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Identifying transcription factor binding sites with experimental methods is oen expensive and time consuming. Although many
computational approaches and tools have been developed for this problem, the prediction accuracy is not satisfactory. In this paper,
we develop a new computational approach that can model the relationships among all short sequence segments in the promoter
regions with a graph theoretic model. �ased on this model, �nding the locations of transcription factor binding site is reduced to
computing maximum weighted cliques in a graph with weighted edges. We have implemented this approach and used it to predict
the binding sites in two organisms, Caenorhabditis elegans and mus musculus. We compared the prediction accuracy with that of
the Gibbs Motif Sampler. We found that the accuracy of our approach is higher than or comparable with that of the Gibbs Motif
Sampler for most of tested data and can accurately identify binding sites in cases where the Gibbs Motif Sampler has difficulty to
predict their locations.

1. Introduction

Gene regulation is one of the most important biological
processes at molecular level. Recent work [1] has shown that
gene regulations precisely control the expression levels of
genes, which in turn controls many biological processes. In
general, the regulation is performed by a binding process,
where a protein called transcription factor binds to the
promoter region of a gene.e nucleotides where the binding
occurs form a binding site. Methods that can accurately
identify the locations of binding sites in the promoter regions
of genes are thus crucial for understanding the process of gene
regulation.

Traditionally, TF binding sites have been characterized
by a variety of different experimental approaches [2, 3].
However, predicting transcription factor binding sites with
experimental approaches is oen expensive and time con-
suming. Recently, with the large amount of sequence data,
computational approaches have become an important alter-
native to predicting the transcription factor binding sites [4–
9]. Most of the available computational approaches process

the promoter regions of a set of homologous genes and
recognize binding sites by identifying subsequences that are
similar in sequence content.Most of these approaches employ
a randomized sampling procedure to identify these subse-
quences and thus cannot guarantee the prediction accuracy.

For example, approaches based on Gibbs sampling ran-
domly select a candidate subsequence of a �xed length from
each sequence. A sequence is arbitrarily selected and each
subsequence of the same length in the sequence is aligned to
a pro�ling model obtained from the subsequences selected
on other sequences, and each subsequence in the selected
sequence is thus associated with a probability value which
is the alignment score. One of the subsequences is then
selected based on the distribution of the probability values
of these subsequences, and a new set of subsequences is
thus obtained. e procedure can be repeated until the
maximum allowed number of iterations has been reached
or a set of satisfying local optimal subsequences have been
found [4, 5, 10]. Consensus used a greedy algorithm to align
functionally related sequences and applied the algorithm to
identify the binding sites for the E. coli CRP protein [11].
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Bailey and Elkan [12, 13] used the Expectationmaximization
technique to �t a two-component mixture model to �nd
binding sites and developed a soware MEME+. MEME+
performed better than their previous MEME soware [13].
However, its accuracy for identifying transcription factor
binding sites is far from being satisfactory.

Genetic algorithms simulate the process of Darwin evo-
lutionary process to �nd a local optimal solution for an
optimization problem. Approaches based on GAs start with
an initial population of a certain size. Each individual in the
population is a valid solution for the problem.e individuals
in the population then go through selection, crossover, and
mutation based on certain methods and probabilities to
evolve to the next generation. is evolutionary procedure
keeps going until the maximum allowed number of genera-
tions is reached or the difference between the results falls into
a small threshold. Genetic algorithms have been applied to
predict the transcription factor binding sites such as FMGA
[14]. FMGA was declared to have better performance than
Gibbs Motif Sampler [5] in both accuracy and computation
time. MDGA [15] is another program that used genetic
algorithms to �nd motifs in homologous sequences. It used
information content to evaluate the �tness of an individual
during the evolution. MDGA achieved higher accuracy than
Gibbs sampling algorithm based approaches while requiring
less computation time [15].

