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In biomedical research summary measures such as the curve maximum (C,,,,,) are 
frequently used to describe and analyze unimodal response curves. However, if the true 
curve is perturbed by autocorrelated noise the calculation of summary measures from 
raw data can be arbitrary and misleading due to high peaks produced by the correlated 
errors. A possible solution is to fit suitable nonlinear functions to the response curves and 
estimate the summary measures from these functions. In this paper formulas are derived 
providing a way to estimate important summary measures of unimodal curves by means 
of the parameters of the lognormal function. The method is illustrated by application to 
pharmacodynamic data. 
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INTRODUCTION 

In biomedical research summary measures are 
frequently used to describe and analyze response 
curves (Matthews et al., 1990; Everitt, 1995). In the 
case of unimodal curves important summary mea- 
sures are the curve maximum (C,,,,), the time to the 
curve maximum (t,,,,,), and the area under the curve 
(AUC'). To calculate A U C  a time interval must be 
specified to which the area refers. In pharmaco- 
kinetics the area corresponding to an interval [0, TI, 
where T is any time point (frequently the last sam- 
pling time), is called the partial area (AUCo-T), 
while the area from 0 to infinity (AUG-,) is called 

the total area under the curve (Wagner and Ayres, 
1977). In some applications, e.g. the description 
of the time action-profiles of insulin preparations, 
the time points to the half of the curve maximum 
(t low,tup) are also of interest (Heinemann et al., 
1996; 1997; 1998). 

It is not always possible to calculate summary 
measures of observed response curves simply from 
raw data. For the estimation of summary measures 
such as tl,, and t,, a continuous curve is required. 
Hence, at least an interpolation of the nleasured 
curve at discrete time points is needed. For the cal- 
culation of AIJC'o-, a pharmacokinetic or mathe- 
matical model is required allowing an estimation 
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of the AUC beyond the last sampling time. Some 
special problems are induced by autocorrelated time 
series errors. If the true curve is perturbed by auto- 
correlated noise the calculation of summary mea- 
surec from raw data can be quite misleading. Auto- 
correlated errors can produce artificial high peaks so 
that the observed curve maximum would substan- 
tially overestimate C,,,. 

A possible solution to all these problems is 
given by fitting suitable regression functions to the 
response curves. The framework of nonlinear regres- 
sion allows the consideration of autocorrelated time 
series errors. The fitted regression function repre- 
sents a continuous curve so that even summary 
measures such as tlow, tup, and AUCo-, can be 
calculated from the fitted regression function. 

In this paper a review of nonlinear regression 
techniques allowing autocorrelated errors is given. 
Especially, the lognormal function is used to des- 
cribe unimodal curves occuring in pharmacodynamic 
studies of insulin preparations (Bender and Heine- 
mann, 1994; 1995). It is shown that the summary 
measures mentioned above can be calculated as 
direct functions from the parameters of the log- 
normal function. The method is illustrated by esti- 
mating summary measures of time-action profiles of 
a regular human insulin preparation. 

NONLINEAR REGRESSION WITH 
CORRELATED ERRORS 

Let yt denote the measurement of a considered 
response curve at time t .  Due to the reasons dis- 
cussed above, summary measures of the response 
curve cannot be calculated adequately from the 
raw data yt. Instead a nonlinear regression function 
should be fitted to the response curve. The general 
nonlinear model is given by 

where f is a nonlinear function of t with parameter 
vector 8 and ut are random errors, called residuals 
(Seber and Wild, 1989). If f is a linear function, 
e.g. f (t) = a + pt, model (1) reduces to the simple 

linear regression model. Nonlinear models are more 
difficult to specify and estimate than linear models. 
Instead of simply listing explanatory factors. a suit- 
able nonlinear function must be specified. Addi- 
tionally, adequate starting values for the regression 
coefficients are required for the iterative estimation 
procedure. 

