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Earlier mathematical models of the authors which describe avascular tumour growth are 
extended to incorporate the process of cell shedding, a feature known to affect the growth 
of rnulticell spheroids. A continuum of live cells is assumed within which. depending on 
the concentration of a generic nutrient, movement (described by a velocity field) occurs 
due to volume changes caused by cell birth and death. The necrotic rnaterial is assumed to 
contain a mixture of basic cellular material (assumed necessary for creating new cells) and 
a non-utilisable material which may inhibit mitosis. The rate of cell shedding is taken to be 
proportional to the mitotic rate, with constant of proportionality O. Numerical solutions of 
the resulting system of partial differential equations indicate that, depending on O and the 
initial conditions, the solution may either tend to the trivial state in finite time (by which we 
mean complete death of the tumour), or to one of two non-trivial states, namely a steady-state 
(indicating growth saturation) or a travelling wave (indicating continual linear growth). These 
long time outcomes are explored by deriving the travelling wave and steady-state limits of 
the model. Numerical solutions demonstrate that there are two branches of solutions, which 
we have termed the 'Major' and 'Minor' branches, consisting of both travelling waves and 
steady-states. The behaviour of the solutions along each branch is discussed, with those of 
the Major branch expected to be stable. Beyond some critical O, where the Major and Minor 
branches merge, the spheroid ultimately vanishes whatever the initial turnour size due to the 
effects of cell shedding being too strong for it to survive. The regions of existence of the 
two long time outcomes are investigated in parameter space, cell shedding being shown to 
expand significantly the parameter ranges within which growth saturation occurs. 

K e y w r d ~ :  Tumour growth; mathematical modelling: cell shedding; numerical solution: asymptotic 
analysis 

1 INTRODUCTION development  (Folkrnan and Hochberg, 1973). The 
growth of  these cultures i s  governed mainly by  the 

Multicell spheroid cultures have been used exten- penetration of  nutrients by diffusion f r o m  the  external 

sively as i r ~  vitla analogues of  tumour  growth, med ium into the tumour  spheroid, giving rise to a 

mimicking the early, avascular stages of  tumour  characteristic 'three-stage' pattern of  growth (namely 
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exponential, linear and growth saturation); see Congar 
and Ziskin (1983), Inch et al. (1970) and Carlsson 
(1977). A number of other factors are known to influ- 
ence spheroid growth, of which the self-production 
of mitotic inhibitor molecules (chalones) has per- 
haps been the focus of most study (see for example 
Freyer et a/., 1988; Harel et al., 1984; Iversen, 1991). 
However, a feature which undoubtedly has a major 
effect on growth, but has been the subject of rela- 
tively little work, is the process of cell shedding. This 
involves the detachment of cells from the surface of 
a multicell spheroid, after which they disperse into 
the growth medium; since this medium is frequently 
renewed (usually about every 2 days), the result is 
an irretrievable loss of the shed cells. For tumours in 
vivo it has been speculated that the cell shedding pro- 
cess relates to cell detachment and metastasis (Weiss, 
1978; Landry e f  a/., 1981). However, this is uncer- 
tain, it being probable that the neighbouring tissues 
will prevent the escape of many of these cells. 

The shedding of cells has often been noted 
in experimental reports, but there has been little 
analysis. In Landry et a/ .  (1981), it was observed that 
cells are more prone to detachment during mitosis 
and it was claimed that this is due to the weakening 
of the cell-cell contacts. Cell detachment during 
mitosis will therefore be the focus of the modelling 
in this paper. Weiss (1978) showed that exposure of 
a spheroid to necrotic products from the core also 
enhances cell shedding. The rate at which cells are 
lost depends strongly on the cell line. Landry et al. 
(1981), in their study of EMT61Ro mammary tumour 
cultures, examined spheroids of diameters between 
400-900 ym and estimated the cell shedding rate to 
be 218 cells/mm2h, which represents 0(1%) of the 
total cell content of the spheroid being lost each hour. 
In Sasaki e t a / .  (1984), cells were observed to be 
shed from HeLa S3 rnulticell spheroids, of diameter 
475 ym. at rates of about 21 cells/mm2h; this cell 
shedding rate was approximately halved when these 
cells were cocultured with human fibroblast cells. 
Kohno ef a/ .  (1986) studied two cell lines and found 
cell shedding rates of about 50 cells/mm2h and 
5 cells/mm'h for DND 1 A melanoma and PC-I0 
squamous multicell spheroids, respectively. They also 

noted that the cell shedding rate was reduced during 
the application of several chemotherapeutic drugs. 
Such matters are not addressed here, but provide 
scope for future modelling. 

The process of cell shedding has been included 
in few mathematical models of multicell spheroid 
growth, with Landry et a/ .  (1 982) and Casciari rt al. 
(1992) being the only known examples. In Landry 
et al. (1982) the tumour was modelled as a spheroid 
with an outer rim in which volume is gained through 
cell birth and a core in which volume is lost by 
cell death, cell shedding being modelled as a volume 
sink proportional to the surface area of the spheroid. 
The resulting model predicts the initial exponential 
and linear phases of growth, but not the final satu- 
ration phase. Their model achieved saturation when 
it was coupled with the inhibitor model of Shymko 
and Glass (1976); however, the cells in the result- 
ing saturated spheroid are fully inhibited, i.e. all cells 
are quiescent, contradicting the experimental obser- 
vations of Carlsson (19771, Folkman and Hochberg 
(1973), Freyer and Sutherland (1986) and Haji-Karim 
and Carlsson (1978), in which a surface layer of 
cells continues to undergo mitosis. Casciari et al. 
(1992) used a similar approach to model the cell 
shedding process in their model of spheroid growth. 
Their model, however, is considerably more complex 
than the Landry model, the role of various molecules 
involved in the cellular respiratory process being con- 
sidered in order to predict the increase in pH in the 
core; however, their model again failed to predict 
growth saturation. The main aim of these models 
was to provide good quantitative agreement for the 
growth of EMT6IRo mammary multicell spheroids 
using known parameter values. In the mathematical 
model described below we aim to examine the role of 
the cell shedding strength on both the qualitative and 
quantitative behaviour, to gain a deeper understanding 
of its effects on spheroid growth. 

