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Sub- and ultraharmonics generation by ultrasound contrast agents makes possible sub- and ultraharmonics imaging to enhance
the contrast of ultrasound images and overcome the limitations of harmonic imaging. In order to separate different frequency
components of ultrasound contrast agents signals, nonlinearmodels like single-input single-output (SISO)Volterramodel are used.
One important limitation of this model is its incapacity to model sub- and ultraharmonic components. Many attempts are made
to model sub- and ultraharmonics using Volterra model. It led to the design of mutiple-input singe-output (MISO) Volterra model
instead of SISO Volterra model. The key idea of MISO modeling was to decompose the input signal of the nonlinear system into
periodic subsignals at the subharmonic frequency. In this paper, sub- and ultraharmonics modeling with MISO Volterra model is
presented in a general framework that details and explains the required conditions to optimally model sub- and ultraharmonics. A
new decomposition of the input signal in periodic orthogonal basis functions is presented. Results of application of different MISO
Volterra methods to model simulated ultrasound contrast agents signals show its efficiency in sub- and ultraharmonics imaging.

1. Introduction

Medical diagnostic using ultrasound imaging was greatly
improved with the introduction of ultrasound contrast
agents. In ultrasound imaging, contrast agents are microbub-
bles [1]. Historically, the important difference between the
acoustic impedance of the tissue and the gas encapsulated
within themicrobubbles was the first step to improve the con-
trast of echographic images. However, the contrast was still
improved by taking into account the nonlinear behavior of
microbubbles. In fact, when microbubbles were insonified by
a sinusoidal excitation, they respond by generating harmonic
components [2]. For example, second harmonic imaging
(SHI) [3] consists in transmitting a signal at frequency 𝑓

0

and receiving echoes at twice the transmitted frequency 2𝑓
0
.

However, harmonic generation during the propagation of
ultrasound in the nonperfused tissue limits the contrast [4].

Many years ago, experimental studies have shown the
existence of subharmonics at 𝑓

0
/2 [5] and ultraharmonics

at ((3/2)𝑓
0
, (5/2)𝑓

0
, . . .) [6] in the microbubble response

under specific conditions of frequency and pressure. The
absence of these components in the backscattered signal
by the tissue has enabled the introduction of sub- and
ultraharmonics as an alternative of the harmonic imaging
in order to enhance the contrast. Sub- and ultraharmonic
imaging consists of transmitting a signal of frequency 𝑓

0
and

extracting components at 𝑓
0
/2, (3/2)𝑓

0
, (5/2)𝑓

0
, . . ..

Many models have been developed to understand the
dynamics of the microbubble [2]. Microbubble oscillation
can be accurately described using models such as Rayleigh-
Plesset modified equation [7–9]. However, to enable opti-
mal separation of harmonic components, other nonlinear
models like single-input single-output (SISO) Volterramodel
have been preferred [10]. A well known limitation of SISO
Volterra model is its capacity to model exclusively har-
monic components sub- and ultraharmonics are notmodeled
[11].
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To overcome this difficulty, Boaghe and Billings [12] have
proposed a multiple-input single-output (MISO) Volterra-
based method. Input signals are specified by having sub-
harmonic component at frequency 𝑓

0
/𝑁. This approach has

been applied in ultrasound medical imaging [13].
However, neither Boaghe and Billings [12] nor Samakee

and Phukpattaranont [13] have clearly justified the required
conditions to design a MISO Volterra decomposition able to
model sub- and ultraharmonics.

To answer this untreated point, we propose a more
general framework which firstly gives a clear justification
regarding the choice of the model and secondly can offer
interesting alternatives.

This paper is organized as follows: after recalling Volterra
model and presenting the general framework of MISO
Volterramethods, simulations of contrast ultrasoundmedical
imaging followed by results are presented. Finally, a discus-
sion completed by a conclusion closes the paper.

