0.

(3) K1w
2
2 − Δ1 /= 0.

(4) K1w
2
2 − Δ1 = 0, (L1 − T1w

2
2)(w2

1 −w2
2) > 0.

(II) K > 0, Δ1 /= 0, Δ = 0, L = KT /= 0, and any one of
the following conditions holds.

(1) TΔ1 < 0.

(2) T(K − T1K)− Δ1 + KK1 /= 0.

(3) T(K − T1K)− Δ1 + KK1 = 0, T(Δ1 − KK1) +
K(L1 − T1K) < 0.

(III) Δ = 0, Δ1L > 0.

(IV) Δ < 0, or K > 0, K2 − 4Δ > 0, and 2L = T(K +√
K2 − 4Δ)(K +

√
K2 − 4Δ > 0) or 2L = T(K −√

K2 − 4Δ), (K − √K2 − 4Δ > 0) and any one of the
following conditions holds for j = 1, or 2.

(1) AjB1 j − A1 jBj /= 0.

(2) AjB1 j − A1 jBj = 0, AjA1 j − BjB1 j > 0.

Proof. Let f (s) = T1s3 + K1s2 + L1s + Δ1, g(s) = s4 + Ts3 +
Ks2 +Ls+Δ, obviously,∞ is not a single pole of YQ(s) on the
imaginary axis.

If YQ(s) has a simple pole s = iω on the imaginary axis,
where its associated residue

k1 = lim
s→ iω

(s− iω)YQ(s) = lim
s→ iω

(s− iω)
f (s)
g(s)

= f (s)
g′(s)

∣∣∣∣∣
s=iω

(23)

is either a complex number or a negative real number, then
k1 /= 0, so f (s) /= 0, which implies that iω is not a zero point
of f (s) = 0, iω is not a removed pole of YQ(s).

(I) If YQ(s) has four poles s = ±iω1,±iω2 (ω1 /=ω2 /= 0)
on the imaginary axis. In this case, g(s) = (s2 +
ω2

1)(s2+ω2
2) = s4+(ω2

1+ω2
2)s2+ω2

1ω
2
2. Hence we obtain

T = L = 0, K = ω2
1 +ω2

2 > 0, Δ = ω2
1ω

2
2 > 0. Then, we

can getK+2
√
Δ = (ω1 + ω2)2,K−2

√
Δ = (ω1 − ω2)2,

which implies that K > 2
√
Δ, ω1,2 = (

√
K + 2

√
Δ ±√

K − 2
√
Δ)/2. So,

lim
s→±iω1

(s∓ iω1)YQ(s) = w1
(
L1 − T1w

2
1

)± i
(
K1w

2
1 − Δ1

)

2w1
(
w2

2 −w2
1

) ,

(24)

lim
s→±iω2

(s∓ iω2)YQ(s) = w2
(
L1 − T1w

2
2

)± i
(
K1w

2
2 − Δ1

)

2w2
(
w2

1 −w2
2

) .

(25)

Then, when condition (I) in Theorem 7 holds, k1 is
a complex number or a negative real number. YQ(s)
satisfies condition (3) in Lemma 2.

(II) If YQ(s) has a simple pole s = 0 and two conjugate
poles±iω (ω /= 0) on the imaginary axis, and another
pole is a /= 0.

In this case, it follows that Δ = 0, Δ1 /= 0, and g(s) has
the form:

g(s) = s
(
s2 + ω2)(s− a)

= s4 − as3 + ω2s2 − aω2,
(26)

which implies that T = −a, K = ω2 > 0, L =
−aω2 = KT , Δ = 0, Δ1 = 0, Therefore,

g(s) = s
(
s2 + K

)
(s + T) (27)

(1) The residue of YQ(s) at s = 0 is

lim
s→ 0

sYQ(s) = Δ1

(s2 + K)(s + T)
= Δ1

KT
. (28)

Then, we conclude that if K > 0, Δ1 /= 0, Δ =
0, L = KT /= 0, TΔ1 < 0, k1 is a negative
real number. YQ(s) satisfies condition (3) in
Lemma 2 (See (1) of (II) in Theorem 7).