In this paper, we build on the series of models 
discussed in Ward and King (1 997, 1999a, 1999b), 
extending them to account for cell shedding. The 
modelling approach is to assume a continuum of 
live cells whose growth is driven by a generic nutri- 
ent. In the models of Ward and King (1999a) the 
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inclusion of mechanisms of necrotic material loss, 
namely leakage (via diffusion) and consumption by 
living cells, enabled growth saturation to be predicted, 
with the surface region being one of cell prolifer- 
ation (as required by the experimental observations 
noted above). The modelling was extended in Ward 
and King ( 1  999b) to investigate the effects of mitotic 
inhibitors released at cell death. Although the addition 
of the inhibitors demonstrated little that was qualita- 
tively new, and it was shown that the presence of 
mitotic inhibitors cannot cause growth saturation on 
its own, it was shown that they can have significant 
quantitative effects even at low concentrations. A key 
motivation of the current work was to investigate 
whether cell shedding could provide an alternative 
mechanism for growth saturation. The inclusion of 
the cell shedding mechanism leads to modification of 
the boundary conditions employed in the model of 
Ward and King (199910) and it will be shown that 
cell shedding has significant quantitative effects on 
growth speed and saturation size and gives rise to the 
existence of two non-trivial long time solutions for 
a much wider class of parameter sets. A brief dis- 
cussion of the model derivation together with details 
of the cell shedding modelling is given in Section 2. 
In Section 3, the resulting system of partial differen- 
tial equations is solved numerically, with the effects 
of changing the extent of cell shedding investigated. 
As with the previous models, the long time outcomes 
consist of travelling wave and steady-state solutions, 
the travelling wave and steady-state limits being stud- 
ied using both asymptotic and numerical methods in 
Section 4. The bifurcations between travelling waves 
and steady-states and between the existence and non- 
existence of non-trivial solution are also discussed. 

2 FORMULATION 

2.1 Introduction 

We will omit most of the details of the modelling, 
since much of it is described in Ward and King 
(1999b); the addition of the cell shedding mechanism 
requires only the adjustment of the boundary con- 
ditions. In summary, the model of avascular tumour 

growth is based on the assumption that living cells 
form a continuum, dividing and dying at rates gov- 
erned by the local concentration of a generic nutri- 
ent (e.g. oxygen and glucose) and by the availability 
materials such as water, proteins and DNA required 
for the construction of new cells. At cell death a 
cell is assumed to dissociate into fixed quantities 
of basic cellular material and non-utilisable mate- 
rial which may inhibit mitosis. For convenience, the 
non-utilisable material will be termed an inhibitor for 
the remainder of the paper. An important modelling 
assumption is that the living cells, cellular material 
and the inhibitive material occupy all available space 
within the tumour, leading to the no void condition 

where 12, y and 11 are the concentrations and VL, V,, 
and Vh are the volumes of a living cell, a molecule 
of cellular material and an inhibitor molecule, respec- 
tively. Volume changes due to cell birth and death and 
due to the diffusion of cellular and inhibitive material 
creates movement within the tunlour described by a 
velocity field. The resulting sy5tem of equations is 
given in non-dimensional form in Appendix A, and 
in the next section the modelling of the cell shedding 
process is described. 

2.2 Modelling Cell Shedding 

The detachment of cells from the surface, and the 
consequent volume loss, implies that. in contrast to 
our earlier models, the growth rate dS ld t ,  where S ( t )  
is the coordinate of the tumour surface, is not equal 
to the surface velocity. The volume loss rate due to 
cell shedding is given by ~ T S ~ ( O ( S ,  t) - dS (t)/dt), 
where z, is the internal spheroid velocity. The volume 
lost is assumed to consist of living cells and cellular 
and inhibitive material at quantities proportional to 
their surface densities; defining N(t)  to be the number 
of cells lost through shedding, the rate at which the 
surface cells are shed is thus given by 

- = 457s' v(S , t )  - - ( t )  n(S. t ) .  (2) 
'" nt ( " nt 
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The rate of cell shedding is assumed to be 
proportional to the number of surface cells, by which 
we mean the cells that occupy the space between S 
and S - 2ro. where ro is the radius of cell; the number 
of cells susceptible to shedding is therefore given by 
n ( S ,  t )  4 n ( s 3  - ( S  - 2ro)"/3. We can thus write the 
cell shedding rate as 

dN 
- = 8 . i ~ r o s ' ~ ( ~ / r o ) ~ ( c ,  n , y , h ) n ( ~ ,  t ) ,  ( 3 )  
dt 

where c is the nutrient concentration, 

and K ( c ,  11,  p ,  11) is some function describing the 
effects of the microenvironment on the cell shedding 
rate. Eliminating d N / d t  between Equations ( 2 )  and 
( 3 )  results in a differential equation for the moving 
boundary S ( t ) ,  namely 

We note the model of Ward and King (1999b) can 
be derived simply by setting K - 0. reducing ( 5 )  
to dS l d t  = 7)(S,  t ). Our continuum modelling is only 
really valid for S >> vo, so it might seem reasonable 
to set F ( S )  = 1; however, while this condition is typ- 
ically satisfied for almost all of the growth, we shall 
start from an initial state with S ( 0 )  = ro, and the full 
form ( 4 )  is then needed if the cell shedding rate is 
not always to be too strong for smaller spheroids; 
the form ( 4 )  is thus adopted as the most appropriate 
way to describe all stages of growth. Nevertheless, 
as before (Ward and King, 1997) results of the con- 
tinuum model on very early timescales, for which 
S / r o  = 0(1), should be treated with caution, as the 
continuum assumption on living cells only holds if 
there are a large number of cells. 

In view of the observations of Landry et nl. (1981) 
that cells are more prone to detach during mitosis, we 
assume K ( c  . n , y , h )  to be proportional to the mitotic 
rate, k,,, at the spheroid surface, so that 

K ( c , n . p .  h )  = Ok , , ( c (S . t ) , p (S .  t ) ,  h ( S , t ) ) .  

Here, the dimensionless constant O is the 
proportion of the surface layer cells that are 

undergoing mitosis which detach. As the spheroid 
develops, so that k,(c(S t ) ,  p(S , t ) ,  h (S  , t ) )  becomes 
approximately constant, this choice for function K 
approaches the cell shedding term used by Landry 
et al. (1982) of cell shedding rate being proportional 
to the surface area. We note also that defining 
K ( c  , n , p , h ) in this way means that the model for cell 
shedding contains only one more parameter than the 
model of Ward and King (1999b), namely O, values 
for which can be obtained from the literature. 

Experimental data is usually expressed in terms of 
the rate of cell shedding per unit area (Rcs) ,  which 
is simply ( d ~  /dt) /4. irs2,  so from ( 3 )  we have 

where if,, is the mitotic rate at the spheroid surface. 
Equation ( 6 )  can be used to determine suitable values 
for O from existing data. For example, using the 
cell shedding rate of 218 cells/mm2h given in Landry 
et al. (1981) and the data listed in the Appendix of 
Ward and King (1997), whereby n (S  . t )  = 1 /VL = 

1 o9 cm-" ro = 6 x 10p\m, if,, = A = I O - ~ S - '  ( A  
being the maximum mitotic rate) and F ( S / r o )  = 1 
(which holds for S >> ro) we have O = 0.5. 8 will 
be varied in this paper to obtain an understanding of 
its effects on growth. 

The difference between growth rate and surface 
velocity in ( 5 )  also requires a modification of the 
Robin boundary conditions used in Ward and King 
(1999b) to describe the cellular and inhibitive mate- 
rial flux at the spheroid surface. The cell shedding 
modification gives at r = S ( t )  

where Q ,  and Qh are the mass transfer coefficients 
and j )g and ho are the external concentrations of the 
cellular and inhibitive material, respectively. 