In this paper, we develop a new approach that can predict
the transcription factor binding sites without using a sam-
pling procedure to select subsequences. Our approach uses
a graph to model all subsequences in the promoter regions
of the homologous genes and the similarity between any pair
of subsequences that are from different promoter regions.
In particular, each subsequence is represented by a vertex
in the graph, and two vertices are joined by an edge if the
two corresponding subsequences are fromdifferent promoter
regions and their similarity is higher than a threshold. e
threshold can be determined using the base compositions
of the promoter regions and is guaranteed to be statistically
signi�cant. Each edge in the graph is associated with a
weight value which is the similarity of the two corresponding
subsequences. We then compute the maximum weighted
clique in the graph, and the subsequences represented by the
vertices in the clique are the transcription factor binding sites.

In order to efficiently compute the maximum weighted
clique in the graph, we developed an iterative approach to
preprocess the vertices in the graph and remove the vertices
that cannot be in the clique from the graph, the size of
the graph can thus be signi�cantly reduced by applying this
technique to it. Aer the preprocessing stage, the algorithm
exhaustively enumerates all cliques that contain as many
vertices as the number of promoter region sequences in the
data set and returns the one with the largest weight value.

We have implemented this approach in a computer
program with C++ programming language and used the
program to predict the binding sites for two organisms,
Caenorhabditis elegans and mus musculus. We evaluated the
prediction accuracy of our approach based on the testing data
sets and compared it with that of the Gibbs Motif Sampler
[5]. Our testing results showed that our approach can achieve
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F 1: Shows the procedure used to break a sequence into its
subsequences.

an average developer score of 0.90 on the test data, which is
higher than or comparable with that of the Gibbs Sampler.
In addition, our approach can accurately identify the binding
sites in some cases where the Gibbs Motif Sampler has
difficulty to locate the binding sites, which is one important
advantage of our approach over the Gibbs Motif Sampler.

2. Method

2.1. Notations and Problem Description. Given a graph 𝐺𝐺 𝐺
(𝑉𝑉𝑉 𝑉𝑉𝑉, a clique in 𝐺𝐺 is a vertex subset 𝐶𝐶 such that every pair
of vertices in 𝐶𝐶 is joined by an edge in 𝐺𝐺. If each edge in 𝐺𝐺
is associated with a weight value, amaximum weighted clique
is a clique where the sum of the weight values of all edges in
the clique is the maximum of all cliques in 𝐺𝐺. e degree of a
vertex is the number of vertices that are adjacent to it in 𝐺𝐺.

Given the sequences of the promoter regions of a set of
𝑘𝑘 homologous genes, 𝑆𝑆1, 𝑆𝑆2,… , 𝑆𝑆𝑘𝑘, the goal of the problem.
e goal of the problem is to select a subsequence of a
given length 𝐿𝐿 from each sequence such that the sum of
the similarities between all pairs of selected sequences is
maximized. To compare two subsequences and evaluate their
similarity, we perform a pair wise alignment between them,
and the alignment score is used as a measure of the similarity.
We show later in the paper that this problem can be solved by
computing the maximum weighted clique in a graph.

2.2. e Algorithm. Given a set of DNA sequences
𝑆𝑆1, 𝑆𝑆2,… , 𝑆𝑆𝑘𝑘 with similar transcription factor binding
sites, we take each 𝑆𝑆𝑖𝑖 where 𝑖𝑖 𝑖 𝑖𝑖𝑖 𝑖𝑖𝑖 and divide it into𝑁𝑁-𝐿𝐿
subsequences of length 𝐿𝐿 as described in Figure 1, where 𝑁𝑁
is the number of nucleotides in 𝑆𝑆𝑖𝑖. In particular, we choose
the subsequence that starts from each nucleotide in 𝑆𝑆𝑖𝑖 and
contains 𝐿𝐿 nucleotides. It is not difficult to see that the
number of such subsequences is𝑁𝑁-𝐿𝐿.

We then construct a graph 𝐺𝐺 such that each vertex of
the graph represents a subsequence. Subsequences from the
same sequence are placed in one column, and all vertices in
𝐺𝐺 can thus be partitioned into 𝑘𝑘 disjoint columns. A sample
of randomly generated and normally distributed sequence
comparison scores is used to calculate a threshold which is
then used to determine which sequences are similar. e
algorithm starts with the �rst column and selects a vertex
in that column and aligns its corresponding subsequence to
that of every other vertex that is from a different column.
If the alignment score of two subsequences is higher than
the threshold, we make their vertices adjacent in 𝐺𝐺. e
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T 1: Shows the matrix used to compute comparison scores.

