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Interval-censored data consist of adjacent inspection times that surround an unknown failure time.We have in this paper reviewed
the classical approachwhich ismaximum likelihood in estimating theWeibull parameters with interval-censored data.We have also
considered the Bayesian approach in estimating theWeibull parameters with interval-censored data under three loss functions.is
study became necessary because of the limited discussion in the literature, if at all, with regard to estimating theWeibull parameters
with interval-censored data using Bayesian. A simulation study is carried out to compare the performances of the methods. A real
data application is also illustrated. It has been observed from the study that the Bayesian estimator is preferred to the classical
maximum likelihood estimator for both the scale and shape parameters.

1. Introduction

One of the features of survival data is censoring.e common
one is right censoring and literature on it is well established.
Among them are, Al-Aboud [1], Al-Athari [2], Syuan-Rong
and Shuo-Jye [3], Guure and Ibrahim [4], Pandey et al. [5],
Soliman et al. [6], Abdel-Wahid andWinterbottom [7], Guure
et al. [8] andmany others.e focus of this study is on interval
censoring, which presumably is more demanding than right
censoring and, as a result, the approach developed for right
censoring does not generally apply.

Interval censoring has to do with a study subject of
interest that is not under regular observation. As a result, it
is not always possible to observe the failure or survival time
of the subject. With interval censoring, one only knows a
range, that is, an interval, inside of which one can say the
survival event has occurred. Le- or right-censored failure
times are special cases of interval-censored failure times. As
stated by Turnbull [9], one could de�ne an interval-censored
observation as a union of several nonoverlapping windows or
intervals.

According to Jianguo [10], interval-censored failure time
data occur in many areas including demographical, epidemi-
ological, �nancial, medical, sociological, and engineering
studies. A typical example of interval-censored data occurs
in medical or health studies that entail periodic followups,
and many clinical trials and longitudinal studies fall into this
category. In such situations, interval-censored data may arise
in several ways. For instance, an individual may miss one or
more observation times that have been scheduled to clinically
observe possible changes in disease status and then return
with a changed status as stated by Jianguo [10].

Consider individuals who visit clinical centres at times
convenient to them rather than the predetermined obser-
vation time; in this type of situation, the data obtained are
interval-censored. Should all study subjects or units follow
the predetermined observation schedule time exactly, it is still
not possible to observe the exact time of the occurrence of
the change, even when we assume it is a continuous variable.
In cases of this nature, one has grouped failure time data,
that is, interval-censored data of which the observation for
each subject is a member of a collection of non-overlapping
intervals.
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Researchers who have discussed interval censored data
in the classical point of view are, Lawless [11], Flygare and
Buckwalter [12], Lindsey [13], Scallan [14], and Odell et al.
[15]. To the best of our knowledge, none in the literature so
far has interval-censored data using the Bayesian estimation
approach with regards to Weibull distribution, which is the
essence of this study.

One of the primary advantages of Weibull analysis is its
ability to provide reasonably accurate analysis and forecasts
with extremely small samples, Abernethy [16]. Small samples
allow cost effectiveness.

When the Weibull distribution shape parameter is say,
𝛽𝛽 𝛽 𝛽, it indicates that the hazard rate decreases over time
implying infant mortality. When 𝛽𝛽 𝛽 𝛽, it indicates constant
hazard rate over time and 𝛽𝛽 𝛽 𝛽 implies the hazard rate
increases with timewhich is as a result of ageing. In summary,
the Weibull shape parameter gives the physics behind the
death of a biological system while the scale parameter 𝛼𝛼
determines the duration of the disease on a biological system.
e scale parameter is also referred to as the characteristic life
of the distribution.

Even though nonparametric estimation is more widely
used in analysing survival data, it is still necessary to dis-
cuss parametric estimations. In parametric estimations, the
distribution of the survival data is most oen assumed to be
known. Distributions that are oen used in survival analysis
are Weibull, exponential, log-logistic, and log-normal. As
discussed above, we have assumed that the survival data
follow Weibull distribution. e approach used in this paper
can be extended to other lifetime distributions.

e paper is structured as follows: Section 2 contains
the derivative of the parameters under maximum likelihood
estimator, Section 3 is the Bayesian inference. Simulation
study is in Section 4 followed by results and discussion in
Section 5. Section 6 is real data analysis and then a conclusion
is provided in Section 7.

2. Maximum Likelihood Estimation

Let 𝑡𝑡1,… , 𝑡𝑡𝑛𝑛 be the lifetimes from a random sample of size 𝑛𝑛
where the probability density function (pdf) is represented
by 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  𝑓, the cumulative distribution function (cdf) is
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹  , and the survival function is 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  ; given the
two-parameter Weibull distribution we have, respectively,

𝑓𝑓 󶀡󶀡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  󶀱󶀱 =
𝛽𝛽
𝛼𝛼
󶀤󶀤
𝑡𝑡
𝛼𝛼
󶀴󶀴
𝛽𝛽𝛽𝛽

exp 󶁦󶁦−󶀤󶀤
𝑡𝑡
𝛼𝛼
󶀴󶀴
𝛽𝛽
󶁶󶁶 , (1)

𝐹𝐹 󶀡󶀡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  󶀱󶀱 =1−   exp 󶁦󶁦−󶀤󶀤
𝑡𝑡
𝛼𝛼
󶀴󶀴
𝛽𝛽
󶁶󶁶 , (2)

𝑆𝑆 󶀡󶀡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  󶀱󶀱 = exp 󶁦󶁦−󶀤󶀤
𝑡𝑡
𝛼𝛼
󶀴󶀴
𝛽𝛽
󶁶󶁶 , (3)

where 𝛽𝛽 represents the shape parameter and 𝛼𝛼 the scale
parameter.

Let [𝐿𝐿𝑖𝑖, 𝑅𝑅𝑖𝑖] denote the interval-censored data and let 𝑇𝑇
represent the unknown time, that is, 𝐿𝐿𝑖𝑖 ≤ 𝑇𝑇𝑖𝑖 ≤ 𝑅𝑅𝑖𝑖, where 𝐿𝐿𝑖𝑖
is the last inspection time and 𝑅𝑅𝑖𝑖 the state end time.

If censoring occurs noninformatively and if the law
governing 𝐿𝐿 and 𝑅𝑅 does not involve any of the parameters of
interest, we can base our inferences on the likelihood function
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐿 𝐿𝐿𝑖𝑖, 𝑅𝑅𝑖𝑖) as stated by Gómez et al. [17], which is given by

𝐿𝐿 󶀡󶀡𝐿𝐿𝑖𝑖, 𝑅𝑅𝑖𝑖 ∣ 𝛼𝛼𝛼𝛼𝛼 󶀱󶀱 =
𝑛𝑛
󵠉󵠉
𝑖𝑖𝑖𝑖

󶁡󶁡𝐹𝐹 󶀡󶀡𝑅𝑅𝑖𝑖, 𝛼𝛼𝛼𝛼𝛼 󶀱󶀱 − 𝐹𝐹 󶀡󶀡𝐿𝐿𝑖𝑖, 𝛼𝛼𝛼𝛼𝛼 󶀱󶀱󶁱󶁱

=
𝑛𝑛
󵠉󵠉
𝑖𝑖𝑖𝑖

󶁡󶁡𝑆𝑆 󶀡󶀡𝐿𝐿𝑖𝑖󶀱󶀱 − 𝑆𝑆 󶀡󶀡𝑅𝑅𝑖𝑖󶀱󶀱󶁱󶁱

=
𝑛𝑛
󵠉󵠉
𝑖𝑖𝑖𝑖

prob 󶁁󶁁𝐿𝐿𝑖𝑖 ≤ 𝑇𝑇𝑖𝑖 ≤ 𝑅𝑅𝑖𝑖󶁑󶁑 .

(4)

By using (3), we have

𝐿𝐿 󶀡󶀡𝐿𝐿𝑖𝑖, 𝑅𝑅𝑖𝑖 ∣ 𝛼𝛼𝛼𝛼𝛼 󶀱󶀱 =
𝑛𝑛
󵠉󵠉
𝑖𝑖𝑖𝑖

󶁆󶁆exp 󶁦󶁦−󶀤󶀤
𝐿𝐿𝑖𝑖
𝛼𝛼
󶀴󶀴
𝛽𝛽
󶁶󶁶 − exp 󶁦󶁦−󶀤󶀤

𝑅𝑅𝑖𝑖
𝛼𝛼
󶀴󶀴
𝛽𝛽
󶁶󶁶󶁶󶁶 .