(2) The residue of YQ(s) at s = ±i√K is
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lim
s→±i√K

(
s∓ i

√
K
)
YQ(s) = T(Δ1 − KK1) + K(L1 − T1K)∓ i

√
K(T(L1 − T1K)− Δ1 + KK1)

2K(K + T2)
. (29)

Consequently, we conclude that if (2) or (3) in (II) in
Theorem 7 holds, k1 is either an imaginary number or
a negative real number. YQ(s) satisfies condition (3) in
Lemma 2.

(III) If YQ(s) has a simple pole s = 0 on the imaginary axis,
and the other poles are ai, Re[ai] /= 0, i = 1, 2, 3, it
follows that Δ1 /= 0,Δ = 0, and g(s) has the form

g(s) = s(s− a1)(s− a2)(s− a3)

= s
(
s3 − (a1 + a2 + a3)s2

+(a1a2 + a1a3 + a2a3)s− a1a2a3).

(30)

Therefore we obtain that Δ = 0, T = −(a1 + a2 +
a3), K = a1a2 + a1a3 + a2a3, L = −a1a2a3 /= 0, hence
the reside of YQ(s) at s = 0 is

lim
s→ 0

sYQ(s) = Δ1

a1a2a3
= −Δ1

L
. (31)

Then, when Δ = 0, Δ1L > 0, k1 is a negative real
number. YQ(s) satisfies condition (3) in Lemma 2
(See (III) of Theorem 7).

(IV) If YQ(s) has two conjugate poles ±iω(ω > 0)
on the imaginary axis, and the other poles are
Re[a] /= 0, Re[b] /= 0. In this case, g(s) has the form

g(s) = (s− a)(s− b)
(
s + ω2)

= s4 − (a + b)s3 +
(
ab + ω2)s2

− (a + b)ω2s + abω2.

(32)

Therefore, we obtain that T = −(a + b), K = ab +
ω2, L = −(a + b)ω2, Δ = abω2 /= 0. Then, ab = K −
ω2, Δ = (K −ω2)ω2 ⇔ ω4−Kω2 +Δ = 0. Solving it,
we have

ω∗j =
√

K ±√K2 − 4Δ
2

, j = 1, 2. (33)

It implies that Δ < 0 or K > 0, K2 − 4Δ ≥ 0, and
T = −(a + b) = L/ω2. Then, the residue of YQ(s) at
s = ±ω∗j is

lim
s→±iω∗j

(
s∓ iω∗j

)
YQ(s)

=
−
(
A1 jAj + B1 jBj

)
± i
(
A1 jBj − AjB1 j

)

A2
j + B2

j

.

(34)

Hence, if condition (IV) in Theorem 7 holds, k1 < 0
or it is an imaginary number. YQ(s) satisfies condi-
tion (3) in Lemma 2.

Therefore, when any one of conditions (I)–(IV) holds,
YQ(s) satisfies condition (3) in Lemma 2. This completes the
proof.

Theorem 8. YQ(s) has a multiple pole on the imaginary axis if
any one of the following conditions holds.

(I) Δ = L = 0, Δ1 /= 0.

(II) Δ = L = K = 0, and Δ1 /= 0 or L1 /= 0.

(III) Δ = L = K = T = 0, and Δ1 /= 0 or L1 /= 0 or K1 /= 0.

(IV) T = L = 0, K > 0, Δ = (K/2)2, and any one of the
following conditions holds.

(1) 2Δ1 /=KK1.

(2) 2L1 /=KT1.

Proof. Let f (s) = T1s3 + K1s2 + L1s + Δ1, g(s) = s4 + Ts3 +
Ks2 + Ls + Δ. Obviously, when the conditions (I)–(III) hold,
0 is the multiply poles of YQ(s).

If YQ(s) has two multiply nonzero poles ±iω (ω > 0),
then g(s) has the form:

g(s) = (s2 + ω2)2 = s4 + 2ω2s2 + ω4, (35)

which implies that T = L = 0, K = 2ω2 > 0, Δ = ω4 =
(K/2)2 > 0.