A C G T
A 100 −123 −28 −109
C −123 91 −140 −28
G −28 −140 91 −123
T −109 −28 −123 100

algorithm repeats the above process for each vertex until all
vertices in the graph have been processed.

Aer all the edges have been added to the graph, we
proceed to preprocess the graph and remove the vertices that
cannot be in a clique of size 𝑘𝑘. In particular, we examine the
degree of each vertex, and if the degree of a vertex is less than
𝑘𝑘, we remove it from 𝐺𝐺. is procedure is applied iteratively
to all vertices in the graph until the size of the graph cannot
be further reduced.

e algorithm then starts enumerating all 𝑘𝑘-cliques in the
graph and computes the weight of each clique. To this end,
the algorithm assigns an integer id between 1 and 𝑘𝑘 to each
column in the graph and starts with columns 1 and 2. In
particular, all edges that connect a vertex from column 1 and
a vertex from column 2 are included in a set 𝑆𝑆. 𝑆𝑆 is maintained
by the algorithm to store cliques. Initially, 𝑆𝑆 contains a set of
edges, which are in fact cliques on two vertices.e algorithm
then proceeds to examine vertices in columns 3 through
𝑘𝑘. Aer the algorithm completes processing column 𝑗𝑗, 𝑆𝑆
contains a set of cliques of size 𝑗𝑗 in 𝐺𝐺. For every vertex 𝑢𝑢
in column 𝑗𝑗 𝑗 𝑗, the algorithm checks each 𝑗𝑗-clique 𝑀𝑀 in
𝑆𝑆 to examine whether 𝑢𝑢 and 𝑀𝑀 can together form a 𝑗𝑗 𝑗 𝑗-
clique. In other words, the algorithm examines whether 𝑢𝑢 is
adjacent to every vertex in 𝑀𝑀 or not. If it is the case, 𝑢𝑢 and
𝑀𝑀 are combined into a single 𝑗𝑗 𝑗 𝑗-clique and included in
𝑆𝑆. Aer every vertex in column 𝑗𝑗 𝑗 𝑗 has been processed,
the algorithm examines the cliques in 𝑆𝑆 and removes all 𝑗𝑗-
cliques from 𝑆𝑆. It is not difficult to see that aer all 𝑘𝑘 columns
have been processed, 𝑆𝑆 contains a set of 𝑘𝑘-cliques in𝐺𝐺. It then
computes theweight value of each clique in 𝑆𝑆 by adding up the
weight values of all edges in the clique and outputs the clique
with the largest weight value.

ematrix used to generate the comparison score is a log
odds ratio matrix for comparing DNA nucleotide sequences.
is matrix was developed by Chiromante et al. [16]. ey
followed a common approach used in protein alignment and
determined substitution score by using a set of trusted aligned
symbol pairs and using log odds ratio [16]. e matrix used
for the alignment of short subsequences is shown in the
Table 1.

In order to compute the threshold of similarity value that
is used to construct the edges in 𝐺𝐺, we �rst compute the base
composition of all promoter region sequences. Based on the
percentage of each nucleotide in the base composition, we
randomly generate two subsequences, each of which contains
𝐿𝐿 nucleotides. We then perform a pair wise alignment
between the two generated subsequences. e alignment
can generate an alignment score. We repeat the procedure
for a sufficiently large number of times, and we thus can
obtain a large collection of alignment scores. is collection

of alignment scores in fact describes the distribution of
alignment scores between two subsequences from the given
base composition. We then choose a con�dence value 𝑝𝑝
and �nd the smallest value 𝑐𝑐 such that the percentage of
the alignment scores higher than 𝑐𝑐 in the collection is not
larger than 𝑝𝑝. e value of 𝑐𝑐 is then used as the threshold of
similarity to construct graph 𝐺𝐺.