In standard nonlinear regression it is assumed that 
the residuals u, are independent and identically dis- 
tributed (i.i.d.). In this case nonlinear ordinary least 
squares (OLS) can be used for parameter estima- 
tion. However, in practice the i.i.d. assumption is 
frequently violated. The most important generali- 
zations are heteroscedastic errors (Beal and Sheiner, 
1988), i.e. unequal error variances, and autocorre- 
lated errors (Seber and Wild, 1989), i.e. the errors 
ut represent a time series (Wei, 1990). Both viola- 
tions require special considerations and estimation 
procedurec. Since the case of heteroscedastic errors 
is treated in detail in the pharniacolunetic literature 
(Sheiner, 1984; 1985; 1986; Giltinan and Ruppert, 
1989) we concentrate on autocorrelated errors. 

The usual method to take autocorrelated errors of 
a regression model into account is to assume that the 
errors ut follow a stationary autoregressive moving- 
average (ARMA) process (Seber and Wild, 1989). 
One important subclass of ARMA models is given 
by the autoregressive (AR) processes of order p 

where ~t are i.i.d. with mean zero and variance 0,2, 

v, for j = 1 , .  . . , p  are the AR parameters, and t = 
1,  . . . , n are equally spaced time points. In practice, 
a value for the order p must be chosen. For this, 
the Box-Jenkins method (Wei, 1990) can be applied. 
A brief overview of this method is given by Seber 
and Wild (1989). In practice, the use of low-order 
AR(p) models (i.e. p  5 3) is often sufficient, as 
AR(2) or AR(3) models produce at least reasonable 
approximations to the true correlation structure of 
the errors u,. 

A number of procedures are available for para- 
meter estimation in model (1) assuming an ARb) 
model (2) for the errors ut. Most procedures are 
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based upon nonlinear generalized least squares 
(GLS) which takes the correlation of the errors into 
account. As the corresponding covariance matrix 
has to be estimated, all approaches represent multi- 
step procedures, frequently by starting with non- 
linear OLS. An overview of these estimation pro- 
cedures with technical details is given by Seber and 
Wild (1989). A comfortable software to fit nonlinear 
regression models with ARMA errors is given by the 
SAS/ETS@ procedure MODEL (SAS, 1988). 

Although the presence of autocorrelated errors 
is one reason to estimate summary measures via 
nonlinear regression methods, the neglect of the 
autocorrelation has little impact on the estimation 
of the regression coefficients (Bender and Heine- 
mann, 1995). However, the standard errors of the 
regression coefficients are considerably underesti- 
mated when the correlation of the errors is dis- 
regarded (Glasbey, 1980; Bender and Heinemann, 
1995). Hence, if one is interested in a reliable infor- 
mation about the uncertainty of the estimated regres- 
sion coefficients, it is desirable to take account of the 
autocorrelation in the estimation procedure. 

SUMMARY MEASURES OF LOGNORMAL 
CURVES 

In this paper the lognormal function is considered 
to describe unimodal curves occuring in pharmaco- 
dynamic studies investigating the time-action pro- 
files of insulin preparations (Heinemann et al., 1996; 
1997; 1998). The lognormal function is given by 

where f is the time and a ,  h, c are the regression 
coefficients. Although the lognormal function has 
only three parameters it is very flexible to cover a 
wide range of unimodal curves. This function has 
desirable properties to describe the time-action pro- 
files of insulin preparations (Bender and Heinemann, 
1994; 1995). Of course, in these and other appli- 
cations the use of other nonlinear functions, e.g. 

gamma functions or polyexponentials, is possible. 
For each nonlinear function summary measures have 
to be derived separately. 

In the following formulas are presented for the 
calculation of summary measures based upon the 
lognormal function. While some of these formulas 
can be easily derived by means of standard calcu- 
lations, others require some tricks. A step to step 
calculation is given in the Appendix. As all for- 
mulas represent explicit functions of the lognormal 
parameters, they can easily be computed by means 
of SAS' (SAS, 1985) or other programs containing 
usual mathematical functions. 

The formulas for calculating summary measures 
from the lognormal parameters do not depend on 
the special estimation procedure used to fit lognor- 
mal functions. Any formulation for the structure of 
the residuals, which is reasonable for the data con- 
sidered, is possible. However, it is assumed that 
a lognormal curve represents an adequate descrip- 
tion of the data considered and that one is able 
to estimate the unknown lognormal parameters by 
means of a suitable method. The estimated lognor- 
mal parameters can then be used as basis for the 
calculation of summary measures. 