The full system of dimensionless equations 
implementing the cell shedding process is given in 
Appendix A. Before discussing numerical solutions 
of the model we first describe special cases relating 
the current model to previous works and then 



AVASCULAR TUMOUR GROWTH 159 

introduce classifications of the long time solutions 
which are of relevance to the later sections. 

It was found necessary in some of the simulations 
described later to allow the spheroid to grow without 
cell detachment before switching on the cell shedding 
mechanism, to enable investigation of non-trivial 
large time outcomes by preventing extinction of the 
spheroid when it is small in size; as we shall see, an 
important effect of incorporating cell shedding is to 
cause spheroids of less than some critical size to cease 
to be viable. We note that it is possible that cell lines 
with inherently high cell shedding rates, correspond- 
ing to very low cell-cell adhesion, may be unable to 
form spheroids. 

2.3 Special Cases 

The cell shedding model is a generalisation of the 
models described in Ward and King (1997, 19993. 
and 1999b). The following are also special cases and 
will be discussed later in this paper. We note that 
all quantities discussed here are dimensionless and 
described in more detail in Appendix A. 

Cell shedding-no inhibitor model 

For this model we set the parameters so that there 
is no production or external source of the mitotic 
inhibitor, i.e. we take / I  = 0 and ho = 0. 

Cell shedding-leakage only model 

Here there is no cellular material consumption or 
inhibitor production, so that leakage is the only mech- 
anism for necrotic volume loss. This is achieved by 
setting y, = 0 and X = 0, preventing utilisation of the 
cellular material during mitosis. and p = 0 and ho = 0, 
so that there is no source of inhibitor. As with the 
Leakage only model of Ward and King (1999a) these 
conditions may lead to either growth saturation or a 
travelling wave. 

Cell shedding-inhibition model 

This is obtained by setting Q,, = Qh = 0 (prevent- 
ing leakage). X = y, = 0 (preventing consumption of 

the cellular material) and u = 1 (preventing volume 
loss through inhibitor breakdown). It will be shown 
in Section 4.2 that, except in the case of 6 = 0 
where no inhibitor is produced, only travelling wave 
solutions or tumour extinction can then result in 
large time. 

No leakage model 

This is derived by setting Q,, = Q,, = 0. It will be 
shown that the tumour dies out for all 0 > 0 if 
b - (1  - 11)p > A. 

2.4 Classification of Long Time Solutions 

For the case O = 0, it was shown in Ward and King 
(1999a) that there may be zero, one or two branches 
of travelling wave and steady-state (i.e. non-trivial) 
solutions, depending on the parameter values. It will 
be convenient below to use the terms Regime I and 
Regime 11, introduced in Ward and King (1999b), and 
defined as follows. 

Regime I 

Parameter sets (with 0 = 0) for which only one 
branch of non-trivial long time solutions exists. These 
occur when a (  I ,  yo, ho) > 0. 

Regime I1 

Parameter sets (with O = 0) for which either two or 
zero branches of non-trivial long time solutions exist. 
These occur when a ( l , p o .  ho) < 0. 

These regimes can be identified by, for example, 
studying the travelling wave and steady-state limits of 
Equations (20)-(22) in the limit of X + x; see Ward 
and King (199%. 1999b). Defining 110 by a(1. 1 - 
no - ho, ho) = 0, it can be shown for 0 = 0 that if 
170 +yo + 11,~ > I then the long time solutions lie in 
Regime I, otherwise the solutions lie in Regime 11; 
the inequalities above follow because a ( r , y > / z )  is 
monotonic increasing in p. Regime I is relevant for 
all A, but non-trivial Regime I1 solutions arc restricted 
to a finite range of A; which case applies depends on 
the values of the other parameters. 
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For 0 > 0 the situation is rather different. As 
will be apparent from the studies of the long time 
behaviour in Sections 3 and 4 below, the addition of 
the cell shedding term leads to the existence of two 
non-trivial branches of travelling wave and steady- 
state solutions which, like Regime I1 solutions, can 
be characterised by the ultimate size of the spheroid. 
A typical example is given in Figure I ,  where the 
curves are generated from numerical solutions to 
the systems derived in Section 4. The two branches 
of long time solutions are illustrated by the solid 
and dashed curves in the figure; we expect that the 
dashed solutions are unstable to radially symmetric 
perturbations, and this is discussed in the Appendix B 
for the limit 0 4 0 with S = 0(0'!'). To the left of 
the dotted line (which is the travelling wavelsteady- 
state bifurcation on the upper branch), both travelling 
wave (not shown) and steady-state solutions exist, 
whilst to the right, both long time solutions are 
steady-states. To distinguish between these branches. 
it is convenient to introduce the terms 'Major' and 
'Minor' branch. as follows. 

Major branch solution 

As 8 + 0, these solutions tend smoothly to the 
non-trivial 0 = 0 solution (under Regime I) or the 
upper branch O = 0 solution (under Regime 11). The 
long-time growth velocity and saturation size are 

monotonic decreasing in 0 :  at the turning point the 
Major and Minor branches meet. These solutions are 
expected to be stable. 

Minor branch solution 

As O i 0, these solutions tend smoothly to the triv- 
ial solution (under Regime I) or the lower branch 
0 = 0 solution (under Regime 11); an example of this 
behaviour will be given in Section 4. It appears that 
the long time solution on this branch is always a 
steady-state. with the saturation size n~ostly increas- 
ing in O (until the turning point is reached). There is 
the possibility of there being additional folds along 
this branch depending on the form of function F ( S )  
in Equation (4); an example of this behaviour is dis- 
cussed in Section 4.3. These solutions are expected 
to be unstable. 

These branches meet at some critical value of O = 

O,, with no non-trivial long time solutions existing 
for O > 0,. due to the cell shedding rate being too 
strong, so that the spheroid eventually vanishes. 

We note that the curve of saturation size against 
O illustrated in Figure 1 is qualitatively similar to 
that in Figure 3 of Byrne and Chaplain (1996), where 
saturation size is plotted against a term proportional to 
the surface tension per unit surface area, 7.  However. 
an increasing O can be thought of as corresponding 
to reduction in cell-cell adhesion forces, the physical 

FIGURE 1 Figures showing the effects of the cell shedding factor O on the saturation (steady-state) spheroid radius. The solid and 
dashed curves respectively illustrate the Major and Minor branch long time solutions, and the dotted curve indicates the travelling 
wavelsteady-state bifurcation. 



AV.4SCULAR TUMOUR GROWTH 161 

mechanisms responsible for the fold are therefore 
quite different. 

3 NUMERICAL RESULTS 

The numerical procedure used to approximate the 
system (20)-(23) subject to (26) is essentially the 
same as that described in Ward and King (1999a). The 
system is rescaled to fix the moving boundary to unity 
using I. = S( t )p  and is solved using finite differences 
in a predictor-corrector type fashion, NAG routines 
being used on Equations (20). (21) and (22). Full 
details are given in Ward (1997). 

