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Dose response curves show that prolonged drug exposure at a low concentration may 
kill more cells than short exposures at higher drug concentrations, particularly for cell 
cycle phase specific drugs. Applying drugs at low concentrations for prolonged periods, 
however, allows cells with partial resistance to evolve higher levels of resistance through 
stepwise processes such as gene amplification. Models are developed for cell cycle specific 
(CS) and cell cycle nonspecific (CNS) drugs to identify the schedule of drug application 
that balances this tradeoff. 

The models predict that a CS drug may be applied most effectively by splitting the 
cumulative dose into many (>40) fractions applied by long-term chemotherapy, while 
CNS drugs may be better applied in fewer than 10 fractions applied over a shorter term. 
The model suggests that administering each fraction by continuous infusion may be more 
effective than giving the drug as a bolus, whether the drug is CS or CNS. In addition, 
tumors with a low growth fraction or slow rate of cell division are predicted to be 
controlled more easily with CNS drugs, while those with a high proliferative fraction or 
fast cell division rate may respond better to CS drugs. 

Keywords: Continuous infusion, cell cycle phase-specific, chemotherapy, gene amplification, resis- 
tance evolution, drug kinetics 

INTRODUCTION 

For the majority of cancer chemotherapeutics, the 
optimal schedule of administration has not been 
established (Donehower 1990). The reasons that 
the effectiveness of chemotherapy depends on drug 
scheduling are myriad and complex. Two of the 
most obvious are that selection for drug resis- 
tance depends on the timing by which a drug is 
applied and that some drugs display contrasting 

cytotoxicities for cells in different parts of the cell 
cycle. Skipper et al. (1967, 1979) and Bruce et al. 
(1966) showed that the chemotherapy dose response 
curve resulting from a single dose (applied as a 
spike) of cell cycle specific drugs (CS drugs) lev- 
els off with increasing doses (reviewed in vanputten 
1974, Steel 1977). This tapering dose response curve 
contrasts with the log linear increase in cell kill with 
increasing dose for cycle non-specific drugs (CNS 
drugs). The reason for the difference between CS 
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and CNS drugs is that, for CS drugs, only a fraction 
of the total cells are dividing, and thus susceptible, 
at any time. Since drug half life is usually shorter 
than the intermitotic time, the dose falls exponen- 
tially before all of the cells enter mitosis, putting an 
upper limit on the cell kill for a given dose. Evidence 
for this reasoning shows that the leveling of the dose 
response curve occurs after three to four orders of 
magnitude greater cell kill in a cancer with a high 
proliferative fraction compared to a cancer with a 
low proliferative fraction, since more dividing cells 
result in greater drug exposure (Bruce et al. 1966). 

Skipper et a/ .  (1  967) demonstrated that prolong- 
ing drug exposure by continuous infusion (CI) for a 
period of at least half the cell cycle time resulted in 
longer survival of mice with leukemia L1210 than 
administering a spiked dose either once (at a high 
concentration) or daily (at a low concentration). This 
result implies greater tunlor cell kill from CI than 
from a spiked dose, since more dividing cells are 
exposed to the drug at relatively high concentra- 
tions. 

Many studies, however, suggest that drug resis- 
tance evolves sooner at lower dose intensities, and 
conc1,ude that chemotherapy should be given at the 
maximum feasible concentration from the begin- 
ning of treatment (Schimke 1984, Hokanson et al. 
1986, Coldman and Goldie 1987a, Panetta 1998). 
Resistance can often be overcome by dose inten- 
sification (Tsuruo and Fidler 198 1, Griswold et al. 
1987). There is evidence that the steep increase in 
cell kill with increasing dose of most chemothera- 
peutic drugs means there are substantial benefits of 
using higher doses rather than prolonged exposure to 
lower doses (Frei and Canellos 1980, Schimke 1984, 
Rath et ul. 1984, Bezwoda et al. 1995, Hryniuk 
1995). Thus, one faces a Catch 22 of whether to 
apply a given total dose of a CS drug at low concen- 
trations for an extended period, to reach more cells 
as they divide, or to apply the drug as a few, highly 
concentrated dose spikes, to delay the evolution 
of resistance. This double bind situation may not 
plague chemotherapy with CNS drugs: steep dose 
response curves and the potential to delay resistance 
evolution both seem to argue for high-concentration 

dose spikes rather than prolonged CI. Such Catch 22 
situations are not exclusive to cancer chemotherapy; 
debates over resistance evolution and pest control 
resulting from high versus low pesticide or antibi- 
otic doses are found in agricultural and infectious 
disease research as well (Gressel et al. 1996, Gard- 
ner et al. 1998). 