If ±iω are the multiply poles of YQ(s), then f (iω) /= 0
where

f (±iω) = (Δ1 − K1ω
2)± iω

(
L1 − T1ω

2)

=
(
Δ1 − KK1

2

)
± iω
(
L1 − T1K

2

)
.

(36)

Obviously, when any one of (1)-(2) of (IV) in Theorem 8
holds, f (iω) /= 0, any one of ±iω is a multiply pole of YQ(s).

So, when any one of condition (I)–(IV) holds, YQ(s)
satisfies condition (4) in Lemma 2. This completes the proof.

When any one of Theorems 5–8 holds, YQ(s) satisfies
Lemma 2, which implies that the reaction-diffusion CNN
with five state variables and one port at the equilibrium point
is active.

These theorems can be implemented by a computer pro-
gram for calculating the bifurcation diagram of the general
corresponding CNN to determine emergence of complex
dynamic patterns of the corresponding CNN.
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Table 1: Cell parameters and correspongding dynamic properties of the reaction-diffusion CNN of HBV mutation-selection of HBV
infection.

No. u k
Equilibrium

point
Eigenvalues Dynamic pattern

1 2 1.0 20,0,0,19,98 69.4396, 29.8638,−0.0090,−33.3646,−71.9897 Convergent, divergent

2 2 3.0 20,0,0,20,98 −0.0097, 53.0149, 69.4400,−56.5150,−71.9902 Convergent, divergent

3 2 4.9 20,0,0,20,98 −0.0098, 68.2343, 69.4485,−71.6962,−72.0368 Convergent, divergent

4 2 5.1 20,20,50,0,0 −0.2043± 0.3878i,−0.0000,−2.6014,−2.5000 Convergent

5 2 10 10,20,99,0,0 −2.7130,−0.3935± 0.4583i,−0.2192,−2.2808 Convergent

6 2 24 4,20,239,0,0 −3.2812,−0.8094± 0.2709i,−0.3768,−2.1232 Convergent

7 2 39 3,20,389,0,0 −4.4393,−1.2723,−0.6884,−0.4059,−2.0941 Convergent

8 5 1.0 50,0,0,19,38 67.9709, 28.4103,−0.0075,−34.9127,−73.5210 Convergent, divergent

9 5 3.0 50,0,0,19,38 −0.0092, 51.5420, 67.9713,−58.0426,−73.5215 Convergent, divergent

10 5 4.9 50,0,0,19,38 −0.0095, 66.7552, 67.9801,−73.2207,−73.5651 Convergent, divergent

11 5 5.1 49,19,19,0,0 −0.0920± 0.2787i,−0.0092,−5.5160,−5.4909 Convergent

12 5 10 25,19,39,0,0 −0.1829± 0.3778i,−0.2375,−5.5343,−5.2625 Convergent

13 5 24 10,20,95,0,0 −5.5708,−0.4446± 0.4784i,−0.3915,−5.1085 Convergent

14 5 39 6,20,155,0,0 −5.6298,−0.7151± 0.4210i,−0.4343,−5.0657 Convergent

15 9 1.0 90,0,0,18,20 66.0620, 26.5823,−0.0055,−37.0867,−75.6121 Convergent, divergent

16 9 3.0 90,0,0,18,20 −0.0085, 49.6418, 66.0624,−60.1432,−75.6126 Convergent, divergent

17 9 4.9 90,0,0,18,20 −0.0091, 64.8330, 66.0717,−75.3029,−75.6527 Convergent, divergent

18 9 5.1 88,18,10,0,0 −0.0531± 0.2110i,−0.0106,−9.5037,−9.4894 Convergent

19 9 10 45,19,21,0,0 −0.1047± 0.2973i,−0.2431,−9.5106,−9.2569 Convergent

20 9 24 19,20,52,0,0 −0.2481± 0.4288i,−9.5339,−0.3897,−9.1103 Convergent

21 9 39 12,20,86,0,0 −0.4014± 0.4931i,−9.5671,−0.4300,−9.0700 Convergent
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Figure 1: Bifurcation diagrams of equation (38) at the equilibrium
points Q1 at k ∈ [0, 40], u ∈ [0, 10].