Greater insight into the effects of cell shedding is 
gained from the study of the long time system, so 
only a few examples of the transient behaviour are 
given here. The basic set of parameters used are given 
by (1  9) and (20) in Ward and King (1999b), namely 

Q,, = 10. h ,=0.1 ,  ho=O.  ( 7 )  

with 0 being varied. As described in Ward and King 
(1999b), these parameters are based on a combina- 
tion of experimental data and suitable estimates. In 
particular, there is assumed to be no volume loss at 
cell death (6 = 1) and the necrotic material consists of 
90% cellular and 10% inhibitive materials (implied by 
p = 0.1). The diffusive and leakage properties of the 
cellular and inhibitive material are taken to be equal. 
The external medium contains some cellular mate- 
rial (po = 0.1) but no inhibitor (ha = 0). The inhibitive 
material can at most reduce the mitotic rate by 3 0 7 ~  
( P  = 0.3) and can be completely converted by the 
living cells to cellular material (u = 1). 

Figure 2 show the effects of 0 on spheroid growth 
and on cell population loss rates, using the data given 
by (7); the curve for O = 0 in Figure 2 is the same as 
that shown in Figure 1 in Ward and King (19991-3). In 
these simulations the cell shedding term was switched 
on at t = 25. so that the spheroid had reached a suf- 
ficient size for growth to continue, where possible, 
to a non-trivial long time solution. The switching on 
of the cell shedding term in this manner is probably 
not unreasonable, as the population reached by t = 25 
reflects the initial population of experimentally grown 

FIGURE 2 Tumour radius against time for various values of the cell shedding parameter 8. The curves coinicide until t = 25, when 
cell shedding is turned on. 
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multicell-spheroids which is typically about lo4 cells. 
The figure demonstrates that the saturation size is 
strongly dependent on O and, as expected, increas- 
ing O reduces the spheroid saturation size. Beyond a 
bifurcation value of O, - 1.46 (see next section) the 
cell shedding rate becomes so strong that the spheroid 
eventually vanishes (an example of this being given 
for O = 1.5). Calculating the rates of cell population 
loss per unit area (Rcs) using Equation (6), revert- 
ing to dimensional quantities (using A = 10-~s - ' ,  
ro = 6.2 x lop4 cm; see the Appendix in Ward and 
King, 1997), comparison can be made between these 
results and experimental results from the literature. In 
this simulation we find at growth saturation that Rcs 
is about 1.0. 1.9 and 3.0 cells/cm2s for O = 0.25,0.5 
and 1, respectively, these being in line with the exper- 
imental results of Landry et al. (1981, 6 cells/cm2s). 
Sasaki et al. (1984, 0.6 cells/cm2s) and Kohno ef al. 
(1986, 1.4 and 0.13 cells/cm2s). 

In Figure 3 the spheroid radius is plotted against 
time for the Cell shedding-leakage only case, using 
the parameter set (7) but with D, = 800 and Q, = 
100, so that the curve for O = 0 is the same as the 
curve for D,, = 800 in Figure 11 of Ward and King 
( 1  999a). For O > 0, cell shedding was switched on at 

f = 10, again to give the spheroid a chance to grow. 
For O = 0 and 0.25 growth ultimately becomes linear, 
whilst for O = 0.5,0.75 and 1 it saturates, the bifur- 
cation occurring at O,. x 0.39. We note that growth 
again tends towards solutions on the Major branch 
in these examples. The decrease of both the linear 
growth speed and the saturation size on increasing 
(3 is to be expected, and this figure demonstrates 
how the inclusion of cell shedding can induce growth 
saturation when it would not otherwise occur. It can 
be observed numerically that the cell loss rate per 
unit area levels off in all cases, with rates Rcs of 
2.5, 5.1, 7.6, 10.1 cells/cm2s for O = 0.25, 0.5, 0.75, 
1.  respectively. again conlparable with experimental 
results. 

An investigation into the stability of a particu- 
lar Minor branch solution is illustrated in Figure 4, 
using the smaller of the two steady-state solutions 
(SG < s:, these denoting the saturation sizes on 
Minor and Major branches, respectively) of the Cell 
shedding-leakage only model (found by solving the 
appropriate system from the next section), with para- 
meter values given by the first three rows of (7) 
and with X = 0.8, Dp = Qp = 300 and O = 0.8. The 
steady-state was used as the initial condition, except 

FIGURE 3 Turnour radius against time for various values of the cell shedding parameter O, without inhibition or mitotic contraction. 
The dashed lines indicate the saturation radii. the saturation size for O = 0.5 being S, z 1339. Growth does not saturate for O = 0 or 
Q = 0.25. 
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time (1) 

FIGURE 4 Spheroid radius against time for various initial sizes: S (0 )  x 1.35 (curve A), S ( 0 )  -- 2.35 (curve B )  and S (0 )  - 3.35 
(curve C). 

that the initial size was varied and the dependence on 
r scaled accordingly. The curve labelled B starts with 
the actual steady-state solution (with S$ = S(0) E 

2.35), and there is negligible deviation from this ini- 
tial state. However, perturbing the initial size above 
or below, as shown by curves A and C, leads to 
growth diverging away from the curve B solution, 
the smaller spheroid vanishing in finite time and the 
larger growing towards a Major branch steady-state 
solution (SZ E 128.6). We note that this extinction 
in finite time is in contrast to the decay in infinite 
time of solutions under a Regime I1 parameter set 
without cell shedding (cf. Figure 10 of Ward and 
King, 1999a). This finite time extinction behaviour is 
predicted by the analysis in the Appendix B, which 
demonstrates that Minor branch solutions are unstable 
in the limit O + 0; it is expected that solutions on 
this branch are always unstable. 

4 LONG TIME BEHAVIOUR 

4.1 Long Time Equations 

As with the model of Ward and King (1999b), the 
possible long time outcomes of Equations (20)-(22) 
are travelling wave (with a priori unknown speed 

U )  and steady-state (of a priori unknown saturation 
size S,). The form of the nonlinear diffusion term in 
(20) and (22) leads to the possibility of steady-state 
solutions with fully developed (n E 0 for r < R, < 
S,, for some R,), as well as a partially developed 
(n > 0 for all r), necrotic cores. The long time 
systems of equations for each case are listed in Ward 
and King (1999b) and are omitted for brevity. 

4.2 Existence of Non-trivial Solutions 

In this section we examine the existence of non-trivial 
solutions for the Cell shedding-inhibitor model and 
the No leakage model presented in Section 2.3. For 
the Cell shedding-inhibitor model, it will be demon- 
strated that, except in a special case, steady-state 
solutions do not occur. However, unlike our earlier 
models, steady-state solutions of the No leakage 
model exist over a range of parameters rather than 
only along a three-dimensional 'surface' in (6, A, p, u) 
parameter space; non-trivial solutions exist only in a 
bounded region in parameter space, defined below. 