(5)

Taking the natural log of (5), we have

ℓ =
𝑛𝑛
󵠈󵠈
𝑖𝑖𝑖𝑖
ln 󶁆󶁆exp 󶁦󶁦−󶀤󶀤

𝐿𝐿𝑖𝑖
𝛼𝛼
󶀴󶀴
𝛽𝛽
󶁶󶁶 − exp 󶁦󶁦−󶀤󶀤

𝑅𝑅𝑖𝑖
𝛼𝛼
󶀴󶀴
𝛽𝛽
󶁶󶁶󶁶󶁶 . (6)

To �nd the values of 𝛼𝛼 and 𝛽𝛽 that maximize (6), we
differentiate (6) with respect to 𝛼𝛼 and 𝛽𝛽 and set the resulting
equations to zero.

erefore

𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
𝑛𝑛
󵠈󵠈
𝑖𝑖𝑖𝑖
󶁇󶁇󶁇󶁇 − 󶀦󶀦󶀦󶀦

𝐿𝐿𝑖𝑖
𝛼𝛼
󶀴󶀴
𝛽𝛽
ln 󶀤󶀤

𝐿𝐿𝑖𝑖
𝛼𝛼
󶀴󶀴 exp 󶁦󶁦−󶀤󶀤

𝐿𝐿𝑖𝑖
𝛼𝛼
󶀴󶀴
𝛽𝛽
󶁶󶁶

−󶀤󶀤
𝑅𝑅𝑖𝑖
𝛼𝛼
󶀴󶀴
𝛽𝛽
ln 󶀤󶀤

𝑅𝑅𝑖𝑖
𝛼𝛼
󶀴󶀴 exp 󶁦󶁦−󶀤󶀤

𝑅𝑅𝑖𝑖
𝛼𝛼
󶀴󶀴
𝛽𝛽
󶁶󶁶󶀶󶀶

×󶀦󶀦󶀦󶀦exp 󶁦󶁦−󶀤󶀤
𝐿𝐿𝑖𝑖
𝛼𝛼
󶀴󶀴
𝛽𝛽
󶁶󶁶 − exp 󶁦󶁦−󶀤󶀤

𝑅𝑅𝑖𝑖
𝛼𝛼
󶀴󶀴
𝛽𝛽
󶁶󶁶󶁶󶁶󶀶󶀶

−1

󶁷󶁷󶁷󶁷=0,

𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
𝑛𝑛
󵠈󵠈
𝑖𝑖𝑖𝑖
󶁇󶁇󶁇󶁇 − 󶀦󶀦󶀦󶀦

𝐿𝐿𝑖𝑖
𝛼𝛼
󶀴󶀴
𝛽𝛽
󶀤󶀤
𝐿𝐿𝑖𝑖
𝛼𝛼
󶀴󶀴 exp 󶁦󶁦−󶀤󶀤

𝐿𝐿𝑖𝑖
𝛼𝛼
󶀴󶀴
𝛽𝛽
󶁶󶁶

−󶀤󶀤
𝑅𝑅𝑖𝑖
𝛼𝛼
󶀴󶀴
𝛽𝛽
󶀤󶀤
𝑅𝑅𝑖𝑖
𝛼𝛼
󶀴󶀴 exp 󶁦󶁦−󶀤󶀤

𝑅𝑅𝑖𝑖
𝛼𝛼
󶀴󶀴
𝛽𝛽
󶁶󶁶󶁶󶁶

×󶀦󶀦󶀦󶀦exp 󶁦󶁦−󶀤󶀤
𝐿𝐿𝑖𝑖
𝛼𝛼
󶀴󶀴
𝛽𝛽
󶁶󶁶−exp 󶁦󶁦−󶀤󶀤

𝑅𝑅𝑖𝑖
𝛼𝛼
󶀴󶀴
𝛽𝛽
󶁶󶁶󶁶󶁶󶀶󶀶

−1

󶁷󶁷󶁷󶁷 = 0.

(7)

With a simple numerical approximation, the maximum
likelihood estimates of 𝛼𝛼 and 𝛽𝛽 can be obtained.
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3. Bayesian Inference

Bayesian inference is an approach that employs the Bayes’
rule in order to update the probability estimate of a hypoth-
esis taking into consideration new evidence as it becomes
available. Bayesian updating is one of the essential techniques
used in modern statistics, more importantly in mathematical
statistics. Bayesian updating is particularly important in
analysing data that is progressive. Bayesian inference can
be applied in many other �elds like engineering, medicine,
and accounting. e Bayes approach makes use of our
prior beliefs of the parameters which is referred to as Prior
distribution. e prior is a distribution of the parameters
before any data is observed and is given as 𝑝𝑝𝑝𝑝𝑝𝑝. It also takes
into consideration the observed data which is obtained by
making use of the likelihood function, and given as 𝐿𝐿𝐿𝐿𝐿 𝐿 𝐿𝐿𝐿.

e Bayes estimator is considered under three loss func-
tions which are important in Bayesian estimations. ey are
asymmetric (LINEX and general entropy) loss functions and
symmetric (squared error) loss function.

3.1. Prior. Prior distribution of the unknown parameters
need to be assumed for the Bayesian inference. As discussed
by Berger and Sun [18] and subsequently used by Banerjee
and Kundu [19], we let 𝛼𝛼 take on a Gamma(𝑎𝑎𝑎 𝑎𝑎𝑎 prior with
𝑎𝑎 𝑎 𝑎 and 𝑏𝑏𝑏𝑏  . We assume that the prior of 𝛽𝛽 is independent
of the prior of 𝛼𝛼 and is in the neighbourhood of (0,∞). Let
𝑣𝑣𝑣𝑣𝑣𝑣 represent the prior of 𝛽𝛽, where

Gamma (𝑎𝑎𝑎 𝑎𝑎) ∝ 𝛼𝛼𝑎𝑎𝑎𝑎 exp (−𝛼𝛼𝛼𝛼) . (8)

A joint density function of the data 𝛼𝛼 and 𝛽𝛽 for interval
censored data can be obtained as below

𝜋𝜋 󶀡󶀡𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼  𝑖𝑖, 𝑅𝑅𝑖𝑖󶀱󶀱 ∝ 𝑣𝑣 󶀡󶀡𝛽𝛽󶀱󶀱 𝛼𝛼𝑎𝑎𝑎𝑎 exp (−𝛼𝛼𝛼𝛼)

×
𝑛𝑛
󵠉󵠉
𝑖𝑖𝑖𝑖

󶁆󶁆exp 󶁦󶁦−󶀤󶀤
𝐿𝐿𝑖𝑖
𝛼𝛼
󶀴󶀴
𝛽𝛽
󶁶󶁶 − exp 󶁦󶁦−󶀤󶀤

𝑅𝑅𝑖𝑖
𝛼𝛼
󶀴󶀴
𝛽𝛽
󶁶󶁶󶁶󶁶 .

(9)

Bayesian inference is based on the posterior distribution
which is simply the ratio of the joint density function to the
marginal distribution function.

e posterior density function of 𝛼𝛼 and 𝛽𝛽 given the data
is

𝜋𝜋∗ 󶀡󶀡𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼   𝑖𝑖, 𝑅𝑅𝑖𝑖󶀱󶀱 =
𝜋𝜋 󶀡󶀡𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼  𝑖𝑖, 𝑅𝑅𝑖𝑖󶀱󶀱

∫∞0 ∫∞0 𝜋𝜋 󶀡󶀡𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼  𝑖𝑖, 𝑅𝑅𝑖𝑖󶀱󶀱 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑
. (10)

3.2. e Loss Functions. Having taking into account our
prior information which is essential, the Bayes estimator
shall be considered under three loss functions. e �rst loss
function under consideration is squared error loss function
(SELF) which is symmetrical in nature. What is worth noting
is that many estimation problems that involve either one
or more parameters are treated in most cases using the
symmetric loss function.is loss function gives equal weight
to estimation errors that are the same regardless of whether
the loss obtained has either overestimated or underestimated
the parameter or the problem being investigated. At some

particular times we observe that estimation errors with
respect to a particular problem are preferable either in one
direction or the other. When one takes into perspective a
univariate problem, it can be stated that an overestimation
may cause more seriousness than that of an underestimation
or vice versa as also stressed by Hamada et al. [20]. Varian
[21] was motivated by the use of asymmetric loss functions
and therefore applied it in estimating problems arising in real
estate assessment, where overestimation of a property’s value
might cause it to remain on themarket unsold for an extended
period, ultimately costing the seller super�uous or gratuitous
expenses. As a result of the above discussions, we have taken
into perspective two asymmetric loss functions, which are
linear exponential (LINEX) loss function and general entropy
loss function (GELF).

(1) e squared error loss function is given as

𝐿𝐿 (𝑎𝑎𝑎 𝑎𝑎) = (𝑎𝑎 𝑎 𝑎𝑎)2, (11)

where 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿  is the loss incurred by adopting action
𝑎𝑎 when the true state of nature is 𝜃𝜃.