4. Analysis and Simulations of
Reaction-Diffusion CNN of HBV
Mutation-Selection Model

Life systems consist of locally coupled homogeneous media.
Mostly, dynamics of life systems are suitable to be described

0 5 10 15 20 25 30 35 40
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5
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7
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k

u

Figure 2: Bifurcation diagrams of equation (38) at the equilibrium
points Q2 at k ∈ [0, 40], u ∈ [0, 10].

via locally connected reaction-diffusion CNNs. It may be
expected that reaction-diffusion CNN will become a promis-
ing candidate for modeling life phenomena.

In Chapter 11 “Timing the emergence of resistance”
(Page 110) of the book “Virus dynamic: mathematical princi-
ples of immunology and virology” (Oxford university press),
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Figure 3: The kinetic trajectories of equation (37) when u = 5, k = 3.

Nowak et al. proposed a mathematical model which de-
scribes the mutation selection of HBV infection during the
therapy [31]:

dx

dt
= λ− dx − bvx − bnxvn,

dy

dt
= b(1− e)vx − ay,

dv

dt
= ky − uv,

dyn
dt

= bevx + bnxvn − ayn,

dvn
dt

= knyn − uvn,

(37)

where the five variables—x, y, v, yn, vn represent the num-
bers of uninfected cells, infected cells infected by normal
virus, normal virus, infected cells infected by mutated virus,
and mutant viruses, respectively. λ is the rate of reproduction

of uninfected cells. Uninfected cells die at rate dx and
become infected at rate bxv by normal virus and infected
at rate bnxvn by mutated virus. Infected cells infected by
normal and mutated virus are removed at rate ay and
ayn, respectively. Normal virus is produced at rate ky and
removed at rate uv, mutated virus is produced at rate kyn
and removed at rate uvn. e is the rate constant describing
the probability of mutation of virus (usual 10−5–10−3),
a, b, bn, d, e, k, kn,u, λ are positive constants. The model
was briefly analyzed in Nowak’s book.

The reaction-diffusion CNN of HBV mutation selection
of model has the form:

dxi j
dt

= λ− dxi j − bxi jvi j − bnxi jvni j + D1∇2xi j ,

dyi j
dt

= b(1− e)xi jvi j − ayi j ,

dvi j
dt

= kyi j − uvi j ,
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Figure 4: The kinetic trajectories of equation (37) when u = 5, k = 4.9.

dyni j
dt

= bexi jvi j + bnxi jvni j − ayni j ,

dvni j
dt

= knyni j − uvni j ,

(38)

where∇2xi j = xi−1 j + xi+1 j + xi j−1 + xi j+1 − 4xi j .
Let equation (38) be zeros (D1 = 0) and solve it, we can

get the two equilibrium points:

Q1 =
(
λ

d
, 0, 0, 0, 0

)
, (39)

Q2 =
(
x0,

u(au− bnknux0)(λ− dx0)
bkx0(bnknex0 + au− knx0)

,

(au− bnknux0)(λ− dx0)
bx0(bnknex0 + au− knx0)

,
eu(λ− dx0)

bnknex0 + au− knx0
,

kne(λ− dx0)
bnknex0 + au− knx0

)
,

(40)

where x0 = au/((1− e)bk) and Q1, Q2 stand for the patient’s
complete recovery and HBV persistent infection, respec-
tively.

Consequently, the Jacobian matrix at the equilibrium
point Qi (i = 1, 2) is

J(Qi) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−d − bv − bnvn 0 −bx 0 −bnx
b(1− e)v −a b(1− e)x 0 0

0 k −u 0 0

bev + bnvn 0 bex −a bnx

0 0 0 kn −u

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(41)

Taking k,u as variables, and λ = 10, a = 0.5, b = 0.01,
bn = 0.005, e = 0.0001, kn = 10, and d = 0.01, using
Theorems 5–8, we can calculate the bifurcation of the reac-
tion-diffusion CNN model equation (38) at the equilibrium
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Figure 5: The kinetic trajectories of equation (37) when u = 5, k = 5.1.

points Q1 and Q2 at k ∈ [0, 40], u ∈ [0, 10], see Figures 1
and 2.