2. SISO Volterra Model

Volterra series were introduced like Taylor series with mem-
ory [10]. Let 𝑥(𝑛) and 𝑦(𝑛) be, respectively, the input and the
output signals in the discrete time domain 𝑛 of the nonlinear
system (see Figure 1). The output 𝑦̂(𝑛) of Volterra model of
order 𝑃 and memory 𝑀 is given in [14]. Note that, in our
study focused on ultrasound imaging, a third-order Volterra
model 𝑃 = 3 is sufficient for the available transducers
bandwidths.The output 𝑦̂(𝑛) of SISOVolterra model of order
𝑃 = 3 and memory𝑀 is given by

𝑦̂ (𝑛) = ℎ
0
+
𝑀−1

∑
𝑘
1
=0

ℎ
1
(𝑘
1
) 𝑥 (𝑛 − 𝑘

1
)

+
𝑀−1

∑
𝑘
1
=0

𝑀−1

∑
𝑘
2
=0

ℎ
2
(𝑘
1
, 𝑘
2
) 𝑥 (𝑛 − 𝑘

1
) 𝑥 (𝑛 − 𝑘

2
)

+
𝑀−1

∑
𝑘
1
=0

𝑀−1

∑
𝑘
2
=0

𝑀−1

∑
𝑘
3
=0

ℎ
3
(𝑘
1
, 𝑘
2
, 𝑘
3
)

× 𝑥 (𝑛 − 𝑘
1
) 𝑥 (𝑛 − 𝑘

2
) 𝑥 (𝑛 − 𝑘

3
) ,

(1)

where ℎ
𝑝
(𝑘
1
, 𝑘
2
, . . . , 𝑘

𝑝
) is the kernel of order 𝑝 of the filter,

with 𝑝 ∈ {1, 2, 3}.
Equation (1) could be rewritten as follows

y = X ⋅ h, (2)

where the output signal is:

y = [𝑦 (𝑀 − 1) , 𝑦 (𝑀) , . . . , 𝑦 (𝐿)]
𝑇
, (3)

where 𝐿 is the length of the signal 𝑦(𝑛), and the vector of
kernels is

h = [ℎ
1
(0) , ℎ

1
(1) , . . . , ℎ

1
(𝑀 − 1) , ℎ

2
(0, 0) ,

ℎ
2
(0, 1) , . . . , ℎ

2
(𝑀 − 1,𝑀 − 1) , . . . ,

ℎ
𝑝
(0, 0, 0) , . . . , ℎ

3
(𝑀 − 1,𝑀 − 1,𝑀 − 1]

𝑇

,

(4)
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Figure 1: Block diagram of SISO Volterra model.

where the input matrix is

X = [x
𝑀−1

, x
𝑀
, . . . , x

𝐿
]
𝑇
, (5)

with vector

x
𝑛
= [𝑥 (𝑛) , 𝑥 (𝑛 − 1) , . . . , 𝑥 (𝑛 −𝑀 + 1) ,

𝑥2 (𝑛) , 𝑥 (𝑛) 𝑥 (𝑛 − 1) , . . . , 𝑥
2
(𝑛 −𝑀 + 1) ,

𝑥3 (𝑛) , 𝑥 (𝑛) 𝑥 (𝑛) 𝑥 (𝑛 − 1) , . . . ,

𝑥3 (𝑛 −𝑀 + 1)]
𝑇

,

(6)

with 𝑛 ∈ {𝑀 − 1,𝑀, . . . , 𝐿}.
The vector of kernelsh is calculated tominimize themean

square error (MSE) between 𝑦(𝑛) and 𝑦̂(𝑛) according to the
equation

argmin
h

(E [(𝑦 (𝑛) − 𝑦̂ (𝑛))
2
]) , (7)

where E is the symbol of the mathematical expectation.
Vector h is calculated using the least squares method

h = (X𝑇X)
−1

X𝑇y, (8)

if (X𝑇X) is invertible. Otherwise, regularization techniques
can be used.

Nevertheless, as reported in [12], it is not possible to
model sub- and ultraharmonics with SISO Volterra model
under this formulation. This is due to the fact mentioned in
[12] that SISO Volterra model can only model frequencies at
integer multiples of the input frequency.

To overcome this limitation, Boaghe and Billings [12]
proposed a MISO Volterra-based solution and not any more
a SISO Volterra. This point is discussed in Section 3.