(2) e LINEX loss function is also given as

𝐿𝐿 (Δ) = 𝑒𝑒𝑐𝑐𝑐 − 𝑐𝑐𝑐𝑐𝑐𝑐   𝑐𝑐 𝑐 𝑐𝑐 (12)

where Δ =( 󵰁󵰁𝜃𝜃𝜃𝜃𝜃𝜃  , with 󵰁󵰁𝜃𝜃 being the estimate of 𝜃𝜃.
According to Zellner [22], the posterior expectation
of the LINEX loss function is

𝐸𝐸𝜃𝜃 [𝐿𝐿 (Δ)] = 𝑒𝑒
𝑐𝑐󵰁󵰁𝜃𝜃𝐸𝐸𝜃𝜃𝑒𝑒

−𝑐𝑐𝑐𝑐 − 𝑐𝑐 󶀢󶀢󵰁󵰁𝜃𝜃𝜃𝜃𝜃  𝜃𝜃𝜃𝜃󶀲󶀲 −1 . (13)

e value of 󵰁󵰁𝜃𝜃 that minimizes the above equation is

󵰁󵰁𝜃𝜃BL =−
1
𝑐𝑐
ln 𝐸𝐸𝜃𝜃 󶀢󶀢𝑒𝑒

−𝑐𝑐𝑐𝑐󶀲󶀲 (14)

provided 𝐸𝐸𝜃𝜃(⋅) exists and is �nite.
(3) Another useful asymmetric loss function is the gen-

eral entropy (GELF) which is a generalization of the
entropy loss and is given as

𝐿𝐿 󶀢󶀢󵰁󵰁𝜃𝜃𝜃𝜃𝜃  󶀲󶀲 ∝ 󶀦󶀦
󵰁󵰁𝜃𝜃
𝜃𝜃
󶀶󶀶
𝑘𝑘

− 𝑘𝑘 𝑘𝑘󶀦󶀦
󵰁󵰁𝜃𝜃
𝜃𝜃
󶀶󶀶 −1 . (15)

e Bayes estimator 󵰁󵰁𝜃𝜃BG of 𝜃𝜃 under the general
entropy loss is

󵰁󵰁𝜃𝜃BG = 󶁢󶁢𝐸𝐸𝜃𝜃(𝜃𝜃
−𝑘𝑘)󶁲󶁲

−1/𝑘𝑘
, (16)

provided 𝐸𝐸𝜃𝜃(⋅) exists and is �nite.

It may be noted that (10) contains double integrals which
cannot be solved analytically; this is due to the complex
form of the likelihood function given in (5). erefore, we
propose to use Lindley approximationmethod to evaluate the
integrals involved.
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3.3. Lindley Approximation. Aprior of𝛽𝛽needs to be speci�ed
here so as to calculate the approximate Bayes estimates of
𝛼𝛼 and 𝛽𝛽. �aving speci�ed a prior for 𝛼𝛼 as Gamma(𝑎𝑎𝑎 𝑎𝑎𝑎, it
is similarly assumed that 𝑣𝑣𝑣𝑣𝑣𝑣 also takes on a Gamma(𝑐𝑐𝑐 𝑐𝑐𝑐
prior.

According to Lye et al. [23], the posterior Bayes estimator
of an arbitrary function 𝑢𝑢𝑢𝑢𝑢𝑢 given by Lindley is

𝐸𝐸 {𝑢𝑢 (𝜃𝜃) ∣ 𝑥𝑥} =
∫𝜔𝜔 (𝜃𝜃) exp [ℓ (𝜃𝜃)] 𝑑𝑑𝑑𝑑

∫ 𝑣𝑣 (𝜃𝜃) exp [ℓ (𝜃𝜃)] 𝑑𝑑𝑑𝑑
, (17)

where ℓ(𝜃𝜃𝜃 is the log likelihood and 𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔  are arbitrary
functions of 𝜃𝜃. We assume that 𝑣𝑣𝑣𝑣𝑣𝑣 is the prior distribution
for 𝜃𝜃 and 𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔𝜔   𝜔 𝜔𝜔𝜔𝜔𝜔𝜔 with 𝑢𝑢𝑢𝑢𝑢𝑢 being some function of
interest.

Equation (17) can be approximated asymptotically by the
following:

𝐸𝐸 {𝑢𝑢 (𝜃𝜃) ∣ 𝑥𝑥} = 󶀄󶀄

󶀜󶀜
𝑢𝑢 𝑢

1
2
󵠈󵠈
𝑖𝑖
󵠈󵠈
𝑗𝑗
󶀢󶀢𝑢𝑢𝑖𝑖𝑖𝑖 + 2𝑢𝑢𝑖𝑖 ⋅ 𝜌𝜌𝑗𝑗󶀲󶀲 ⋅ 𝜎𝜎𝑖𝑖𝑖𝑖

+
1
2
󵠈󵠈
𝑖𝑖
󵠈󵠈
𝑗𝑗
󵠈󵠈
𝑘𝑘
󵠈󵠈
𝑙𝑙
ℓ𝑖𝑖𝑖𝑖𝑖𝑖 ⋅ 𝜎𝜎𝑖𝑖𝑖𝑖 ⋅ 𝜎𝜎𝑘𝑘𝑘𝑘 ⋅ 𝑢𝑢𝑙𝑙󶀅󶀅

󶀝󶀝
,

(18)

where 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖      𝑖 𝑖 𝑖𝑖; 𝜃𝜃𝜃𝜃𝜃𝜃  1,𝜃𝜃 2,…,𝜃𝜃  𝑚𝑚).
Taking the two parameters into consideration, (18)

reduces to

󵰁󵰁𝜃𝜃𝜃𝜃𝜃𝜃  
1
2
󶁡󶁡󶁡󶁡𝑢𝑢11𝜎𝜎11󶀱󶀱 + 󶀡󶀡𝑢𝑢22𝜎𝜎22󶀱󶀱󶁱󶁱 + 𝑢𝑢1𝜌𝜌1𝜎𝜎11

+ 𝑢𝑢2𝜌𝜌2𝜎𝜎22 +
1
2
󶁢󶁢󶁢󶁢ℓ30𝑢𝑢1𝜎𝜎

2
11󶀲󶀲 + 󶀢󶀢ℓ03𝑢𝑢2𝜎𝜎

2
22󶀲󶀲󶁲󶁲 ,

(19)

where ℓ is the log-likelihood function in (6). If 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢  is some
function of interest, then under squared error loss function
we have

𝜋𝜋∗ 󶀡󶀡𝛼𝛼𝛼𝛼𝛼𝛼   𝛼𝛼𝑖𝑖, 𝑅𝑅𝑖𝑖󶀱󶀱 =
∬𝑢𝑢 󶀡󶀡𝛼𝛼𝛼𝛼𝛼 󶀱󶀱 𝜋𝜋 󶀡󶀡𝛼𝛼𝛼𝛼𝛼𝛼  𝛼𝛼𝑖𝑖, 𝑅𝑅𝑖𝑖󶀱󶀱 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

∬𝜋𝜋 󶀡󶀡𝛼𝛼𝛼𝛼𝛼𝛼  𝛼𝛼𝑖𝑖, 𝑅𝑅𝑖𝑖󶀱󶀱 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
,

𝜌𝜌 𝜌 𝜌𝜌 𝜌𝜌1 (𝛼𝛼) +ln  𝑣𝑣 󶀡󶀡𝛽𝛽󶀱󶀱 ,

𝜌𝜌1 =
𝑐𝑐 𝑐 𝑐
𝛼𝛼

−𝑑𝑑𝑑𝑑𝑑  2 =
𝑎𝑎 𝑎𝑎
𝛽𝛽

−𝑏𝑏𝑏

𝑢𝑢 (𝛼𝛼) = 𝛼𝛼𝛼𝛼𝛼 1 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 1,

𝑢𝑢11 =
𝜕𝜕2𝑢𝑢
𝜕𝜕𝜕𝜕2

= 0, 𝑢𝑢 󶀡󶀡𝛽𝛽󶀱󶀱 = 𝛽𝛽𝛽

𝑢𝑢2 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 1, 𝑢𝑢22 =
𝜕𝜕2𝑢𝑢
𝜕𝜕𝜕𝜕2

= 0.

(20)

Let the following de�nitions hold:

𝑥𝑥 𝑥𝑥𝑥𝑥  󶁦󶁦−󶀤󶀤
𝐿𝐿𝑖𝑖
𝛼𝛼
󶀴󶀴
𝛽𝛽
󶁶󶁶 , 𝑦𝑦 𝑦𝑦𝑦𝑦  󶁦󶁦−󶀤󶀤

𝑅𝑅𝑖𝑖
𝛼𝛼
󶀴󶀴
𝛽𝛽
󶁶󶁶 ,

𝑒𝑒 𝑒 󶁦󶁦−󶀤󶀤
𝐿𝐿𝑖𝑖
𝛼𝛼
󶀴󶀴
𝛽𝛽
󶁶󶁶 , 𝑓𝑓 𝑓 󶁦󶁦−󶀤󶀤

𝑅𝑅𝑖𝑖
𝛼𝛼
󶀴󶀴
𝛽𝛽
󶁶󶁶 ,

𝑤𝑤 𝑤 󶁥󶁥−ln  󶀤󶀤
𝐿𝐿𝑖𝑖
𝛼𝛼
󶀴󶀴󶁵󶁵 , 𝑎𝑎 𝑎 󶁥󶁥−ln  󶀤󶀤

𝑅𝑅𝑖𝑖
𝛼𝛼
󶀴󶀴󶁵󶁵 ,

ℓ20 =
𝜕𝜕2ℓ
𝜕𝜕𝜕𝜕2

=
𝑛𝑛
󵠈󵠈
𝑖𝑖𝑖𝑖
󶁇󶁇 󶁇󶁇

1
𝑥𝑥 𝑥𝑥𝑥

󶁵󶁵

× 󶁆󶁆𝑒𝑒󶀦󶀦
𝛽𝛽2

𝛼𝛼2
󶀶󶀶 𝑥𝑥 𝑥𝑥𝑥  󶀥󶀥

𝛽𝛽
𝛼𝛼2
󶀵󶀵 𝑥𝑥 𝑥𝑥𝑥 2

× 󶀦󶀦
𝛽𝛽2

𝛼𝛼2
󶀶󶀶𝑥𝑥 𝑥𝑥𝑥 󶀦󶀦

𝛽𝛽2

𝛼𝛼2
󶀶󶀶𝑦𝑦

−𝑓𝑓󶀥󶀥
𝛽𝛽
𝛼𝛼2
󶀵󶀵𝑦𝑦 𝑦𝑦𝑦 2 󶀦󶀦

𝛽𝛽2

𝛼𝛼2
󶀶󶀶𝑦𝑦󶁖󶁖

−󶁇󶁇
󶁡󶁡𝑒𝑒 󶀡󶀡𝛽𝛽𝛽𝛽𝛽󶀱󶀱 𝑥𝑥 𝑥𝑥𝑥  󶀡󶀡𝛽𝛽𝛽𝛽𝛽󶀱󶀱 𝑦𝑦󶁱󶁱2

󶁡󶁡𝑥𝑥 𝑥𝑥𝑥 󶁱󶁱2
󶁗󶁗󶁗󶁗 ,

𝜎𝜎11 = 󶀡󶀡−ℓ20󶀱󶀱
−1, 𝜎𝜎22 = 󶀡󶀡−ℓ02󶀱󶀱

−1,

ℓ30 =
𝜕𝜕3ℓ
𝜕𝜕𝜕𝜕3

=
𝑛𝑛
󵠈󵠈
𝑖𝑖𝑖𝑖
󶁅󶁅󶁅󶁅

1
𝑥𝑥 𝑥𝑥𝑥

󶁵󶁵

× 󶁆󶁆−𝑒𝑒󶀦󶀦
𝛽𝛽3

𝛼𝛼3
󶀶󶀶 𝑥𝑥 𝑥𝑥𝑥𝑥 󶀦󶀦

𝛽𝛽2

𝛼𝛼3
󶀶󶀶 𝑥𝑥

− 3𝑒𝑒2 󶀦󶀦
𝛽𝛽3

𝛼𝛼3
󶀶󶀶𝑥𝑥 𝑥𝑥𝑥𝑥 󶀥󶀥

𝛽𝛽
𝛼𝛼3
󶀵󶀵 𝑥𝑥

− 3𝑒𝑒2 󶀦󶀦
𝛽𝛽2

𝛼𝛼3
󶀶󶀶𝑥𝑥 𝑥𝑥𝑥 3 󶀦󶀦

𝛽𝛽3

𝛼𝛼3
󶀶󶀶𝑥𝑥

+ 𝑓𝑓󶀦󶀦
𝛽𝛽3

𝛼𝛼3
󶀶󶀶𝑦𝑦 𝑦𝑦𝑦𝑦 󶀦󶀦

𝛽𝛽2

𝛼𝛼3
󶀶󶀶𝑦𝑦

+ 3𝑓𝑓2 󶀦󶀦
𝛽𝛽3

𝛼𝛼3
󶀶󶀶𝑦𝑦 𝑦𝑦𝑦𝑦 󶀥󶀥

𝛽𝛽
𝛼𝛼3
󶀵󶀵𝑦𝑦

+3𝑓𝑓2 󶀦󶀦
𝛽𝛽2

𝛼𝛼3
󶀶󶀶𝑦𝑦 𝑦𝑦𝑦 3 󶀦󶀦

𝛽𝛽3

𝛼𝛼3
󶀶󶀶𝑦𝑦󶁖󶁖

− 󶁥󶁥
1

𝑥𝑥 𝑥𝑥𝑥
󶁵󶁵
2

× 󶁆󶁆3 󶁦󶁦𝑒𝑒󶀦󶀦
𝛽𝛽2

𝛼𝛼2
󶀶󶀶 𝑥𝑥 𝑥𝑥𝑥 󶀦󶀦

𝛽𝛽2

𝛼𝛼2
󶀶󶀶 𝑥𝑥

+ 𝑒𝑒2 󶀦󶀦
𝛽𝛽2

𝛼𝛼2
󶀶󶀶𝑥𝑥 𝑥𝑥𝑥 󶀦󶀦

𝛽𝛽2

𝛼𝛼2
󶀶󶀶𝑦𝑦
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−𝑓𝑓󶀥󶀥
𝛽𝛽
𝛼𝛼2
󶀵󶀵𝑦𝑦 𝑦𝑦𝑦 2 󶀦󶀦

𝛽𝛽2

𝛼𝛼2
󶀶󶀶𝑦𝑦󶁶󶁶

× 󶁥󶁥−𝑒𝑒󶀥󶀥
𝛽𝛽
𝛼𝛼
󶀵󶀵𝑥𝑥 𝑥 𝑥𝑥󶀥󶀥

𝛽𝛽
𝛼𝛼
󶀵󶀵𝑦𝑦󶁵󶁵󶁵󶁵

+󶁇󶁇
2󶁡󶁡−𝑒𝑒 󶀡󶀡𝛽𝛽𝛽𝛽𝛽󶀱󶀱 𝑥𝑥 𝑥 𝑥𝑥 󶀡󶀡𝛽𝛽𝛽𝛽𝛽󶀱󶀱 𝑦𝑦󶁱󶁱3

󶁡󶁡𝑥𝑥 𝑥𝑥𝑥 󶁱󶁱3
󶁗󶁗󶁗󶁗 ,

ℓ02 =
𝜕𝜕𝜕2

𝜕𝜕𝜕𝜕2
= 󶁥󶁥

1
𝑥𝑥 𝑥𝑥𝑥

󶁵󶁵 × 󶁂󶁂𝑒𝑒𝑒𝑒2𝑥𝑥𝑥𝑥𝑥2𝑤𝑤2𝑥𝑥𝑥𝑥𝑥𝑥𝑥2𝑦𝑦𝑦𝑦𝑦2𝑎𝑎2𝑦𝑦󶁒󶁒

− 󶁇󶁇
󶁡󶁡𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  󶁱󶁱2

󶁡󶁡𝑥𝑥 𝑥𝑥𝑥 󶁱󶁱2
󶁗󶁗 ,

ℓ03 =
𝜕𝜕𝜕3

𝜕𝜕𝜕𝜕3
= 󶁥󶁥

1
𝑥𝑥 𝑥𝑥𝑥

󶁵󶁵 × 󶁂󶁂𝑒𝑒𝑒𝑒3𝑥𝑥 𝑥 𝑥𝑥𝑥2𝑤𝑤3𝑥𝑥 𝑥 𝑥𝑥3𝑤𝑤3𝑥𝑥

−𝑓𝑓𝑓𝑓3𝑦𝑦 𝑦𝑦𝑦𝑦 2𝑎𝑎3𝑦𝑦 𝑦𝑦𝑦 3𝑎𝑎3𝑦𝑦󶁒󶁒

− 󶁥󶁥
1

𝑥𝑥 𝑥𝑥𝑥
󶁵󶁵
2
× 󶁂󶁂3 󶁂󶁂𝑒𝑒𝑒𝑒2𝑥𝑥 𝑥 𝑥𝑥2𝑤𝑤2𝑥𝑥

−𝑓𝑓𝑓𝑓2𝑦𝑦 𝑦𝑦𝑦 2𝑎𝑎2𝑦𝑦󶁒󶁒 󶁒󶁒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  󶁑󶁑󶁑󶁑

+ 󶁇󶁇
2󶁡󶁡𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  󶁱󶁱3

󶁡󶁡𝑥𝑥 𝑥𝑥𝑥 󶁱󶁱3
󶁗󶁗 .

(21)

3.4. Linear Exponential Loss Function. e Bayes estimator
󵰅󵰅𝑢𝑢BL of a function 𝑢𝑢 𝑢 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 under the
LINEX loss function is given as

𝜋𝜋∗ 󶀡󶀡𝛼𝛼𝛼𝛼𝛼  𝛼 𝛼𝛼𝑖𝑖, 𝑅𝑅𝑖𝑖󶀱󶀱

=
∬𝑢𝑢 󶁡󶁡exp (−𝑐𝑐𝑐𝑐) , exp 󶀡󶀡−𝑐𝑐𝑐𝑐󶀱󶀱󶁱󶁱 𝜋𝜋 󶀡󶀡𝛼𝛼𝛼𝛼𝛼𝛼  𝛼𝛼𝑖𝑖, 𝑅𝑅𝑖𝑖󶀱󶀱 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑

∬𝜋𝜋 󶀡󶀡𝛼𝛼𝛼𝛼𝛼𝛼  𝛼𝛼𝑖𝑖, 𝑅𝑅𝑖𝑖󶀱󶀱 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑
.