In Figures 1 and 2, the domains are coded as follows:
edge of chaos (locally active and stable) domain (shown red),
locally active and unstable domain (shown green) and locally
passive domain (shown blue). From Figure 1(a), we can see
that the bifurcation at equilibrium point Q1 does not exist at
the edge of chaos domain.

Take λ = 10, k = 0.01, a = 0.5, b = 0.01, bn = 0.005,
kn = 10, e = 0.0001, and k = 1.0, 3.0, 4.9, 5.1, 10, 24, 39, u =
2, 5, 9, we model the dynamic trajectories of equation (37)
using MATLAB, see Table 1.

In the following discussions, we select some parameters
in No. 8-14 and u = 5, k = 12.5. The simulation results are
shown in Figures 3, 4, 5, 6, and 7. During the simulation, we
reached a new conclusion.

From Table 1 and Figures 3–7, we can conclude that

(I) when k is smaller (less than 5),

(1) these parameters are located in the green do-
main (the local and unstable domains);

(2) regardless of the value of u, the dynamic pattern
of equation (37) is convergent or divergent
depending on initial values;

(3) the No. 1, No. 4, and No. 5 variables in equa-
tion (37) increase and the No. 2 and No. 3
variables in equation (37) decrease to 0. This
means the numbers of the mutant virus and
of infected cells infected by mutant virus both
increase, and the numbers of normal virus and
of the infected cells infected by normal virus
both decrease, even to near zero. Also, the
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Figure 6: The kinetic trajectories of equation (37) when u = 5, k = 12.5.

No. 1 variable in equation (37), that is, the
number of uninfected cells increases as com-
pared to the initial number. All these indicate
that the potency is perfect except for some virus
mutation. The potency is ideal.

(II) When k is larger (greater than 5) but less than a
threshold value (according to initial values and pa-
rameters, for example 12.5 in Figure 6), we can con-
clude the following.

(1) These parameters are located in the red domain
(edge of chaos).

(2) Regardless of the value of u, the dynamic
pattern of equation (37) is convergent.

(3) The No. 1, No. 2, and No. 3 variables in equa-
tion (37) increase and No. 4 and No. 5 variables
decrease to 0. This means that the number of
uninfected cells, the numbers of the normal

virus, and of the cells infected by normal virus
all increase. Meanwhile, the numbers of the
mutant virus and of the cells infected by mutant
virus both decrease, even to near zero. All these
imply that the drug cannot clean the normal
virus, but can destroy the mutant virus and
increase the infection cells. The potency is also
ideal.

(III) When k < 40 and greater than a threshold value (ac-
cording to initial values and parameters),

(1) these parameters are located in the red domain
(edge of chaos);

(2) regardless of the u value, the dynamic pattern of
equation (37) is convergent;

(3) The No. 2 and No. 3 variables in equation (37)
increase and No. 1, No. 4, and No. 5 variables
decrease, which means the numbers of the
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Figure 7: The kinetic trajectories of equation (37) when u = 5, k = 24.

mutant virus and of the uninfected cells de-
crease, and the number of normal virus in-
creases. These imply that although the drug can
prevent the mutation of the HBV effectively, it
may destroy uninfected cells and the liver. The
potency is not ideal.

5. Conclusions

The local activity of CNN has provided a powerful tool for
studying the emergence of complex patterns in a homoge-
neous lattice formed by coupled cells. Based on the local
activity principle, the analytic criteria for the local activity
in reaction-diffusion CNN with five state variables and one
port are set up. The analytical criteria include four theorems,
which provide the inequalities involving the parameters of
the CNN. The inequalities can be used for calculating the
bifurcation diagram to determine emergence of complex

dynamic patterns of the reaction-diffusion CNN. As an
application example, a reaction-diffusion CNN of HBV
mutation-selection model is analyzed and simulated, and the
bifurcation diagrams are calculated. Numerical simulations
show this CNN model may explain certain complex mutant
conditions during the therapy. We conclude that the local
activity theory provides a practical tool for the study of the
complex dynamics of certain coupled nonlinear systems.
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