3. General Framework of MISO
Volterra Model

According to Boaghe and Billings’ claims [12], it is possible
to model sub- and ultraharmonic components of the signal
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𝑦(𝑛) if the excitation signal to Volterra model has the sub-
harmonic component at 𝑓

0
/𝑁. The solution proposed by

Boaghe and Billings [12] to show up the sub-harmonic
component at frequency 𝑓

0
/𝑁 is to decompose the input

signal 𝑥(𝑛) into multiple input signals 𝑥
𝑖
(𝑛), each signal

having frequency components at 𝑓
0
and 𝑓

0
/𝑁. From our

point of view, Boaghe and Billings’ approach [12] claimed two
conditions that are intrinsically coupled by the choice of the
decomposition method as follows:

(i) the input signal to Volterra model has sub-harmonic
frequency component at 𝑓

0
/𝑁;

(ii) Volterra system is a MISO system described by

𝑥 (𝑛) =
𝑁

∑
𝑖=1

𝑥
𝑖
(𝑛) . (9)

The block diagram of MISO Volterra model is presented
in Figure 2.

A third condition that is not really explained in [12],
however, it is a crucial condition to carry out this modeling
procedure. It is the orthogonality condition between each
multiple input of MISO Volterra model. Taking into account
this third condition makes it possible to generalize Boaghe
and Billings’ approach presented in [12] as follows:

𝑥 (𝑛, 𝑓
0
) =
𝑁

∑
𝑖=1

𝑥
𝑖
(𝑛, 𝑓
0
, 𝑁) =

𝑁

∑
𝑖=1

𝛼
𝑖
Ψ
𝑖
(𝑛, 𝑓
0
, 𝑁) , (10)

where 𝛼
𝑖
are coefficients to be adjust and Ψ

𝑖
(𝑛, 𝑓
0
, 𝑁) is

the periodic orthogonal basis functions having a spectral
component at 𝑓

0
/𝑁. Different bases could be proposed. In

this study, two bases are presented as follows.

(1) In [12] a first periodic basis of orthogonal functions is
proposed as follows:

Ψ
𝑖
(𝑛, 𝑓
0
, 𝑁)

= 𝑥 (𝑛, 𝑓
0
) ∗
+∞

∑
𝑘=−∞

Rect
1/𝑓
0

(𝑛𝑇
𝑠
−
𝑘𝑁 + 𝑖 − 1

𝑓
0

) ,
(11)

where𝑇
𝑠
is the sampling period, ∗ represents the con-

volution product, and Rect
1/𝑓
0

(𝑛) is the rectangular
function equal to 1 when −1/2𝑓

0
< 𝑛 < −1/2𝑓

0
and

equal to zero otherwise. Note that this approach is
MISO1.

(2) In the present work, a new periodic basis of orthogo-
nal functions is presented as follows:

Ψ
𝑖
(𝑛, 𝑓
0
, 𝑁) = 𝑥 (𝑛, 𝑓

0
) + (−1)

(𝑖−1)

× (𝑥 (𝑛, 𝑓
0
) cos(𝑛𝑇

𝑠
𝑤
0

𝑁 − 1

𝑁
)

+𝑥̃ (𝑛, 𝑓
0
) sin(𝑛𝑇

𝑠
𝑤
0

𝑁 − 1

𝑁
)) ,

(12)

where 𝑥̃(𝑛) = H(𝑥(𝑛)) is the Hilbert transform of
𝑥(𝑛) and 𝑤

0
= 2𝜋𝑓

0
. Note that this second is MISO2

approach.
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Figure 2: Block diagram of MISO Volterra model.

For our application in contrast medical imaging, the sub-
harmonic frequency is 𝑓

0
/2 [5–7], so𝑁 = 2.

As an illustration, when 𝑥(𝑛) = 𝐴 cos (𝑤
0
𝑛𝑇
𝑠
) and𝑁 = 2,

the decomposition is written:

(1) for the first basis, as follows:

𝑥 (𝑛) = 𝑥
1
(𝑛) + 𝑥

2
(𝑛)

= 𝛼
1
Ψ
1
(𝑛, 𝑓
0
, 2) + 𝛼

2
Ψ
2
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0
, 2) ,

(13)

with 𝛼
1
= 𝛼
2
= 1, and

Ψ
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(14)

(2) and for the second basis, as follows:

𝑥 (𝑛) = 𝑥
1
(𝑛) + 𝑥

2
(𝑛)

= 𝛼
1
Ψ
1
(𝑛, 𝑓
0
, 2) + 𝛼

2
Ψ
2
(𝑛, 𝑓
0
, 2) ,

(15)

with 𝛼
1
= 𝛼
2
= 1/2, and

Ψ
1
(𝑛,

𝑓
0

2
) = 𝐴 cos (𝑤

0
𝑛𝑇
𝑠
) ∗
2

∑
𝑞=1

𝛿(
𝑛𝑇
𝑠

𝑞
) ,

Ψ
2
(𝑛,

𝑓
0

2
) = 𝐴 cos (𝑤

0
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2

∑
𝑞=1
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𝑛𝑇
𝑠

𝑞
) ,

(16)

where 𝛿 (𝑛) is the Dirac function. Finally,Ψ
1
(𝑛, 𝑓
0
/2)

and Ψ
2
(𝑛, 𝑓
0
/2) can be simply rewritten as follows:

Ψ
1
(𝑛, 𝑓
0
, 2) = 𝐴 cos (𝑤

0
𝑛𝑇
𝑠
) + 𝐴 cos(

𝑤
0

2
𝑛𝑇
𝑠
) ,

Ψ
2
(𝑛, 𝑓
0
, 2) = 𝐴 cos (𝑤

0
𝑛𝑇
𝑠
) − 𝐴 cos(

𝑤
0

2
𝑛𝑇
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) .
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The two signals𝑥
1
(𝑛) and𝑥

2
(𝑛) for the two previous bases

are represented in Figure 3.
It is obvious to show that for the two bases, the signals

𝑥
1
(𝑛) and 𝑥

2
(𝑛) are orthogonal because ∑𝑥

1
(𝑛)𝑥
2
(𝑛) = 0

(From a statistical point of view, the two signals 𝑥
1
(𝑛) and

𝑥
2
(𝑛) are orthogonal if and only if E[𝑥

1
(𝑛)𝑥
2
(𝑛)] = 0. If 𝑥

1
(𝑛)

and 𝑥
2
(𝑛) are stationary and ergodic, then E[𝑥

1
(𝑛)𝑥
2
(𝑛)] =

∑(𝑥
1
(𝑛)𝑥
2
(𝑛)).). The algebraic area of the signal 𝑧(𝑛) =

𝑥
1
(𝑛)𝑥
2
(𝑛), shown in Figure 3, is equal to zero.

Finally, if the components 𝑥
𝑖
(𝑛) are orthogonal to each

other, then this also means that the output of Volterra model
𝑦̂(𝑛) can be decomposed as follows:

𝑦̂ (𝑛) =
𝑁

∑
𝑖=1

𝑦̂
𝑖
(𝑛) , (18)

where the components 𝑦̂
𝑖
(𝑛) are also orthogonal to each

other. A proof of this propriety is given in Appendix A.
The consequence of this statement is that MISO Volterra

model can be considered as𝑁 parallel SISO Volterra models
as depicted in Figure 4.

4. Simulations

To validate the different proposed bases and to quantify its
performances for application in contrast ultrasound medical
imaging, realistic simulations are proposed. To carry out
the simulations, the free simulation program bubblesim
developed by Hoff [7] was used to calculate the oscillations
and scattered echoes for a specified contrast agent and exci-
tation pulse. Amodified version of Rayleigh-Plesset equation
was chosen. The model presented by Church [15] and then
modified by Hoff [7] is based on the theoretical description
of microbubbles as air-filled particles with surface layers of
elastic solids. In order to simulate the mean behavior of a
microbubble cloud, we hypothesized that the response of a
cloud of 𝑁

𝑏
microbubbles was 𝑁

𝑏
times the response of a

single microbubble with the mean properties.
The incident burst to the microbubble is a sinusoidal

wave of frequency 𝑓
0
= 4MHz (The resonance frequency

of a microbubble of 1.5 𝜇m is about 2.25MHz. Therefore,
the emission frequency at 4MHz is nearly the double of the
resonance frequency.) To ensure the presence of sub- and
ultraharmonics with moderate destruction of microbubbles,
Forsberg et al. have proposed in [16] a pressure range from
1.2MPa to 1.8MPa. To limit the destruction ofmicrobubbles,
we set the pressure level to the lowest value at 1.2MPa. The
burst consists of 18 cycles. The sampling frequency is 𝑓

𝑠
=

60MHz. The parameters of the microbubble are given in the
Table 1 [13].

5. Results

In this research, the performances of different modeling
methods are evaluated qualitatively and quantitatively.

5.1. Qualitative Evaluation. To evaluate qualitatively the two
MISO methods, MISO1 (with the basis proposed in [12])

Table 1: The parameters of microbubbles [13].