2.3. Time Complexity. Each iterative step in the preprocessing
stage of the algorithm may need up to 𝑂𝑂𝑂𝑂𝑂2) computation
time, where𝑁𝑁 is the number of nucleotides in each promoter
region sequence. Since each iterative step removes at least
one vertex from the graph.e preprocessing stage may need
up to 𝑂𝑂𝑂𝑂𝑂3) computation time. We use 𝑊𝑊 to denote the
maximum number of vertices in a column in the graph aer
the graph is preprocessed. e number of 𝑘𝑘-cliques in the
graph is at most 𝑂𝑂𝑂𝑂𝑂𝑘𝑘). e computation time needed to
check whether a vertex can be added into an existing clique
to form a larger clique is at most 𝑂𝑂𝑂𝑂𝑂𝑂. e computation
time needed to compute themaximumweighted clique in the
preprocessed graph is thus at most𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑘𝑘). Putting the pre-
processing stage and the clique enumeration stage together,
the algorithm needs at most𝑂𝑂𝑂𝑂𝑂3+𝑘𝑘𝑘𝑘𝑘𝑘) computation time.

2.4. Experimental Results. We have implemented our
approach with C++ programming language and used it
to predict the transcription factor binding sites in the
promoter regions of three genes that were selected from two
organisms Caenorhabditis elegans and mus musculus. One
data set is selected from the promoter region of a gene of
Caenorhabditis elegans, and the remaining two are selected
from the promoter regions of two genes of mus musculus.
Table 2 provides a description of the testing data we have
used to test the accuracy of our approach.

In order to evaluate the accuracy of our approach, we
compare the binding sites predicted by our approach with
the correct binding sites for all sequences in the data set.
A developer score is computed to provide a measure of the
accuracy. e developer score is computed based on the
deviation of the predicted starting position of a binding site
from its real starting position. In particular, for a binding site
of length 𝐿𝐿, if the deviation is𝐷𝐷, the developer score 𝑑𝑑 of the
prediction result is then computed as follows:

𝑑𝑑 𝑑 𝑑𝑑𝑑 󶁄󶁄1 −
𝐷𝐷
𝐿𝐿
, 0󶁔󶁔 . (1)

It is not difficult to see that the developer score is a measure
of the accuracy of a predicted binding site. If the predicted
binding site is completely correct, the deviation𝐷𝐷 is 0, and the
developer score is thus 1.0. On the other hand, if the predicted
binding site is completely incorrect, it does not even intersect
the real binding site, the deviation 𝐷𝐷 is at least 𝐿𝐿, and the
developer score is thus 0.0. In general, the developer score
of a predicted binding site is a positive real number between
0.0 and 1.0. A higher value of the developer score indicates a
more accurate prediction result.

We also used the Gibbs Motif Sampler [5] to predict the
binding sites on the same data sets and evaluate the accuracy
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T 2: Information on the data sets we have used to test the accuracy of our approach.

Data set number Number of sequences Length of each sequence Length of the binding site Organism the data set describes
1 27 11-12 6 Caenorhabditis elegans
2 20 11–13 6 mus musculus
3 20 19–23 11 mus musculus

T 3: e developer score of the predicted binding sites in data set 1 for both our approach and the Gibbs Motif Sampler. e actual
binding sites are marked by nucleotides in capital letters.