(22)

e LINEX loss is obtained by using the same Lindley
procedure in (19) with

𝑢𝑢 (𝛼𝛼) = 𝑒𝑒−𝑐𝑐𝑐𝑐, 𝑢𝑢 󶀡󶀡𝛽𝛽󶀱󶀱 = 𝑒𝑒−𝑐𝑐𝑐𝑐,

𝑢𝑢1 = −𝑐𝑐𝑐𝑐
−𝑐𝑐𝑐𝑐, 𝑢𝑢11 = 𝑐𝑐

2𝑒𝑒−𝑐𝑐𝑐𝑐,

𝑢𝑢2 = −𝑐𝑐𝑐𝑐
−𝑐𝑐𝑐𝑐, 𝑢𝑢22 = 𝑐𝑐

2𝑒𝑒−𝑐𝑐𝑐𝑐.

(23)

3.5. General Entropy Loss Function. e Bayes estimator
under this loss function with some function of interest, say,
𝑢𝑢 𝑢 𝑢𝑢𝑢𝑢𝑢𝑢𝑢−𝑘𝑘, (𝛽𝛽𝛽−𝑘𝑘], is

𝜋𝜋∗ 󶀡󶀡𝛼𝛼𝛼𝛼𝛼  𝛼 𝛼𝛼𝑖𝑖, 𝑅𝑅𝑖𝑖󶀱󶀱

=
∬𝑢𝑢 󶁣󶁣󶁣𝛼𝛼)−𝑘𝑘, 󶀡󶀡𝛽𝛽󶀱󶀱−𝑘𝑘󶁳󶁳 𝜋𝜋 󶀡󶀡𝛼𝛼𝛼𝛼𝛼𝛼  𝛼𝛼𝑖𝑖, 𝑅𝑅𝑖𝑖󶀱󶀱 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑

∬𝜋𝜋 󶀡󶀡𝛼𝛼𝛼𝛼𝛼𝛼  𝛼𝛼𝑖𝑖, 𝑅𝑅𝑖𝑖󶀱󶀱 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑
.

(24)

Similar Lindley approach is used for the general entropy loss
function as in the squared error loss but here the Lindley
approximation procedure as stated in (19), where 𝑢𝑢1, 𝑢𝑢11
and 𝑢𝑢2, 𝑢𝑢22 are the �rst and second derivatives for 𝛼𝛼 and 𝛽𝛽,
respectively, are given as

𝑢𝑢 𝑢 (𝛼𝛼)−𝑘𝑘, 𝑢𝑢1 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −𝑘𝑘(𝛼𝛼)−𝑘𝑘𝑘𝑘,

𝑢𝑢11 =
𝜕𝜕2𝑢𝑢
𝜕𝜕(𝛼𝛼)2

= − 󶀢󶀢−𝑘𝑘2 − 𝑘𝑘󶀲󶀲 󶀲𝛼𝛼)−𝑘𝑘𝑘𝑘, 𝑢𝑢2 = 𝑢𝑢22 = 0,

𝑢𝑢 𝑢 󶀡󶀡𝛽𝛽󶀱󶀱−𝑘𝑘, 𝑢𝑢2 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −𝑘𝑘󶀡󶀡𝛽𝛽󶀱󶀱−𝑘𝑘𝑘𝑘,

𝑢𝑢22 =
𝜕𝜕2𝑢𝑢
𝜕𝜕󶀡󶀡𝛽𝛽󶀱󶀱2

= − 󶀢󶀢−𝑘𝑘2 − 𝑘𝑘󶀲󶀲 󶀲󶀲𝛽𝛽󶀱󶀱−𝑘𝑘𝑘𝑘, 𝑢𝑢1 = 𝑢𝑢11 = 0.

(25)

4. Simulation Study

A simulation study is carried out to determine the best
estimator for the two parameters of the Weibull distribution
with interval censoring.

Generating the interval-censored data involved the fol-
lowing steps. Each data set contains 25,50, and 100 interval
censored observations. Some observationswere le censored,
but we have not speci�ed le-censored data from interval
censored data.

We assume that the true survival time follows a Weibull
distribution.

(a) Generate from theWeibull distribution, say, 𝑡𝑡 of size 𝑛𝑛
= 25, 50, and 100 with 𝛼𝛼 = 2 and 4, and 𝛽𝛽 = 0.8 and 1.2
to represent the true survival time with a decreasing
and increasing shape parameter.

(b) Generate a vector, say, 𝑉𝑉 for a set of clinic visits.
Assume there are 5 clinic visits, for the Weibull
distribution� ta�e the �rst visit to be 𝑣𝑣1 and generate
from𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑈𝑈𝑈. e next visit of 𝑣𝑣2 is also generated
from 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈1, 𝑣𝑣2 +𝑏𝑏𝑏 . Subsequent generations are
employed with similar approach.

(c) Generate a set of matrix named bounds for each of
the data set. To obtain the lower and upper bounds
we made use of the following:

bounds [𝑖𝑖𝑖𝑖 ] =
󶀂󶀂󶀒󶀒󶀒󶀒󶀒󶀒
󶀊󶀊󶀒󶀒󶀒󶀒󶀒󶀒
󶀚󶀚

0, if 𝑡𝑡 𝑡 𝑡𝑡 [𝑖𝑖𝑖𝑖 ] ,
𝑉𝑉 󶁡󶁡𝑖𝑖𝑖 𝑖𝑖󶁱󶁱 , if 𝑉𝑉󶁡󶁡𝑖𝑖𝑖 𝑖𝑖󶁱󶁱 < 𝑡𝑡 𝑡 𝑡𝑡 󶁡󶁡𝑖𝑖𝑖 𝑖𝑖 𝑖𝑖 󶁱󶁱 ,

where 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗     𝑗𝑗
𝑉𝑉 [5] , if 𝑡𝑡 𝑡 [5]

bounds [𝑖𝑖𝑖𝑖 ] =
󶀂󶀂󶀒󶀒󶀒󶀒󶀒󶀒
󶀊󶀊󶀒󶀒󶀒󶀒󶀒󶀒
󶀚󶀚

𝑉𝑉[𝑖𝑖𝑖𝑖 ] , if 𝑡𝑡 𝑡 𝑡𝑡 [𝑖𝑖𝑖𝑖 ] ,
𝑉𝑉 󶁡󶁡𝑖𝑖𝑖 𝑖𝑖 𝑖𝑖 󶁱󶁱 , if 𝑉𝑉󶁡󶁡𝑖𝑖𝑖 𝑖𝑖󶁱󶁱 < 𝑡𝑡 𝑡 𝑡𝑡 󶁡󶁡𝑖𝑖𝑖 𝑖𝑖 𝑖𝑖 󶁱󶁱 ,

where 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗     𝑗𝑗
1000, if 𝑡𝑡 𝑡 𝑡𝑡 [5] ,

(26)
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T 1: MSEs for (󵰁󵰁𝛼𝛼𝛼 under informative prior and MLE with interval-censoring.

𝑛𝑛 𝑛𝑛 𝑛𝑛 󵰁󵰁𝛼𝛼ML 󵰁󵰁𝛼𝛼BS
󵰁󵰁𝛼𝛼BL 󵰁󵰁𝛼𝛼BG 󵰁󵰁𝛼𝛼BL 󵰁󵰁𝛼𝛼BG 󵰁󵰁𝛼𝛼BL 󵰁󵰁𝛼𝛼BG 󵰁󵰁𝛼𝛼BL 󵰁󵰁𝛼𝛼BG

𝑐𝑐 𝑐 𝑐𝑐 𝑐 𝑐𝑐𝑐 𝑐𝑐 𝑐 𝑐𝑐 𝑐 𝑐𝑐𝑐𝑐 𝑐𝑐 𝑐 𝑐𝑐 𝑐 𝑐𝑐𝑐 𝑐𝑐 𝑐 𝑐𝑐 𝑐 𝑐𝑐𝑐𝑐

25
2 0.8 0.00203 0.00210 0.00209 0.00211 0.00210 0.00202 0.00207 0.00213 0.00202 0.00204

1.2 0.00125 0.00145 0.00129 0.00135 0.00118 0.00134 0.00127 0.00128 0.00122 0.00162

4 0.8 0.00783 0.00790 0.00816 0.00857 0.00839 0.00788 0.00826 0.00826 0.00795 0.00801
1.2 0.00501 0.00633 0.00529 0.00511 0.00556 0.00633 0.00523 0.00548 0.00489 0.00606

50
2 0.8 0.00096 0.00096 0.00097 0.00094 0.00095 0.00096 0.00097 0.00099 0.00096 0.00098

1.2 0.00059 0.00058 0.00059 0.00058 0.00064 0.00059 0.00058 0.00057 0.00058 0.00058

4 0.8 0.00375 0.00375 0.00388 0.00379 0.00392 0.00383 0.00382 0.00386 0.00387 0.00389
1.2 0.00241 0.00240 0.00237 0.00240 0.00277 0.00235 0.00231 0.00237 0.00228 0.00272

100
2 0.8 0.00064 0.00064 0.00062 0.00063 0.00063 0.00061 0.00062 0.00063 0.00064 0.00061

1.2 0.00037 0.00041 0.00038 0.00039 0.00037 0.00037 0.00037 0.00037 0.00047 0.00045

4 0.8 0.00249 0.00251 0.00253 0.00255 0.00253 0.00248 0.00256 0.00249 0.00244 0.00248
1.2 0.00150 0.00149 0.00149 0.00152 0.00260 0.00149 0.00150 0.00153 0.00147 0.00152

ML: Maximum Likelihood, BG: General Entropy Loss Function, BL: LINEX Loss Function, BS: Squared Error Loss Function.