Resting radius 𝑟
0
= 1.5 𝜇m

Shell thickness 𝑑Se = 1.5 nm
Shear modulus 𝐺

𝑠
= 10MPa

Shear viscosity 𝜂 = 1.49Pa⋅s

and MISO2 (with the new basis proposed in the present
work) with respect to SISO Volterra method, temporal
representations of𝑦(𝑛) and 𝑦̂(𝑛), and spectral representations
|𝑌(𝑘)|2 and |𝑌̂(𝑘)|2 of the nonlinear system backscattered
by the contrast agent in nonlinear mode are presented in
Figure 5.

Results presented in Figure 5 are obtained for a signal to
tissue ratio SNR = ∞ and using Volterra model of order 𝑃 =
3 and memory𝑀 = 19.

To better distinguish the different harmonic components
of ultrasound signal, six cycles of 0.05 𝜇s are presented in
Figure 5(a), and a bandwidth of 13MHz covering the 3
harmonics potentially accessible in ultrasound imaging is
presented in Figure 5(b). For both types of representations,
the fundamental frequency, harmonics, sub- and ultrahar-
monics are well apparent. In Figure 5(a) (top), only harmonic
components at𝑓

0
, 2𝑓
0
, and 3𝑓

0
aremodeled by SISOVolterra.

This result confirms that SISO Volterra system is unable
to correctly model sub- and ultraharmonics at frequencies
𝑓
0
/2, (3/2)𝑓

0
, and (5/2)𝑓

0
. In Figure 5 (middle, bottom), all

the spectral components are correctly modeled validating the
two MISO approaches.

5.2. Quantitative Evaluation. To determine accurately the
performances of the two methods and to know which
Volterra approach provides the best performances a quan-
titative study is necessary. The relative mean square error
(RMSE) defined as follows:

RMSE =
E [(𝑦̂ (𝑡) − 𝑦 (𝑡))

2
]

E [(𝑦 (𝑡))
2
]

(19)

is evaluated for different noise levels at the system output.The
noise level, adjusted as a function of SNR, is Gaussian and
white. Ten realizations are made to evaluate the fluctuations
of RMSE. RMSE for SNR = ∞, 20, 15, and 10 dB is reported
in Figure 6. A zoom in Figure 6(d) shows the fluctuations of
the EQMR around a mean value.

Themain result of these simulations shows that regardless
the SNR values, MISO Volterra methods provide a much
better RMSE than SISO Volterra method. In fact, a gap
between SISO Volterra method and the two methods MISO1
andMISO2 going from 5 to 16 dB can be obtained depending
on the SNR conditions. These results confirm that SISO
Volterra method is not suitable for sub- and ultraharmonic
modeling. A zoom on Figure 6(d) emphasizes the small
fluctuations of the RMSE. This result shows the robustness
of the two MISO Volterra approaches towards noise.

Note that the RMSE obtainedwith the twoMISOVolterra
approaches are similar and follows the same trend. However,
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Figure 4: Block diagram of orthogonal MISO Volterra model.
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Figure 5: (a) Comparison between the backscattered signal by themicrobubble𝑦(𝑛) (black) and its estimation 𝑦̂(𝑛) (green): (top) themodeled
signal with SISO Volterra model, (middle) MISO1 method, and (bottom)MISO2 method. (b) Spectra of different signals are presented in (1).
Here SNR = ∞ dB, 𝑃 = 3, and𝑀 = 19.

a small advantage in favor of MISO2 method with respect to
MISO1 method for memory values𝑚 smaller than 6 is noted.

Finally, the more the memory increases, the more the
RMSE decreases, indicating that the different methods tend
asymptotically toward the optimal solution.

6. Discussions and Conclusions

In the present research, we proposed a general framework
that describes harmonic, sub-, and ultraharmonics modeling
using Volterra decomposition. This framework allowed us to
highlight three essential criteria instead of two, to accurately
model sub- and ultraharmonics:

(i) as suggested in [12], the basis should be periodic of
period 𝑓

0
/𝑁;

(ii) as suggested in [12], Volterra system should be a
MISO system;

(iii) as suggested in this work, the decomposition of the
input signal to Volterramodel 𝑥(𝑛)must be donewith
an orthogonal basis.

This general framework has also justified the different
steps of the decomposition thus allowing to propose new

periodic orthogonal bases more efficient. It is the same for
the choice of the order of Volterra model, which was limited
to three. In fact, for more or less severe constraints on the
ultrasound transducers bandwidth, the order can be reduced
or increased.