Actual binding site Binding site predicted by
our approach

Binding site predicted by
Gibbs Motif Sampler

Developer score of our
approach

Developer score of Gibbs
Motif Sampler

GAAACCctgtta AAACCC GAAACC 0.83 1.00
GAAGCCcttcaa AAGCCC GAAGCC 0.83 1.00
GAAGCCgcaaaa GAAGCC GAAGCC 1.00 1.00
GAAGCCcctcac GAAGCC GAAGCC 1.00 1.00
GAAGCCaattat GAAGCC GAAGCC 1.00 1.00
GAAGCCttagaa GAAGCC GAAGCC 1.00 1.00
GAATCCttagat GAATCC GAATCC 1.00 1.00
GAAACCttgcaa GAAACC GAAACC 1.00 1.00
GAAGCCaatcat GAAGCC GAAGCC 1.00 1.00
GAAACCttatga GAAACC GAAACC 1.00 1.00
GAAACCtttcaa GAAACC GAAACC 1.00 1.00
GAAACCatagac GAAACC GAAACC 1.00 1.00
GAAGCCttatta GAAGCC GAAGCC 1.00 1.00
GAAGCCcccaaa GAAGCC GAAGCC 1.00 1.00
GAAGCCgtagct GAAGCC GAAGCC 1.00 1.00
GAAGCCacaatt GAAGCC GAAGCC 1.00 1.00
GAAGCCgtgttt GAAGCC GAAGCC 1.00 1.00
GAAACCttatct GAAACC GAAACC 1.00 1.00
GAAGCCgtacaa GAAGCC GAAGCC 1.00 1.00
GAAGCCtacaaa GAAGCC GAAGCC 1.00 1.00
GAAACCttattt GAAACC GAAACC 1.00 1.00
GAAGCCgtaaaa GAAGCC GAAGCC 1.00 1.00
GAAGCAccttat AAGCAC GAAGCA 0.83 1.00
GAAGCCttaaaa GAAGCC GAAGCC 1.00 1.00
GAAGCCgtagat GAAGCC GAAGCC 1.00 1.00
GAAGCCactttt GAAGCC GAAGCC 1.00 1.00
GAATCCctacaa GAATCC GAATCC 1.00 1.00

of its prediction results with the developer score.We compare
the accuracy of our approach with that of the Gibbs Motif
Sampler. Tables 3, 4, and 5 provide the accuracy of our
approach and that of the GibbsMotif Sampler on three tested
data sets in terms of the developer score.

It is evident from the testing results that our program can
achieve an average developer score of 0.90 for the testing data
sets.is indicates that our approach can identify the binding
sites with accuracy comparable with or better than that of
the Gibbs Motif Sampler for most of the tested sequences.
In addition, in some cases where the Gibbs Motif Sampler
has difficulty to locate the binding sites, our program can
identify the binding sites with high accuracy. For example, for

sequences 2, 3, and 18 in the data set for mus musculus that
contains binding sites of length 11, the Gibbs Motif Sampler
fails to identify the correct locations of binding sites while
our approach identi�es the binding sites for all sequences
with high accuracy. e Gibbs Motif Sampler signi�cantly
outperforms our approach only in sequence 16 in the data
set for Caenorhabditis elegans, where our approach fails to
identify the correct location of binding site while the Gibbs
Motif Sampler identi�es its correct location without any
error. It is worth mentioning that our approach achieves
signi�cantly higher prediction accuracy for all sequences in
the data set for mus musculus that contains binding sites of
length 11.
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T 4: e developer score of the predicted binding sites in data set 2 for both our approach and the Gibbs Motif Sampler. e actual
binding sites are marked by nucleotides in capital letters.

Actual binding site Binding site predicted by
our approach

Binding site predicted by
Gibbs Motif Sampler

Developer score of our
approach

Developer score of Gibbs
Motif Sampler

tgaatacCACGTG CACGTG CACGTG 1.00 1.00
gggatCACGTGgt CACGTG CACGTG 1.00 1.00
attgtgCACGTGg CACGTG CACGTG 1.00 1.00
CACGTGggaggtac CACGTG CACGTG 1.00 1.00
gggtCACGTGttc CACGTG CACGTG 1.00 1.00
taagCACGTGgtc CACGTG CACGTG 1.00 1.00
CACGTGccgcgcgc CACGTG CACGTG 1.00 1.00
aggtataCACGTG TACACG CACGTG 0.67 1.00
AACGTGcacatcgtcc AACGTG CACGTT 1.00 0.00
AACGTGacttcgtacc AACGTG CACGTT 1.00 0.00
CACGTGatgtcctc CACGTG CACGTG 1.00 1.00
CACGTGaagttgtc CACGTG CACGTG 1.00 1.00
AACGTGacagccctcc AACGTG CACGTT 1.00 1.00
agtCACGTGttcc CACGTG CACGTG 1.00 1.00
taaatgcCACGTG CACGTG CACGTG 1.00 1.00
tgaCACGTGtccg CACGTG CACGTG 1.00 1.00
AACGTGcgtgatgtcc AACGTG CACGTT 1.00 0.00
catgtCACGTGcc CATGTC CACGTG 0.17 1.00
aggaatCGCGTGc CGCGTG Not Found 1.00 0.00
agttcgCACGTGc CGCACG CACGTG 0.67 1.00

T 5: e developer score of the predicted binding sites in data set 3 for both our approach and the Gibbs Motif Sampler. e actual
binding sites are marked by nucleotides in capital letters.