4.2.1 Cell shedding-inhibitor model 

Recalling that for the Cell shedding-inhibitor model 
we have Q, = Q h  =A=p,  = O  and u =  1, the 
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travelling wave equations for n and v can be 
written as 

[(u - U)nI1 = (k,,, - k(1)rz 

U' = (k,,, - ( I  - h)k,i)rz - D, (n" + htl) 

+ Dl, h " , 
(14) 

from which we can deduce 

subject to D,(rz1(O) + hl(0)) = (u(0) - U)(l  - n(0) - 
h(0)) and Dl, = v(O)h(O). On integration this yields 

0 U = 6J-x k,rnd,-. Positivity of the wave speed 
implies that travelling wave solutions exist only if 
6, the ratio of dead to live cell volumes, is greater 
than zero. Repeating the analysis on the steady-state 
equations results in h soS' r'k,indr = 0, implying that 
non-trivial solutions exist only if S = 0. In summary 
we have 
6 > 0 : Only travelling wave solutions exist. 
6 = 0 : Only steady-state solutions exist; these are 

non-unique, being dependent on the initial 
conditions (see Section 5.1 of Ward and 
King, 1999b, for full details). 

Thus the material leakage and/or consumption 
mechanisms are essential for growth saturation to be 
predicted across a general parameter range. 

4.2.2 No leakage model 

Recalling that for this limit of the model we have 
Q, = Qh = 0, SO using (14) together with 

we may deduce for the case 1, > 0 

using (8)-(10) with Q, = Q,, = 0. In the case of 
( 1  = 0, that is the inhibitor is not broken down, 
the results to follow are the same as for u = 1. 
With v(0) > U and (I - v)h(-w)  5 1 the left-hand 
side is positive, so positivity of the right-hand side 
implies that 

6 - (1 - u)p > X (15) 

is a necessary condition for the existence of travelling 
wave solutions in this no leakage case. Equation ( 1  5) 
states that the total amount of cellular material that 
can be produced through cell death (6 - (1 - u)p) 
needs to exceed the amount consumed at cell birth 
(A). A condition for a steady-state solution can 
be derived in a similar way, resulting in expres- 
sion 

where the inclusion of cell shedding in the model 
implies that u(0) > 0 and A > 0, so that the left-hand 
side is positive, implying that (15) must again hold for 
a non-trivial steady-state to exist. In the case of A = 0, 
i.e. zero cellular material volume, the left hand side of 
(16) is zero, implying that for steady-state solutions 
we must have 6 = (1 - u)p; since S > p > (1 - u)y, 
this can hold only for the very special case 6 = /L and 
u = 0 (that is, if all necrotic material is inhibitive and 
is completely broken down). Numerical investigations 
indicate that there are two branches of solution, with 
the Major branch consisting of travelling wave and 
steady-state solutions and the Minor branch of steady- 
state solutions only. In the earlier models, steady-state 
solutions were restricted to the line S - (I - u)p = A; 
now, with the addition of the cell shedding term, they 
exist over a range of parameter values. In summary 
we have 
X > 0 : Travelling waves and steady-states solutions 

exist over a range of parameters provided 
that S - (1 - ujp  > A. 

X = 0 : Travelling wave solutions exist provided 
that 6 - (I - u)p > 0. Steady-state solu- 
tions can only exist if S = p and u = 0, 
in which case they are non-unique, being 
dependent on the initial conditions. 
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From (15), we note that without the presence of 
inhibitor ( p  = O), steady-state solutions exist in the 
range 6 > A. Moreover, unlike the model of Ward and 
King (1999b). (15) is not a strict bound, the numerics 
indicating that the range in which only trivial long 
time solutions exist is larger than 5 - (1 - u)p 5 A. 

4.3 Numerical Results 

The derivation of the long time equations and bound- 
ary conditions and the numerical procedures are 
described in Ward and King (1999b). In each case 
the problem is formulated as a two-point boundary 
value problem and rescaled to a coordinate y defined 
on the unit domain. The only alterations to the trav- 
elling wave system given in Ward and King (1999b) 
concern the boundary conditions 

where = diz /dy  and Qi = dh /dy , and for each of 
the steady-state and bifurcation cases the modified 
boundary conditions are 

~ ( 1 )  = 2 0 k , ,  ( 1 ,  1 - NI - H I .  H1)NI F(S,); 

$1) = [Q,,(l -pi) - Nl - H I )  - 71(l)(l - N I  

- ~ l ) l / D [ l  - @(I) ,  

@(I ) = [ Q I , ( ~ o  - HI) + L'( 1 )HI I/DI, ; 

where the constants N1 = rz(l), H I  = h(1) and U need 
to be determined as part of the solution. The boundary 
value problems are solved using the shooting and 
matching technique incorporated in the NAG routine 
D02AGF. The continuation procedure described in 
Ward and King (1999a) is used for the investigations 
in parameter space. Apart from the set of parameters 
used for Figure 11, all of the results to follow use 
parameter sets that lead to Regime 1 solutions when 
0 = 0. 

Figures 5-8 study the effects of the parameter O 
on various aspects of the long time growth behaviour. 
using the same data used for Figure 2. The existence 
of two possible long time outcomes is demonstrated 
in Figure 5, where the solid and dashed curves are 
the Major and Minor branches, respectively. In this 

FIGURE 5 Effects of the cell shedding factor O on spheroid saturation sire (solid SZ and dashed Sg) and nccrotic core radius 
(dots), defined as the position of the necrotic interface (R,). The position of the fully/partially necrotic core bifurcation is indicated 
by the o. The solid and dashed curves are the Major and Minor branches, respectively. 
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FIGURE 6 Plots of the Minor branch saturation size against Q, where the solid and dotted curve are asymptotic and numerical 
solutions, respectively, using F ( S )  = 1 - 2/S + 4/3.Y2. The dashed curve is the asymptotic solution using F(S)  = 1. The asymptotic 
limit is 01, 1% - 0 and D,, D,, + oc and the numerical (dotted) curve is a blow-up of part of Figure 5. 
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FIGURE 7 Cell population loss rate (cellds) as a function of the cell shedding factor O. The o denotes the fully/partially necrotic 
core bifurcation. The solid and dashed curves are the Major and Minor branches, respectively. 

case, the MajorIMinor branch bifurcation occurs at solutions. In this case, the Minor branch consists only 

0 z 1.46; for values of 0 beyond this the cell shed- of partially necrotic solutions and shows the opposite 

ding term is too strong for there to be any non-trivial behaviour of saturation size increasing with 0. before 

solutions. The solid curve illustrates the (expected) reaching the MajorIMinor branch bifurcation. Since 

effect that the saturation size decreases with increas- the Minor branch is unstable this behaviour suggests 
ing 0, the fully necrotic core solutions to the left that as O increases there is an increase in the initial 

of the '0' being larger than the partially necrotic 'nucleation' size a spheroid must be in order for it to 