T 2: Absolute biases for (󵰁󵰁𝛼𝛼𝛼 under informative prior and MLE with interval-censoring.

𝑛𝑛 𝑛𝑛 𝑛𝑛 󵰁󵰁𝛼𝛼ML 󵰁󵰁𝛼𝛼BS
󵰁󵰁𝛼𝛼BL 󵰁󵰁𝛼𝛼BG 󵰁󵰁𝛼𝛼BL 󵰁󵰁𝛼𝛼BG 󵰁󵰁𝛼𝛼BL 󵰁󵰁𝛼𝛼BG 󵰁󵰁𝛼𝛼BL 󵰁󵰁𝛼𝛼BG

𝑐𝑐 𝑐 𝑐𝑐 𝑐 𝑐𝑐𝑐 𝑐𝑐 𝑐 𝑐𝑐 𝑐 𝑐𝑐𝑐𝑐 𝑐𝑐 𝑐 𝑐𝑐 𝑐 𝑐𝑐𝑐 𝑐𝑐 𝑐 𝑐𝑐 𝑐 𝑐𝑐𝑐𝑐

25
2 0.8 0.00600 0.00605 0.00609 0.00613 0.00602 0.00600 0.00607 0.00614 0.00640 0.00602

1.2 0.00461 0.00460 0.00471 0.00478 0.00440 0.00469 0.00459 0.00464 0.00472 0.00474

4 0.8 0.01177 0.01175 0.01211 0.01234 0.01219 0.01186 0.01212 0.01209 0.01273 0.01189
1.2 0.00920 0.01251 0.00947 0.00934 0.01033 0.00955 0.00941 0.00965 0.01053 0.01102

50
2 0.8 0.00300 0.00300 0.00303 0.00297 0.00299 0.00300 0.00301 0.00305 0.00296 0.00303

1.2 0.00232 0.00230 0.00232 0.00231 0.00229 0.00232 0.00230 0.00228 0.00262 0.00248

4 0.8 0.00595 0.00595 0.00605 0.00598 0.00608 0.00601 0.00599 0.00602 0.00580 0.00604
1.2 0.00469 0.00520 0.00465 0.00469 0.00471 0.00465 0.00459 0.00464 0.00463 0.00454

100
2 0.8 0.00202 0.00202 0.00199 0.00201 0.00200 0.00198 0.00199 0.00200 0.00200 0.00198

1.2 0.00153 0.00154 0.00155 0.00154 0.00152 0.00158 0.00152 0.00181 0.00197 0.00154

4 0.8 0.00399 0.00400 0.00402 0.00404 0.00402 0.00398 0.00404 0.00399 0.00394 0.00399
1.2 0.00307 0.00304 0.00305 0.00309 0.00306 0.01164 0.00307 0.00310 0.00309 0.00302

ML: Maximum Likelihood, BG: General Entropy Loss Function, BL: LINEX Loss Function, BS: Squared Error Loss Function.

(d) An indicator is de�ned such that

indicator [𝑖𝑖] = 󶁆󶁆
0, if bounds [𝑖𝑖𝑖 𝑖] =1000 ,
1, otherwise.

(27)

e coding and the analysis were performed using the R pro-
gramming language which is freely available.e parameters
were estimated with maximum likelihood and Bayesian. To
compute the Bayes estimates, assumptions are made such
that 𝛼𝛼 and 𝛽𝛽 take respectively Gamma(𝑎𝑎𝑎 𝑎𝑎𝑎 and Gamma(𝑐𝑐𝑐 𝑐𝑐𝑐
priors.We set the hyperparameters to zero, that is 𝑎𝑎 𝑎 𝑎𝑎 𝑎𝑎𝑎𝑎 
𝑑𝑑𝑑𝑑   in order to obtain noninformative priors. Note that at
this point the priors become nonproper but the results do not
have any signi�cant di�erence with the implementation of
proper priors as also stated by Benerjee and Kundu [19]. e
values for the loss parameters were taken to be 𝑐𝑐 𝑐 𝑐𝑐 𝑐 𝑐 𝑐𝑐𝑐
and 𝑐𝑐 𝑐 𝑐𝑐 𝑐 𝑐 𝑐𝑐𝑐. A detailed discussion on the choice of
the loss parameter can be seen in Calabria and Pulcini [24].
We iterated the simulation process (R) 1000 times to obtain
the estimates of the parameters.emean squared errors and

absolute biases are determined and presented below for the
purpose of comparison.

To obtain theMSEs and absolute biases for each estimated
value, the MSEs and absolute biases are calculated for each of
the one thousand estimated values of the scale parameter and
the shape parameter that is from 1 to 1000. At the end, what
we obtain is the average ofMSEs and absolute biases. Our aim
is to �nd out how close the estimated values of the estimators
are to the true values at each level of the simulation taking
into account that 𝑟𝑟 𝑟𝑟𝑟𝑟𝑟  𝑟 𝑟𝑟𝑟𝑟𝑟 .

5. Results and Discussion

Table 1 depicts the values of the mean squared error while
Table 2 contains the absolute biases for the scale parameter
(𝛼𝛼𝛼. In Table 1, we observed that themost dominant estimator
that had the smallest mean squared error is Bayesian with
both linear exponential (LINEX) and general entropy loss
functions. e LINEX loss function is slightly better than
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T 3: MSEs for ( 󵰁󵰁𝛽𝛽𝛽 under informative prior and MLE with interval-censoring.

𝑛𝑛 𝑛𝑛 𝑛𝑛 󵰁󵰁𝛽𝛽ML
󵰁󵰁𝛽𝛽BS

󵰁󵰁𝛽𝛽BL
󵰁󵰁𝛽𝛽BG

󵰁󵰁𝛽𝛽BL
󵰁󵰁𝛽𝛽BG

󵰁󵰁𝛽𝛽BL
󵰁󵰁𝛽𝛽BG

󵰁󵰁𝛽𝛽BL
󵰁󵰁𝛽𝛽BG

𝑐𝑐 𝑐 𝑐𝑐 𝑐 𝑐𝑐𝑐 𝑐𝑐 𝑐 𝑐𝑐 𝑐 𝑐𝑐𝑐𝑐 𝑐𝑐 𝑐 𝑐𝑐 𝑐 𝑐𝑐𝑐 𝑐𝑐 𝑐 𝑐𝑐 𝑐 𝑐𝑐𝑐𝑐

25
2 0.8 0.07429 0.06822 0.07525 0.07488 0.06076 0.07060 0.07187 0.07383 0.07329 0.06216

1.2 0.07955 0.07076 0.08011 0.08018 0.06258 0.07467 0.08170 0.08185 0.08246 0.06353

4 0.8 0.07416 0.06799 0.07488 0.07387 0.06054 0.07032 0.07221 0.07403 0.07389 0.06336
1.2 0.08130 0.07267 0.07853 0.07705 0.05980 0.07809 0.08272 0.07985 0.08483 0.06331

50
2 0.8 0.03147 0.03026 0.03166 0.03307 0.02986 0.03186 0.03202 0.03201 0.03282 0.02961

1.2 0.03289 0.03123 0.04675 0.03278 0.03194 0.03298 0.03371 0.03457 0.03434 0.03072

4 0.8 0.03248 0.03123 0.03222 0.03274 0.03005 0.03142 0.03266 0.03248 0.03229 0.03002
1.2 0.03359 0.03188 0.03424 0.03420 0.03125 0.03242 0.03352 0.03423 0.03473 0.03105

100
2 0.8 0.02093 0.02041 0.02118 0.02061 0.01987 0.02062 0.02088 0.02057 0.02053 0.01986

1.2 0.02142 0.02073 0.02148 0.02166 0.02062 0.02160 0.02165 0.02205 0.02144 0.02015

4 0.8 0.02052 0.02001 0.02041 0.02055 0.02002 0.02053 0.02051 0.02069 0.02098 0.01958
1.2 0.021534 0.02083 0.02224 0.02121 0.02052 0.02099 0.02166 0.02135 0.02186 0.01999

ML: Maximum Likelihood, BG: General Entropy Loss Function, BL: LINEX Loss Function, BS: Squared Error Loss Function.

T 4: Absolute biases for ( 󵰁󵰁𝛽𝛽𝛽 under informative prior and MLE with interval-censoring.