Actual binding site Binding site predicted by
our approach

Binding site predicted by
gibbs motif sampler

Developer score of
our approach

Developer score of gibbs
motif sampler

gcacATAGGTGTAAAatggccgttgg CATAGGTGTAA CACATAGGTGTAA 0.91 0.73
ctcgcacCCAGGTGTGAAgttctggt CCCAGGTGTGA CACCTGGGTGCGA 0.91 0.00
acGTAGGTGCGAAtctatcttagtgc CGTAGGTGCGA Not Found 0.91 0.00
gcgagatgtaacatGTAGGTGTGAAa TGTAGGTGTGA CATGTAGGTGTGA 0.91 0.73
ctttactcacCTAGGTGTGAAtgaag CCTAGGTGTGA CACCTAGGTGTGA 0.91 0.73
gcacGTAGGTGCTACttttttgtaa CGTAGGTGCTA CACGTAGGTGCTA 0.91 0.73
acatagtgacacCTAGGTGTGAAatt CCTAGGTGTGA CACCTAGGTGTCA 0.91 0.73
cgtcacgcGTAGGTGTTACaatgtgg CGTAGGTGTTA CGCGTAGGTGTTA 0.91 0.00
gtcatGTAGGTGTGAAtatagcgccc TGTAGGTGTGA CATGTAGGTGTGA 0.91 0.73
tttgacacCTAGGTGTCATattccac CCTAGGTGTCA CACCTAGGTGTCA 0.91 0.73
tatcgcacCTAGGTGTGACaatcatc CCTAGGTGTGA CACCTAGGTGTGA 0.91 0.73
gcaaGTAGGTGTGAAatctcaacgga AGTAGGTGTGA CAAGTAGGTGTGA 0.91 0.73
acatagtgacacCTAGGTGTGAAattc CCTAGGTGTGA CACCTAGGTGTCA 0.91 0.73
gtggaatatgacacCTAGGTGTCAAa CCTAGGTGTCA CACCTAGGTGTCA 0.91 0.73
acacCTAGGTGTGAAattcagatata CCTAGGTGTGA CACCTAGGTGTGA 0.91 0.73
attagtcacacCTAGGTGTGAAgagc CCTAGGTGTGA CACCTAGGTGTGA 0.91 0.73
ccagtatcacacTTAGGTGTTACatc CTTAGGTGTTA CACTTAGGTGTTA 0.91 0.73
tctactaacagGTAGGTGTTACttgt GGTAGGTGTTA CAGGTAGGTGTTA 0.91 0.73
gcggAAAGGTGTGAAatcacaccatt GAAAGGTGTGA Not Found 0.91 0.00
gaattcacacTTAGGTGTGAAat CTTAGGTGTGA CACTTAGGTGTGA 0.91 0.73
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3. Conclusions

In this paper, we developed a novel approach that can
efficiently and accurately predict the transcription binding
sites in the promoter regions of genes. Our approach uses a
graph model to describe the subsequences in the promoter
regions of homologous genes and their relationships. e
problem is then reduced to a graph optimization problem.
In order to efficiently compute the optimal solution of the
problem, we developed a preprocessing technique that can
signi�cantly reduce the size of the graph. Our testing results
on the sequence data from two organisms Caenorhabditis
elegans and mus musculus showed that our approach can
achieve prediction accuracy higher than or comparable with
that of the Gibbs Motif Sampler.

We believe the performance of our approach can be
further improved if we employ a weighted scoring scheme
that can assign different relative weight values to the pair
wise matching scores obtained on different positions in the
subsequences. It is well known that mutation is much more
likely to occur in nucleotides near the boundary of the
binding sites than those near the center of the binding sites.
Lower values of relative weights thus should be assigned
to the matching scores obtained on nucleotides near the
boundary of the binding sites. Determining the relative
weights that can maximize the accuracy of prediction is an
interesting problem and would be a part of our future work.
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