Thismore general formulation provides amethodological
basis for optimal sub- and ultraharmonics contrast imaging
and opens a new research axis for more efficient periodic
orthogonal bases of MISO Volterra systems and also for new
MISO systems based on Hammerstein models or Wiener
models.

Appendix

A. Decomposition of MISO Volterra Model of
2 Inputs to 2 SISO Volterra Models

A MISO Volterra model with 𝑁 inputs is equivalent to 𝑁
SISO Volterra models if and only if the mean square error
to be minimized between 𝑦(𝑛) and 𝑦̂(𝑛) is the same in both
cases. We will determine the conditions that must be satisfied
by the inputs 𝑥

1
(𝑛) and 𝑥

2
(𝑛) of MISO Volterra when𝑁 = 2,

to have this equivalence.
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Figure 6: Variation of the RMSE in dB between the modeled signal with SISO Volterra (blue), MISO1 method (green), and MISO2 method
(black) and the backscattered signal by the microbubble as a function of the memory of Volterra model in the presence of noisy output: (a)
SNR = ∞ dB, (b) SNR = 20 dB, (c) SNR = 15 dB, and (d) SNR = 10 dB.

Volterra kernels are calculated using the least squares
method byminimizing themean square error (MSE) between
𝑦(𝑛) and the modeled signal 𝑦̂(𝑛):

E [(𝑦 (𝑛) − 𝑦̂ (𝑛))
2
] . (A.1)

ForMISOVolterramodel, the decomposition of 𝑥(𝑛) into
𝑥
1
(𝑛) and 𝑥

2
(𝑛) such that 𝑥(𝑛) = 𝑥

1
(𝑛) + 𝑥

2
(𝑛) requires that

𝑦(𝑛) = 𝑦
1
(𝑛)+𝑦

2
(𝑛). It follows that 𝑦̂(𝑛) = 𝑦̂

1
(𝑛)+ 𝑦̂

2
(𝑛). The

error to be minimized is

E [(𝑦 (𝑛) − 𝑦̂ (𝑛))
2
]

= E [𝑦(𝑛)
2] + E [𝑦̂(𝑛)

2] − 2E [𝑦 (𝑛) 𝑦̂ (𝑛)]

= E [(𝑦
1
(𝑛) + 𝑦

2
(𝑛))
2
] + E [(𝑦̂

1
(𝑛) + 𝑦̂

2
(𝑛))
2
]

− 2E [(𝑦
1
(𝑛) + 𝑦

2
(𝑛)) (𝑦̂

1
(𝑛) + 𝑦̂

2
(𝑛))]
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= E [𝑦
1
(𝑛)
2] + E [𝑦

2
(𝑛)
2] + 2E [𝑦

1
(𝑛) 𝑦
2
(𝑛)]

+ E [𝑦̂
1
(𝑛)
2] + E [𝑦̂

2
(𝑛)
2] + 2E [𝑦̂

1
(𝑛) 𝑦̂
2
(𝑛)]

− 2E [𝑦
1
(𝑛) 𝑦̂
1
(𝑛)] − 2E [𝑦

1
(𝑛) 𝑦̂
2
(𝑛)]

− 2E [𝑦
2 (𝑛) 𝑦̂1 (𝑛)] − 2E [𝑦2 (𝑛) 𝑦̂2 (𝑛)] .

(A.2)

For the 2 SISO Volterra models of inputs 𝑥
1
(𝑛) and 𝑥

2
(𝑛)

and outputs 𝑦
1
(𝑛) and 𝑦

2
(𝑛), respectively, the error to be

minimized is
E [(𝑦
1 (𝑛) − 𝑦̂1 (𝑛))

2
] + E [(𝑦

2 (𝑛) − 𝑦̂2 (𝑛))
2
]

= E [𝑦
1
(𝑛)
2] + E [𝑦̂

1
(𝑛)
2] − 2E [𝑦

1
(𝑛) 𝑦̂
1
(𝑛)]

+ E [𝑦
2
(𝑛)
2] + E [𝑦̂

2
(𝑛)
2] − 2E [𝑦

2
(𝑛) 𝑦̂
2
(𝑛)] .