- 

--  
___- -  _ _ _ _ - - - -  
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FIGURE 8 The effects of the cell shedding factor 8 on the cell loss rate per unit area (in cells/cm2s). The solid and dashed curves 
are the Major and Minor branches, respectively. 

attain a non-trivial long time solution. This is again in Section 2.4. An example of the behaviour using 
to be expected, as is the existence of such a criti- a parameter set giving Regime I1 solutions for O = 0 
cal spherical size: the cell shedding rate depends on is shown later. Greater insight into the nature of the 
the surface area (and hence S2) whereas in the early 
stages of growth the total mitotic rate depends on the 
volume (and hence s 3 ) ;  the former dominates if S 
is sufficiently small and the latter if it is sufficiently 
large. We note in Figure 5 that up to about 8 = 0.75, 
at least, the lower branch lies in the range of tumour 
radius for which a continuum model is not valid; in 
this regime the predicted 'nucleation' size will be 
only a few cells (at most) so in practice spheroids 
of any initial size would be expected to reach the 
Major branch radius S: in this regime. 

Seeking solutions along the (non-physical) Minor 
branch as O + 0, S g  -+ 0 (i.e. in Regime I), we find 
that c - 1, h -- ho, n -- 1 -PO - ho and 

I 

Minor branch can be gleaned by examining the case 
of small consumption rate (PI, p2 i 0) and large dif- 
fusivities (Dp, Dh + m) for S: = O(1); this limit is 
relevant to Figure 5 in which PI = 0.01, P2 = 0 and 
D,, Dh = 300. Omitting the details of the analysis, 
it can be shown that for S: = O(1) we have c - 1, 
n N ii(S$), h - ~ ( s z ) ,  u - ii(S:)r/3 and 

where ii(S2) = ~ ( 1 . 1  - ii(Sm) - h(s2) .  ~ ( s c ) )  and 
? 

, ( ~ ) = k ( , l - ( s - h ( ~ ) , ( ) ) .  The 
asymptotic solutions for this limit are compared with 
the numerical solution in Figure 6, demonstrating that 
the analysis predicts the slight fold seen in the numer- 

., _ @p ( g k d ,  PO. ho)) ' ical curve. Also shown in Figure 6 is the asymptotic 
s, 

a( l ,po,  ho) 
, (I7) solution for F (S)  = 1, showing that similar qualita- 

tive results occur for larger S;; the folds in the 
using F(S) -- 4 /3s2  as S -+ 0. We note that pos- other curves result from the behaviour of F ( S )  = 
itivity of O implies that we need a ( l , y o ,  ho) > 1 - 2/S + 4 /3s2  for S = O(1) and are not of physical 
0, i.e. the birth rate must exceed the death significance. 
rate. For O = 0, a ( l , p o ,  ho) = 0 marks the bifur- Using Equation (4) and converting to dimensional 
cation between Regime I (a( l ,yo,  ho) > 0) and quantities, as before, the cell population loss rate (in 
Regime I1 ( ~ ( 1 . ~ 0 ,  ho) < 0) solutions, as discussed cellts) as a function of O is shown in Figure 7, the 
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Major and Minor branches forming a closed loop. TO 
the left o f  the rnaximurn on the Major branch, the 
increasing proportion o f  detached cells results in the 
increase in the shedding rate. However, as O becomes 
larger, causing the reduction in size o f  the spheroid 
and consequently o f  the number o f  cells at the sur- 
face, there is a decrease in the cell loss rate towards 
the MajorIMinor branch bifurcation. In Figure 8 the 
cell loss rate per unit area is monotonically increas- 
ing in O for both Major and Minor solutions, as is 
to be expected. Again, we have converted to dimen- 
sional quantities, so that a comparison can be made 
with experimentally observed values, ranging from 
0.1-6 cells/cm2s (Sasaki et al., 1984; Kohno et al., 
1986; Landry et al., 1981). In the limit o f  O + 0 
with S: + 0 (see (17)), the cell flux at the surface 
can be shown to be O(@'13) ,  explaining the rapid ini- 
tial increase on the Minor branch. The abrupt increase 
further along this curve corresponds to the fold in 
Figure 6.  

The paths o f  the non-trivialltrivial (solid curve), 
travelling wave/steady-state (dashed curve) and 
fully/partially necrotic core (smaller-dashed curve) 
bifurcations in O and D ,  = Q ,  parameter space are 
shown in Figure 9 for the Cell shedding-no inhibitor 
model. Here, the parameters are given by (7), except 

that p = 0 so that there is no inhibitor present, and we 
set ,A = 0.8 (rather than X = 1 )  so that the cross-over 
o f  the bifurcation curves is emphasised. The solid 
curve was generated by tracking along d O / d S ,  = 0, 
which is where the Major and Minor branches meet, 
as D, = Q ,  is varied. The solid curve is started at 
about D,, = 70, due to the failure o f  the numerical 
procedure for smaller diffusivities (the evaluation 
o f  the curve dQ,/dS,  = 0, i f  it exists, being very 
sensitive to the initial guess there). However, it is 
believed that for smaller diffusivities the solid curve 
tracks along the dashed curve. Below the dashed 
curve, the Major branch consists o f  travelling wave 
solutions. To the right o f  the cross-over point o f  the 
dashed and smaller-dashed bifurcation curves, fully 
necrotic core solutions exist between those curves 
and are Major branch solutions. The fully necrotic 
core solutions to the left o f  the cross-over point lie 
above the smaller-dashed curve and are Minor branch 
solutions, except for those that exist above the dashed 
curve in the vicinity o f  the cross-over point. 

Figure 10 shows the effect o f  O on the saturation 
size along the dotted paths labelled A and B 
in Figure 9 .  The Major branch along path B 
descends rapidly from the travelling wavelsteady- 
state bifurcation on increasing O, until it reaches the 

0 1 1 
0 50 100 150 200 250 300 350 400 450 500 

dlffuston and mass transfer coefficient of cellular materlal (D;,= Q,J 

3 

2 5  

FIGURE 9 The paths of the travelling wavelsteady-state (dashed) and fullylpartially necrotic core (shorter-dashed) bifurcations in 
Dp = Qp and O parameter space. The solid curve tracks the path of dO/dS, = 0, i.e. the bifurcation between the Major and Minor 
branches, above which only trivial solutions exist. The paths for Figure 10 are indicated by the dotted lines labelled A and B. 
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FIGURE 10 Saturation size (qolid and dashed curve) against O along paths A and B of Figure 9. Major branch solutions are depicted 
by the solid curve and Minor branch solutions by the dashed curves. Travelling wave solutions (not shown) exist to the left of dashed 
lines at the top of the figure, marking the location of the travelling wavelsteady-state bifurcation. The fully necrotic core solutions 
occuring for O between the dotted line and the o marking the fullyipartially necrotic core bifurcation. 