Let a ,  b ,  c be the parameters of the lognormal 
function (3) and let denote the distribution func- 
tion of the standard normal distribution, then the 
following formulas are valid for lognormal curves. 

AUCo-T = a 8 -@(d%(log(~)  - c)) (7b) 
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EXAMPLE 

The method described is applied to pharmaco- 
dynamic data of an euglycemic glucose-clamp study. 
In such studies blood glucose concentration is held 
constant after subcutaneous injection of insulin 
preparations by varying glucose infusion rates (GIR) 
automatically be means of a Biostator. Thus, the 
GIR curves represent an indirect measurement of 
the pharmacodynamic time-action profiles of the 
considered insulin preparations. In the following, 
only two curves of a glucose-clamp study inves- 
tigating the pharmacodynamics of a regular human 
insulin preparation (Heinemann, 1998) are analyzed 
for demonstrating purposes. These two curves werc 
measured from the same individual under equal 
conditions. 

At first, lognormal functions are fitted to the 
GIR curves (Figure 1). As the glucose-clamp algo- 
rithm employed by the Biostator leads to correlated 
errors, the residuals v+ are modeled as autoregressive 
(AR) processes of order 3. Details of this estima- 
tion procedure, especially a method to find suit- 
able starting values for the iterative algorithm, as 
well as the corsesponding SAS@ code are given 
by Bender and Heinemann (1995). The lognormal 
parameters of the fitted curves are n = 2010.96, 
h = 1.3817, c = 5.4823 for GIR curve 1 and a = 
2050.91, O = 1.8797, c = 5.3878 for GIR curve 2. 

Secondly, the summary measures are calculated 
by using the formulas (4) to (7b). These results were 
compared with the summary measures calculated 
from the raw data (Table I). For C,,, the maximum 
GIR and for t,,,, the time point of the maximum 
GIR were used. If the maximal GIR was reached 
at several time points, for t,,,, the average of the 
corresponding time points was used. AUCO-T (for 
T = 600) was calculated by means of the trapezoidal 
rule. The summary measures A U G - ,  and tl,,.,p 

can not be calculated directly from the raw data. 
Thirdly, standard errors and 95% confidence inter- 

vals for the important summary measures t ,,,,,. C, ,,,, 
arid AIJC+., are calculated by means of the mul- 
tivariate delta method (Bender, 1996). The results 
are shown in Table IT. The documentation of the 

uncertainty of the summary measures estimated 
from raw data is impossible. 

Obviously, the GIR curves can not adequately be 
described by means of summary measures calcu- 
lated from the raw data. While the estimates for 
AUCo-T are comparable, C,,, is overestimated in 
both curves if simply the maximum GIR is used. 
This result is typical for GIR curves because the 
autocorrelation of the residuals will always produce 
more or less artificial high peaks. If an extremely 
high peak is present in the beginning or the end of 
the GIR curve the corresponding t,,,, value will also 
be misleading (CIR curve 2). The summary mea- 
sures calculated from the raw data pretend a large 
difference between the two GIR curves. Tn fact, the 
true curves are quite similar, which is expected as 
they are measured from the same individual under 
similar conditions. What is different between the 
curves, is the variability of the random errors which 
is higher in the second curve resulting in higher 
peaks. This is well documented by the larger stan- 
dard errors and wider confidence intervals of the 
summary measures of curve 2. However, the main 
goal of glucose-clamp studies is to investigate the 
pharrnacodynamic properties of the insulin prepa- 
rations and not the variability and correlation struc- 
ture of the errors produced by the Biostator. Hence, 
the main interest applies to the true CIR curves, 
which seems to be adequately estimated by means 
of the fitted lognormal curves. 

DISCUSSION 

The description and analysis of response curves 
by means of summary measures is a useful tool 
in biomedical and pharmaceutical research. The 
method of calculating summary measures via non- 
linear regression models has several advantages. 