(A.3)

A MISO Volterra model could be seen as 2 SISO Volterra
models if (A.2) and (A.3) are equal. This equality gives

E [𝑦
1
(𝑛) 𝑦
2
(𝑛)] + E [𝑦̂

1
(𝑛) 𝑦̂
2
(𝑛)]

− E [𝑦
1
(𝑛) 𝑦̂
2
(𝑛)] − E [𝑦

2
(𝑛) 𝑦̂
1
(𝑛)] = 0.

(A.4)

One possible solution is that each term of the equation is
equal to zero:

E [𝑦
1
(𝑛) 𝑦
2
(𝑛)] = 0,

E [𝑦̂
1
(𝑛) 𝑦̂
2
(𝑛)] = 0,

E [𝑦
1
(𝑛) 𝑦̂
2
(𝑛)] = 0,

E [𝑦
2 (𝑛) 𝑦̂1 (𝑛)] = 0.

(A.5)

Therefore
𝑦
1
(𝑛) ⊥ 𝑦

2
(𝑛) ,

𝑦̂
1
(𝑛) ⊥ 𝑦̂

2
(𝑛) ,

𝑦
1
(𝑛) ⊥ 𝑦̂

2
(𝑛) ,

𝑦
2 (𝑛) ⊥ 𝑦̂

1
(𝑛) ,

(A.6)

where ⊥ means orthogonal. Elsewhere, 𝑦̂
1
(𝑛) and 𝑦̂

2
(𝑛) are

calculated according to (1). That implies that

E [𝑦̂
1
(𝑛) 𝑦̂
2
(𝑛)]

= E[

[

𝑀−1

∑
𝑘
1
=0

ℎ
1
(𝑘
1
) 𝑥
1
(𝑛 − 𝑘

1
)
𝑀−1

∑
𝑘
1
=0

ℎ󸀠
1
(𝑘
1
) 𝑥
2
(𝑛 − 𝑘

1
)

+
𝑀−1

∑
𝑘
1
=0

𝑀−1

∑
𝑘
2
=0

ℎ
2
(𝑘
1
, 𝑘
2
) 𝑥
1
(𝑛 − 𝑘

1
) 𝑥
1
(𝑛 − 𝑘

2
)

×
𝑀−1

∑
𝑘
1
=0

𝑀−1

∑
𝑘
2
=0

ℎ󸀠
2
(𝑘
1
, 𝑘
2
) 𝑥
2
(𝑛 − 𝑘

1
)

× 𝑥
2
(𝑛 − 𝑘

2
) + ⋅ ⋅ ⋅ ]

]

= 0.

(A.7)

One possible solution is that each term of the equation is
equal to zero. For the first term, we get

E[

[

𝑀−1

∑
𝑘
1
=0

ℎ
1
(𝑘
1
) 𝑥
1
(𝑛 − 𝑘

1
)
𝑀−1

∑
𝑘
1
=0

ℎ󸀠
1
(𝑘
1
) 𝑥
2
(𝑛 − 𝑘

1
)]

]

=
𝑀−1

∑
𝑘
1
=0

ℎ
1
(𝑘
1
) ℎ󸀠
1
(𝑘
1
)E [𝑥

1
(𝑛 − 𝑘

1
) 𝑥
2
(𝑛 − 𝑘

1
)]

= 0.

(A.8)

The last equation implies that𝑥
1
(𝑛) ⊥ 𝑥

2
(𝑛). For the other

terms in (A.7), we obtain the same conclusion 𝑥
1
(𝑛) ⊥ 𝑥

2
(𝑛).

Therefore, 𝑦̂
1
(𝑛) and 𝑦̂

2
(𝑛) are orthogonal if 𝑥

1
(𝑛) and 𝑥

2
(𝑛)

are also orthogonal.
Elsewhere, if 𝑦̂

1
(𝑛) and 𝑦̂

2
(𝑛) are the estimations of 𝑦

1
(𝑛)

and 𝑦
2
(𝑛), then 𝑦̂(𝑛) ≈ 𝑦

1
(𝑛) and 𝑦̂

2
(𝑛) ≈ 𝑦

2
(𝑛). This

means that the orthogonality of 𝑦̂
1
(𝑛) and 𝑦̂

2
(𝑛) implies

the orthogonality of each couple formed by the four signals
presented in (A.5). This is true if and only if 𝑥

1
(𝑛) ⊥ 𝑥

2
(𝑛).

Therefore, a MISO Volterra model with two inputs could
be treated as two SISO Volterra models if the two inputs
are orthogonal. This result could be generalized for MISO
Volterra model with𝑁 inputs.
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