MajorMinor branch bifurcation at 8, x 2.53. As in 
Figure 5,  the Minor branch consists only of partially 
necrotic steady-state solutions, with saturation size 
increasing in O to S z  zz 33. Along path A all steady- 
state (including fully necrotic core solutions) exist 
on the Minor branch, on which the saturation size 
is monotonically increasing in 0, blowing up as 
O approaches travelling wavelsteady-state bifurcation 
point. We note that the travelling wave solutions exist 
to the left of travelling wavelsteady-state bifurcation 
point indicated by the dashed lines in Figure 10 and 
are Major branch solutions. 

The saturation radius is plotted against O in 
Figure 11 for a parameter set giving Regime I1 
solutions if O is set to zero. The parameters are 
given by (7) with X = 0.4, D,, = Q, = 250, p = 0 
(SO that there is no inhibitor present) and po = 0, 
implying a ( l , p o ;  ho) < 0. Here, the two saturation 
sizes satisfying O = 0 correspond to those occurring 
for X = 0.4 on curve B in Figure 18 of Ward and 
King (1990a). The figure shows that the Minor 
Branch solution curve tends to the lower of the two 
Regime 11 solutions in the limit O -+ 0 (rather than 
towards the trivial solution, i.e. unlike Figures 5, 
10). This is consistent with the analysis leading 

to Equation (17), demonstrating the non-existence 
of non-trivial solutions with SE + 0 in the limit 
O + 0 for parameter sets that give rise to Regime I1 
solutions when O = 0. The Minor branch solutions are 
again expected to be unstable, with the Major branch 
and trivial solutions being the long-time attractors. 

In Figure 12 we examine the effects of O on 
the travelling wavelsteady-state bifurcation curves in 
D ,  = Q ,  and X parameter space. This continues a 
study in Ward and King (1999b), the parameter set 
being given by (7), except for D17 = Q17 = 400, P = 
0.9 and p = 0.25. The increase in the cell shedding 
flux that results from increasing O can be seen to lead 
to a decrease in the number of cells in the spheroid, 
thus shrinking the travelling wave regions. The non- 
monotonicity of the curves is due to the shifting of 
the dominant cellular material loss mechanism from 
consumption to leakage on increasing D ,  = Q , .  

5 DISCUSSION 

The process of cell shedding has largely been ignored 
in multicell spheroid growth models, despite the 
weight of evidence that suggests it is an impor- 
tant factor in avascular growth, at least irz vitro 
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FIGURE 11 Saturation size (solid and dashed curve) and necrotic core radius R, (smaller dashed curve) against 0, for a parameter 
set of Regime I1 when O = 0. The fully necrotic core solutions lie on the solid line for O between 0 and the o. 

FIGURE 12 The effects of the cell shedding factor 0 on the travelling waveJsteady-state bifurcation in D,, = Qp and X space 

(Landry et al., 1981; Kohno ct al., 1986; Sasaki rt  al., 
1984; Weiss, 1978). In this paper the model of Ward 
and King (1999b) has been adapted to include a 
cell shedding term so that its effect can be inves- 
tigated. Numerical results shown in Section 3 and 
4 demonstrate that the cell shedding process has 
significant quantitative effects, even for fairly weak 
shedding rates (see, for example, Figures 2 and 5) .  

Furthermore, as shown in Figure 3, the qualitative 
behaviour may be affected too, the addition of cell 
shedding leading to growth saturation (as opposed to 
continual growth) for sufficiently high cell shedding 
rates (i.e. sufficiently large (3). The model contin- 
ues to mimic successfully experimentally observed 
growth behaviour and tumour heterogeneity when cell 
shedding is included. 
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The choice of cell shedding rate function 
K ( c ,  n , y , h )  = Ok,,, ( c )  means that the mechanism can 
be modelled with the addition of only one extra 
parameter 0: values for which can be obtained from 
published experimental data (indeed, it is one of the 
quantities for which good experimental information 
is available, making an assessment of its effects on 
the behaviour predicted by the model particularly 
worthwhile). The addition of the cell shedding term 
gives rise to two non-trivial branches of long time 
solutions, which vary smoothly with O to form two 
curves we have termed Major and Minor branches. 
In our earlier models, the existence of two non- 
trivial long time solutions was only observed in rather 
restricted parameter regimes. Beyond a critical value 
O,, where the Major and Minor branches meet, there 
are no non-trivial solutions due to the cell shedding 
rate being too strong, forcing spheroid extinction; 
cell lines with O > O, will therefore be unable to 
form spheroids. The effect of strengthening the cell 
shedding rate on the (stable) Major Branch solutions 
is to decrease the travelling wave speed or saturation 
size of the spheroid and to expand the parameter 
regimes in which saturation occurs. Along the Minor 
branch, consisting only of steady-states solutions, the 
saturation size increases with O; these solutions are 
expected to be unstable and this behaviour reflects 
the need on increasing O for a larger initial spheroid 
size in order for the spheroid to be viable. The 
expected instability of the Minor branch solutions is 
confirmed by the stability analysis in Appendix B and 
is illustrated in Figure 4. We thus expect the long 
time solutions on the Major branch to be the physical 
ones. We note that in regions in which only trivial 
long time solutions exist the cell shedding rate is 
too strong for the cells to grow as spheroid cultures. 
Analysis of the long time equations demonstrates 
that, except in a physically implausible case of zero 
dead cell volume (6 = O), the process of cell shedding 
and mitotic inhibition together cannot cause growth 
saturation; i.e. some non-negligible level of leakage 
or consutnption of cellular material is required for 
saturation to be achieved. In summary, the analysis 
demonstrates that necessary conditions for growth 
saturation to occur are either: 

i )  Leakage of cellular material and/or inhibitor 

(i.e. Q,,, Qh > O), 
or ii) Cellular material consumption and cell shed- 

ding (i.e. A, O > 0). 

We note from i i )  that, in contrast to our previous 
models, steady-state solutions do exist over a range 
of parameters in the case when the cellular material 
is prevented from leaking out. We note further that, 
since K(c, n ,  p ,  h )  must be positive to be biologically 
appropriate, conditions i )  and ii) both hold for any 
suitable choice of K(c, n , p ,  I z ) .  

As already indicated, for experiments in which 
the cell shedding rate can be determined, the value 
of O can readily be calculated using Equation (6), 
the values of n( ,S , t ) ,  i,,, and ro being compara- 
tively easy to determine experimentally. An interest- 
ing experiment would be to study spheroid growth in 
a medium containing some chemical that promotes 
cell shedding, so features such as growth rate and 
saturation size can be determined as a function of 
the cell shedding rate; an example of such a chemi- 
cal is trypsin, which is often used to dissociate cells 
from spheroids (for example Freyer and Sutherland, 
1980). Comparison of such experiments with the 
model predictions would provide a valuable (quan- 
titative) means to assess the modelling assumptions. 