𝑛𝑛 𝑛𝑛 𝑛𝑛 󵰁󵰁𝛽𝛽ML
󵰁󵰁𝛽𝛽BS

󵰁󵰁𝛽𝛽BL
󵰁󵰁𝛽𝛽BG

󵰁󵰁𝛽𝛽BL
󵰁󵰁𝛽𝛽BG

󵰁󵰁𝛽𝛽BL
󵰁󵰁𝛽𝛽BG

󵰁󵰁𝛽𝛽BL
󵰁󵰁𝛽𝛽BG

𝑐𝑐 𝑐 𝑐𝑐 𝑐 𝑐𝑐𝑐 𝑐𝑐 𝑐 𝑐𝑐 𝑐 𝑐𝑐𝑐𝑐 𝑐𝑐 𝑐 𝑐𝑐 𝑐 𝑐𝑐𝑐 𝑐𝑐 𝑐 𝑐𝑐 𝑐 𝑐𝑐𝑐𝑐

25
2 0.8 0.03694 0.03538 0.03713 0.03723 0.03645 0.03612 0.03652 0.03685 0.03699 0.03392

1.2 0.03770 0.03555 0.03795 0.03790 0.03351 0.03641 0.03829 0.03822 0.03836 0.03371

4 0.8 0.03701 0.03544 0.03727 0.03689 0.03367 0.03609 0.03653 0.03699 0.03651 0.03409
1.2 0.03824 0.03612 0.03745 0.03721 0.03287 0.03727 0.03838 0.03775 0.03750 0.03375

50
2 0.8 0.01742 0.01708 0.01747 0.01783 0.01698 0.01749 0.01755 0.01756 0.01762 0.01689

1.2 0.01770 0.01724 0.01816 0.01766 0.01710 0.01767 0.01787 0.01807 0.01737 0.01707

4 0.8 0.01767 0.01732 0.01766 0.01776 0.01702 0.01740 0.01772 0.01769 0.01772 0.01698
1.2 0.01783 0.01736 0.01801 0.01802 0.01721 0.01757 0.01784 0.01805 0.01793 0.01714

100
2 0.8 0.01166 0.01159 0.01173 0.01158 0.01137 0.01159 0.01166 0.01157 0.01223 0.01136

1.2 0.01176 0.01157 0.01176 0.01180 0.01152 0.01177 0.01181 0.01191 0.01170 0.01141

4 0.8 0.01156 0.01142 0.01153 0.01156 0.01141 0.01156 0.01155 0.01162 0.01167 0.01128
1.2 0.01178 0.01159 0.01197 0.01170 0.01149 0.01164 0.01179 0.01174 0.01172 0.01135

ML: Maximum Likelihood, BG: General Entropy Loss Function, BL: LINEX Loss Function, BS: Squared Error Loss Function.

T 5: Standard errors for (󵰁󵰁𝛼𝛼𝛼 under informative prior and MLE with interval-censoring.

𝑛𝑛 𝑛𝑛 𝑛𝑛 󵰁󵰁𝛼𝛼ML 󵰁󵰁𝛼𝛼BS
󵰁󵰁𝛼𝛼BL 󵰁󵰁𝛼𝛼BG 󵰁󵰁𝛼𝛼BL 󵰁󵰁𝛼𝛼BG 󵰁󵰁𝛼𝛼BL 󵰁󵰁𝛼𝛼BG 󵰁󵰁𝛼𝛼BL 󵰁󵰁𝛼𝛼BG

𝑐𝑐 𝑐 𝑐𝑐 𝑐 𝑐𝑐𝑐 𝑐𝑐 𝑐 𝑐𝑐 𝑐 𝑐𝑐𝑐𝑐 𝑐𝑐 𝑐 𝑐𝑐 𝑐 𝑐𝑐𝑐 𝑐𝑐 𝑐 𝑐𝑐 𝑐 𝑐𝑐𝑐𝑐

25
2 0.8 0.11498 0.11498 0.11087 0.11146 0.11083 0.12784 0.11816 0.11006 0.11816 0.12376

1.2 0.12488 0.12497 0.12950 0.11922 0.12958 0.11253 0.12932 0.12659 0.12934 0.11881

4 0.8 0.24109 0.24109 0.22301 0.25215 0.22302 0.24821 0.22862 0.22934 0.22862 0.24554
1.2 0.22811 0.22813 0.26706 0.24969 0.26716 0.22134 0.23055 0.23157 0.23117 0.24681

50
2 0.8 0.08627 0.08627 0.08813 0.08875 0.08814 0.08977 0.08603 0.08284 0.08603 0.08609

1.2 0.08748 0.08789 0.08751 0.08883 0.08752 0.08603 0.08438 0.08471 0.08441 0.08208

4 0.8 0.18219 0.18219 0.16053 0.16594 0.16054 0.17512 0.16440 0.16063 0.16440 0.17894
1.2 0.17697 0.17701 0.18844 0.18104 0.18849 0.18411 0.17464 0.18804 0.17471 0.17963

100
2 0.8 0.06947 0.06947 0.06835 0.06723 0.06835 0.07260 0.06618 0.07216 0.06618 0.06568

1.2 0.07325 0.07325 0.07242 0.07056 0.07243 0.07236 0.06788 0.06896 0.06790 0.07555

4 0.8 0.13564 0.13564 0.13236 0.12725 0.13237 0.13759 0.13198 0.13536 0.13198 0.14525
1.2 0.14133 0.14132 0.14946 0.14204 0.14952 0.13963 0.13924 0.15525 0.13825 0.14808

ML: Maximum Likelihood, BG: General Entropy Loss Function, BL: LINEX Loss Function, BS: Squared Error Loss Function.
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T 6: Standard errors for ( 󵰁󵰁𝛽𝛽𝛽 under informative prior and MLE with interval-censoring.

𝑛𝑛 𝑛𝑛 𝑛𝑛 󵰁󵰁𝛽𝛽ML
󵰁󵰁𝛽𝛽BS

󵰁󵰁𝛽𝛽BL
󵰁󵰁𝛽𝛽BG

󵰁󵰁𝛽𝛽BL
󵰁󵰁𝛽𝛽BG

󵰁󵰁𝛽𝛽BL
󵰁󵰁𝛽𝛽BG

󵰁󵰁𝛽𝛽BL
󵰁󵰁𝛽𝛽BG

𝑐𝑐 𝑐 𝑐𝑐 𝑐 𝑐𝑐𝑐 𝑐𝑐 𝑐 𝑐𝑐 𝑐 𝑐𝑐𝑐𝑐 𝑐𝑐 𝑐 𝑐𝑐 𝑐 𝑐𝑐𝑐 𝑐𝑐 𝑐 𝑐𝑐 𝑐 𝑐𝑐𝑐𝑐

25
2 0.8 0.39065 0.37703 0.32118 0.39273 0.31689 0.43780 0.34444 0.29605 0.35674 0.38245

1.2 0.38779 0.37700 0.45495 0.46317 0.46953 0.39625 0.57534 0.43380 0.63824 0.44722

4 0.8 0.43193 0.42128 0.35109 0.39801 0.35516 0.43867 0.34216 0.37998 0.35709 0.41861
1.2 0.45815 0.44019 0.51752 0.40865 0.52893 0.46122 0.58113 0.48520 0.66063 0.44205

50
2 0.8 0.28239 0.27899 0.25804 0.34324 0.25969 0.31017 0.25999 0.28062 0.26553 0.28327

1.2 0.39845 0.39525 0.30510 0.31771 0.30861 0.36466 0.29946 0.35294 0.38685 0.31082

4 0.8 0.29615 0.29352 0.25589 0.30983 0.25788 0.33484 0.25251 0.29724 0.25568 0.39005
1.2 0.35876 0.35389 0.37364 0.36943 0.37841 0.35505 0.30358 0.37363 0.30968 0.32348

100
2 0.8 0.24735 0.24534 0.23836 0.21764 0.23967 0.25223 0.23995 0.28540 0.24323 0.21909

1.2 0.29522 0.29258 0.32080 0.27977 0.32392 0.31330 0.25719 0.28065 0.26031 0.25282

4 0.8 0.23126 0.22961 0.26014 0.22817 0.26224 0.22838 0.20963 0.25202 0.21198 0.26260
1.2 0.27372 0.27095 0.26946 0.25135 0.27124 0.25875 0.27826 0.31875 0.28261 0.29688

ML: Maximum Likelihood, BG: General Entropy Loss Function, BL: LINEX Loss Function, BS: Squared Error Loss Function.

T 7: Radiotherapy and chemotherapy data.