Firstly, the framework of nonlinear regression 
permits the consideration of various error structures, 
e.g. autocorrelated errors. This is important, because 
autocorrelated noise can lead to inappropriate esti- 
mates of the summary measures if the raw data 
are used for estimation. Secondly, it is possible to 
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GIR Curve 1 

T time (min) 

GIR Curve 2 

FIGURE I Summary measures of two time-action profiles (GIR curves) of a regular human insulin (thiil line) calculated from the 
parameters of fitted lognormal functions (thick line). 



R. BENDER 

TABLE I Summary measures of two GIR curves calculated from fitted lognormal curves and from 
raw data 

- - 

Summary Measure GIR curve 1 GIR curve 2 

Lognormal Curve Raw Data Lognormal Curve Raw Data 

TABLE I1 Standard errors and 95% confidence intervals of the summary measures estimated from fitted lognormal 
curves 

Summary GIR curve 1 GIR curve 2 
~ e a s u r e -  

Point Standard 95% confidence Point Standard 95% confidence 
estimate error interval ertimate error interval 

calculate summary measures which require a con- 
tinuous curve such as the time points to the half of 
the curve maximum. Thirdly, summary measures for 
which information beyond the last sampling time is 
needed such as the total area under the curve can 
be estimated. Fourthly, the information of curves 
containing a large number of time points can be 
comprised in few regression coefficients. A log- 
normal curve is sufficiently described by only three 
parameters. Finally, as the summary measures are 
nonlinear functions of the regression coefficients it is 
possible to estimate standard errors and confidence 
intervals of the summary measures by means of the 
delta method in order to describe the precision of 
the estimation (Bender, 1996). 

The adequacy of the presented approach depends 
strongly on the adequacy of the regression func- 
tions fitted to the response curves. If the regression 
model is misspecified all results are questionable. 
Hence, before summary measures are calculated 
from regression coefficients, the adequacy of the 
regression function should be investigated very care- 
fully. In cases where a nonlinear function to describe 
the response curve adequately is not available, 

smoothing methods are an alternative (Diggle and 
Hutchinson, 1989). 

The fitting of nonlinear functions can be labo- 
rious, especially if no suitable starting values for 
the iterative estimation procedure are available. For 
the fitting of lognormal functions with autocorre- 
lated errors a SAS@ program is available. which 
includes a method for finding suitable starting values 
of the lognormal parameters automatically (Bender 
and Heinemann, 1995). 

In conclusion, summary measures of unimodal 
curves can be calculated efficiently by means of 
nonlinear regression models. This approach permits 
the consideration of autocorrelated errors, makes it 
possible to estimate summary measures which are 
not directly available from the raw data, represents an 
enormous data reduction, and allows the investigation 
of the precision of the estimated summary measures. 

APPENDIX 

To derive the formulas (4) to (7b) some equations 
and lemmas are required. The lognormal function 
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and the first derivative are given by 

f (t) = a t - '  exp (-b[log(t) - c12) 

(t > 0, a, b. c > 0) (Al) 

fl(t)  = -a t f 2  [2blog(t) - 2bc + 11 

x exp (-b[log(t) - el2) (A21 

I 
= ?a exp ($ - C) 

The integral of a quadratic exponential function can 
be solved by (BronStein and Semendjajew, 1981) 

+ tlow,up = exp c - - 5 --- ( b dT) The density function l(y) of the lognormal distri- 
bution with parameters p and a2 [denoted in the 
following by LN(p: a2)] is given by 4) AUCo-,: Let z = g(t) = log(t) - c, gl(t) = t l ,  

and h(x )  = exp(-bx21 then it follows from the 
substitution rule 

(Y > 0) 
By defining a = a m ,  a = 1 b = 
1/(2a2), and c = / L  we get the relation 

AUCo-, = lo f (t) dt 

If X is a random variable with distribution function 
Fy and if Y = g ( X )  then the distribution function 
of 1' can be computed by 

As the log of a lognormal distributed variable yields 
a normal distributed variable it follows that 

T 

AUCo-r : AUCU-I = f (t) dt 

where @ denotes the distribution function of the 
standard normal distribution. 

The formulas (4) to (7b) can now be derived as 
follows. 

"="a@ (d%(log(~)  - c)) 
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