All the comments above regarding stability 
concern stability to radially symmetric perturbations. 
There is currently (e.g. Greenspan, 1976; Chaplain 
and Sleeman, 1993; Byrne and Chaplain, 1996) 
widespread interest in issues of stability to non-radial 
perturbations (with reference to the formation of 
'hot spots' for example; see Chaplain, 1995). We 
therefore also note that cell shedding is likely to be a 
stabilising influence on such non-radially symmetric 
perturbations, since if a part of the surface grows 
more rapidly than surrounding regions the increase 
in surface area there will lead to a local enhancement 
of cell shedding. 

We have shown that the inclusion of even fairly 
low levels of cell shedding leads to quite significant 
changes in the quantitative behaviour, from which 
we conclude that in order to simulate the growth 
of multicell spheroids accurately the effects of cell 
shedding must be considered. Although it has been 
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shown that cell shedding is an important cell loss 
mechanism in vivo, the situation in vivo is unclear. It 
is anticipated that cells detached from a tumour body 
will to a large extent be prevented from moving far by 
neighbouring normal cells, and will thus remain in the 
locality of the primary tumour and could conceivably 
rejoin it. The number of cells that escape permanently 
via the vasculature or via lymph vessels. thus being 
able to form secondary growths (metastases), is likely 
to be relatively low. The mathematical modelling of 
the behaviour in vivo of tumour cells after they have 
been shed thus presents a significant, and worthwhile, 
challenge. 

Appendix A: Model equations 

A full description of model derivation and non- 
dimensionalisation is given in Ward and King 
(1999b); we give only a brief summary here. 
The main variables in the model are live cell 
density n ,  cellular material concentration p, inhibitor 
concentration h ,  nutrient concentration c, velocity 
1; and the moving boundary marking the tumour 
boundary S ,  the independent variables being time t 
and the radial coordinate r .  The model is presented 
below in non-dimensional form; it is worth noting 
that time is scaled with the maximum rate of 
cell birth and space is scaled with the size of a 
single cell. The dimensionless form for the no void 
condition (1) is 

whereby using p = 1 -- 11 - h the equation for p can 
be decoupled. The modelling is based on a continuum 
of live cells which divide or die at rate depend- 
ing on the concentrations of nutrient, cellular and 
inhibitive material. We assume that the cell-cell con- 
tacts are sufficiently strong that the effects of random 
motion and chemotaxis are negligible. The nutrient is 
assumed to diffuse from the surface and to be con- 
sumed by the living cells, the timescales for these 
processes being significantly shorter than the cell 
birth rate. The inhibitive material is diffusive and 
generated from the products of cell death; it can be 
broken down by the living cells into cellular material. 

The changes in volume by cell birth and death and by 
the diffusion of cellular and inhibitive material causes 
movement within the tumour which is described by a 
velocity field, leading to the convective terms in the 
equations below. Using these assumptions and adopt- 
ing spherical symmetry, the full system of dimension- 
less equations is 

Dl, - D ,  a 
+ 7% ( r )  , (23) 

where the dimensionless diffusion coefficients of 
cellular material Dl, and inhibitor Dh are assumed 
constant. We note the Equation (23) can be derived 
by summing Equations (20), (22) and the equivalent 
equation for p and using (19). The dimensionless 
functions a ,  h ,  k and 1 can be interpreted as 
being the net rates of birth, volume change, 
nutrient consumption and inhibitor production and are 
given by 

where c,, A, 6, p, t+b, 11, &, ,32 and rn, are all constant. 
The mitotic rate k ,  and death rate kd functions 
are described below. In brief, X is dimensionless 
volume of cellular material consumed during mitosis, 
6 is the ratio of dead cell and live cell volun~es, 
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/ I  is the proportion of inhibitive material in a dead 
cell (1 5 S), %? is the rate of inhibitor breakdown 
and v is the gain in volume of cellular material 
during breakdown of the inhibitor (v :i 1 ) .  The 
consumption rate expression k includes both nutrient 
consumption by day-to-day cellular activity (3, > 0) 
and an additional amount consumed during mitosis 
(J2 > 0). The birth rate and death rate expressions 
considered are 

where BIA, c d ,  p ( ,  h,,  0, P are all constants with 
(T 5 1 and P < 1. We note that B/A is the ratio of 
the maximum death rate B to the maximum birth 
rate A. The numerical solutions throughout this paper 
assumed that all the exponents 171, = 1 ;  however, the 
general forms of these fi~nctions have been included 
here so the model proposed is a natural extension to 
the model deccribed in Ward and King (1997). 

The dimensionless initial and boundary condi- 
tions are 

i)c drz dlz 
- a t r = O  - -  - -  - - = I '  = 0, 

dr  d r  a r  

where the mass transfer coefficients Qi, and Q,, and 
the external concentrations of cellular material po and 
inhibitor ho are all assumed constant. 

We note that the model contains a large number 
of dimensionless parameters. with little or no 
experimental data being available for a number of 
these; see Ward and King (1997, 1999a and 1999b) 
for the determination of estimates of parameter 
values. 

Appendix B: Stability of the Minor branch 
solutions for small spheroids 

In this Appendix we seek solutions of the transient 
model in the (non-physical) limit O + O in the 
vicinity of steady-state solutions along the Minor 
branch. The appropriate scaling for S is given 
by (17) and we write S = O""* << 1. Following 
an initial transient, on the timescale t = 0 ( 0 ~ " ~ ) ,  
in which there is negligible growth, the transient 
model equations give at leading order c - 1. h - ho, 
12 - 1 - P O  - ho, 11 - aor-13, where no = a ( l :po .  ho). 
Noting that F(S)  - 4/3s2,  the leading order equation 
for spheroid growth is then 

dS * %I," 
Oos*  - -, -- ry - 

At 3 3 s  'l 

where k,,, = k,, (I ,yo, ho). Defining S c  
= (8kr1,0/u0)'13 - O-" 'S~  for uo > 0, so that S c  
gives the leading order saturation size, it follows that 
to leading order 

where So* = S"(0). We note if we use F ( S )  = 1 
instead, then the appropriate rescaling is S = OS* 
and the appropriate form for S&, is S c  = 6k,,,,,/ao, 
resulting in S *  = S; + (So* - ~;)e"o ' i~;  the discus- 
sion below also applies to this case. 

For a" > 0 (Regime I) the steady-state S, = S c  
is unstable; if S; > SG, so the initial size is greater 
than the steady-state, the spheroid will grow larger 
at an exponential rate (until S becomes of O(1)). By 
contrast, if So* < S& the spheroid becomes extinct at 
time t -- t ~ ,  given by 

for F ( S )  = 1 - 2/S - 4/3s2.  In the case of F ( S )  = 

1 we instead have tc = 3In(S$/(Sc - S,"))/ao. For 
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a0 < 0 (Regime 11) the Minor branch solution tends 
to steady-state of finite size as O -+ 0, and we 
have S& < 0 in (27); the above analysis shows that 
solutions with S," = O(1) die out in finite time, again 
indicating the Minor branch to be unstable. 
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