(8, 12] (0, 5] (30, 34]
(0, 22] (5, 8] (13,∞]
(24, 31] (12, 20] (10, 17]
(17, 27] (11,∞] (8, 21]
(17, 23] (33, 40] (4, 9]
(24, 30] (31,∞] (11,∞]
(16, 24] (13, 39] (14, 19]
(13,∞] (19, 32] (4, 8]
(11, 13] (34,∞] (34,∞]
(16, 20] (13,∞] (30, 36]
(18, 25] (16, 24] (18, 24]
(17, 26] (35,∞] (16, 60]
(32,∞] (15, 22] (35, 39]
(23,∞] (11, 17] (21,∞]
(44, 48] (22, 32] (11, 20]
(14, 17] (10, 35] (48,∞]

the general entropy loss function but both are better than
Bayes using the squared error loss and that of the maximum
likelihood estimator. We realised that MLE as compared to
Bayesian only has the smallest mean squared error at 𝑛𝑛 𝑛
25 and 50 with 𝛼𝛼𝛼𝛼   and 𝛽𝛽 𝛽𝛽𝛽𝛽 , where the value
for 𝛽𝛽 here represents infant mortality. With Table 2, both
LINEX and GELF have equal minimum absolute biases for
the scale parameter. Considering the standard errors of the
estimators given in Table 5, it is observed that, both LINEX
and general entropy loss functions perform quite well since
they both have almost equal smallest standard errors for the
scale parameter. LINEX loss function turn to overestimate
the scale parameter.

Considering Tables 3 and 4, we noticed that Bayesianwith
the assumed informative prior performed astonishingly well
under the general entropy and the linear exponential loss
functions than themaximum likelihood estimator and that of

Bayes under the squared error loss function. e LINEX loss
function performed very well with small sample size whiles
the general entropy loss function gives the smallest mean
squared error with relatively large sample sizes. e mini-
mum biases for the shape parameter occur predominantly
with the general entropy loss function followed by linear
exponential loss function.

What we observed here is that, in estimating the shape
parameter of the Weibull model with interval censoring,
Bayesian estimator with the general entropy loss function
may be preferred to the others when we consider mean
squared errors and minimal biases of the estimators. is is
followed by Bayesian also with the LINEX loss function. e
general entropy and the LINEX loss functions underestimate
the shape parameter, this is because all the smallest mean
squared errors occur at 𝑘𝑘𝑘𝑘𝑘𝑘𝑘  , which is less than zero
in the case of the general entropy loss, but for the LINEX
loss they occur at 𝑐𝑐 𝑐 𝑐𝑐𝑐𝑐. Considering the standard
errors of the estimators given in Table 6, it is observed that
LINEX loss function predominantly performs better than the
others having obtained smallest standard errors for the shape
parameter.

6. Real Data Analysis

We analyse a data set in this section for illustration and
comparison purposes. e data is a retrospective study
obtained from Lawless [11]. It was carried out to compare
the cosmetic effects of radiotherapy versus radiotherapy and
adjuvant chemotherapy on women with early breast cancer.

To compare the two treatments, a retrospective study
of 46 radiation only and 48 radiation plus chemotherapy
patients were conducted. Patients were observed initially
for every 4–6 months, but, as their recovery progressed,
the interval between visits lengthened. e event of interest
was the time for the �rst appearance of moderate or severe
breast retraction. As the patients were observed only at some
random times, the exact time, 𝑇𝑇𝑖𝑖, of breast retraction is
known only to fall within the interval between visits.
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T 8: Standard errors and con�dence�credible intervals for (󵰁󵰁𝛼𝛼𝛼 and ( 󵰁󵰁𝛽𝛽𝛽.

󵰁󵰁𝛼𝛼 s.e(󵰁󵰁𝛼𝛼𝛼 CI(󵰁󵰁𝛼𝛼𝛼 󵰁󵰁𝛽𝛽 s.e( 󵰁󵰁𝛽𝛽𝛽 CI( 󵰁󵰁𝛽𝛽𝛽
MLE 27.78300 2.00507 (23.8531−31.7129) 2.11394 0.30512 (1.5159−2.7120)

BS 27.77308 2.00435 (23.8446−31.7016) 2.06316 0.29779 (1.4795−2.6468)

BL 𝑐𝑐 𝑐 𝑐𝑐 𝑐 𝑐𝑐𝑐 27.67809 1.99749 (23.7630−31.5932) 2.04432 0.29507 (1.4745−2.6142)
BG 27.76365 2.00367 (23.8365−31.6908) 2.03969 0.29440 (1.4627−2.6167)

BL 𝑐𝑐 𝑐 𝑐𝑐 𝑐 𝑐𝑐𝑐𝑐 27.86918 2.01129 (23.9271−31.8113) 2.08318 0.30068 (1.4938−2.6725)
BG 27.77072 2.00418 (23.8425−31.6989) 2.05706 0.29691 (1.4751−2.6390)

BL 𝑐𝑐 𝑐 𝑐𝑐 𝑐 𝑐𝑐𝑐 27.57650 1.99016 (23.6758−31.4772) 2.02196 0.29184 (1.4499−2.5940)
BG 27.75895 2.00333 (23.8324−31.6855) 2.02902 0.29286 (1.4550−2.6030)

BL 𝑐𝑐 𝑐 𝑐𝑐 𝑐 𝑐𝑐𝑐𝑐 27.97448 2.01889 (24.0175−31.9315) 2.11054 0.30463 (1.5135−2.7076)
BG 27.77544 2.00452 (23.7043−31.7043) 2.06937 0.29869 (1.4839−2.6548)
ML: Maximum Likelihood, BG: General Entropy, BL: LINEX, BS: Squared Error, CI: Con�dence�Credible Interval, s.e: Standard error.

Patientswith nomoderate or severe breast retractionuntil
the last visit were classi�ed as right censored and then the end
point of their intervals was assumed to be 𝑅𝑅𝑖𝑖 = ∞ and 𝐿𝐿𝑖𝑖 was
assumed as the time from the beginning to the last visit. Here,
our primary concern is with women who were under the
same group, that is, radiotherapy and adjuvant chemotherapy
for the purpose of illustration.e data are presented in Table
7.

As clearly presented in Table 8, the estimator which
gives the smallest standard error is Bayesian under linear
exponential loss followed by general entropy loss function.
is is so because both loss functions take into consideration
an overestimation and underestimation, even though they
have different approaches. Again, we observe that both linear
exponential and general entropy loss functions overestimate
the scale and shape parameters of the Weibull distribution,
that is, 𝑐𝑐 𝑐 𝑐𝑐 𝑐 𝑐.

In a practical perspective, the use of symmetric loss
function is based on the assumption that the loss is the same
in any direction; that is, it is simply the magnitude of the
losses incurred.erefore, if one is not interested in knowing
whether the assumption made with regards to the duration
or the mortality state of the patients being investigated gives
a signal as to whether our conclusion is above or below the
actual duration or life expectancy of the patient, then this
loss function could be used. However, this assumption may
not be valid in many practical situations and the use of the
symmetric loss function may be inappropriate. For instance,
underestimating the blood pressure of a patient can have a
very serious consequences on the patient’s treatment than
overestimating or vice versa. e gravity of the situation is
where one knows that the patient has problemwith the blood
level but does not know if it is high or low to recommend a
proper treatment.

Again from Table 8, it is evident and clear that, at 95%
con�dence or credible intervals, the estimator with narrower
con�dence or credible intervals is Bayesian, �rst with the
linear exponential loss function followed by general entropy

loss function. Notwithstanding the fact that the Bayesian
estimator gives narrower credible intervals as compared to
the classical maximum likelihood estimator, there is still
an advantage for using the Bayesian credible intervals over
the classical con�dence intervals. Brie�y, a frequentist 95%
con�dence interval of, say, (2, 4)means, with a large number
of “repeated” new samples at a time, 95% of the calculated
con�dence intervals would include the true value of the
parameter, this is in contrast to the Bayesian analogy of
credible interval, which states that with a small sample “not
repeatedly” contains the true parameter 95% at a time. In
the Bayesian approach the parameter is observed as being
random and sought for.

e values in bold indicate the smallest standard errors
and narrower con�dence or credible intervals of the preferred
estimator.

7. Conclusion

In this study, we have taken into consideration the point esti-
mate of theWeibull distribution parameters based on interval
censoring through simulation. MLE and Bayes estimators
are used to estimate the scale and shape parameter of this
lifetime distribution.e Bayes estimators are obtained using
linear exponential, general entropy, and squared error loss
functions. We also employed the Bayesian non-informative
prior approach in estimating the scale and shape parameter
aer having considered an informative (Gamma) priors. In
order to reduce the complicated integrals that are in the
posterior distribution which cannot explicitly be obtained
in close form, we employed the Lindley approximation
procedure to calculate the Bayes estimators.

e Bayesian estimator performed quite well in estimat-
ing the scale parameter with respect to the mean squared
errors under LINEX loss function than the other loss func-
tions and that of the classical maximum likelihood estimator.
With the shape parameter, the Bayesian estimator performed
better than the other estimators with general entropy loss
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function. is is due to the fact that the loss parameter when
considered under general entropy has minimal in�uence on
the posterior distribution, thereby exhibiting little biasedness
as compared to the LINEX loss function. With respect to
the real data, it is observed that Bayes under LINEX loss
function gives the smallest standard errors and narrower
credible intervals compared to the others but overestimates
both parameters. is is followed closely by general entropy
loss function. e standard errors for the simulation study
indicate Bayes estimator via LINEX is better than the others
for the scale parameter but for the shape parameter both
LINEX and general entropy performed quite well in estimat-
ing it.
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