The drug methotrexate (MTX) is a good example 
of the Catch 22 described above. It is a CS drug 
frequently used in cancer chemotherapy that is an 
antimetabolite and a folk acid analogue. One of the 
most common and important mechanisms for the 
evolution of MTX resistance is gene amplfication of 
the dihydrofolate reductase (DHFR) gene by step- 
wise selection (Schimke et a / .  1985). Resistance 
results from sufficient overproduction of DHFR 
to overcome enzyme inhibition. Experimental data 
using MTX illustrate the afforementioned double 
bind of whether to apply the dose by prolonged 
C1 or by rapid injection: on the one hand, dose 
response curves show that increasing the duration 
of drug exposure has a greater cytotoxic effect than 
increasing the dose (Eichholtz and Trott 1980, Keefe 
et al. 1982). These authors conclude that "protracted 
infusions of lower doses of MTX would be equally 
as useful as or more useful than shor-term high- 
dose infusions," (p.1641, Keefe et al. 1982). In other 
experiments, however, cells were exposed either to a 
high concentration of MTX from the start, or were 
exposed to gradually increasing concentrations by 
stepwise dose escalation up to the same high dose 
as in the single-step procedure (Rath et al. 1984). 
Under the step-wise selection protocol, resistance 
evolved to the high dose after only 6.5 days, and the 
DHFR genes had undergone 6-fold amplification. 
Under the single-step selection procedure, resistance 
took 45 days to evolve, and resistant variants did not 
contain amplified DHFR genes. Thus, low drug con- 
centrations facilitated the evolution of resistance. A 
number of clinical studies have shown three- to six- 
fold amplification of DHFR genes in patients resis- 
tant to MTX, with cancers ranging from leukemia 
(Horns et al. 1984, Cardman et al. 1984), to lung 
cancer (Curt et al. 1983) and ovarian cancer (Trent 
et al. 1984). 
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Resistance to a number of other drugs such as the 
vinca alkaloids, vinblastine and vincristine, as well 
as cisplatin and 5-fluorouracil, may occur through 
gene amplification (Rath et al. 1984, Harnevo and 
Agur 1992). The multi-drug-resistance (MDR) gene, 
one of the main problems in chemotherapy, also 
evolves by gene amplification (Schoenlein 1993, 
Kellen 1994, Bodey et al. 1997). Hence, the trade- 
off between prolonged, low-concentration CI to 
increase cell kill and short, high concentration bolus 
injections to preclude resistance evolution is likely 
to apply for other drugs in addition to MTX. More- 
over, the logic may be relevant to antibiotic and 
other therapy as well as to cancer chemotherapy; 
Escherichia coli and Leishmania tropica have both 
been shown to evolve drug resistance by gene ampli- 
fication (Schimke 1984), and insecticide resistance 
may also evolve through gene amplification (Devon- 
shire and Field 1991). 

This paper presents a model of tumor growth 
and resistance evolution for different schedules of 
treatment using either a CS or a CNS drug. The 
cumulative amount of drug administered may be 
split into a number of fractions separated by two- 
week intervals, and each fraction may be given by 
CI of short or long duration. Chemotherapy is con- 
sidered long term if the dose is split into many 
fractions, and short term if it is divided into rel- 
atively few fractions. The model is used to mathe- 
matically assess the hypothesis that CS drugs reduce 
tumors to smaller sizes with a specified cumula- 
tive drug dose if that dose is given by long term 
chemotherapy applied by CI, while CNS drugs min- 
imize tumor size if they are applied by shorter term 
chemotherapy administered by high-concentration 
bolus. Using a system of differential equations, the 
model describes a population of tumor cells in which 
mutation and selection result in clonally hetero- 
geneous levels of drug resistance. Resistance may 
evolve in a stepwise fashion as cells accumulate 
many mutations of srnall effect, or as a single muta- 
tion of large effect occurring in one cell division. 
Cells may transfer between a resting (GO) or a 
proliferating state. Only a fraction of cells in the 
proliferating state are vulnerable to the CS drug at 

any given time, corresponding to the observation 
that many drugs can kill cells in one but not all 
phases of mitosis. The CNS drug, in contrast, can 
kill cells in the resting and the proliferating states. 
The model calculates the duration of CI and the 
number of dose fractions that minimize tumor size. 
The results depend not only on whether the drug is 
phase-specific or phase-nonspecific, but also on the 
dose applied, the fraction of proliferating cells, and 
the cell cycle time of proliferating cells. 

For clarity in interpreting the results, certain sim- 
plifying assumptions are made. First, dynamics are 
deterministic so that the mean behavior of the popu- 
lation is predicted but fluctuations around the mean 
are not. Second, only a single drug is applied to 
any given tumor, although in another analysis the 
application of multiple drugs simultaneously will be 
examined (Gardner, in prep.). In addition, host tox- 
icity is not modeled explicitly, but is assumed to 
depend on the area under the drug concentration x 
time curve (AUC), as is the case for many can- 
cer chemotherapeutics (Evans 1988, Rushing et al. 
1994, Sasaki et al. 1995, Canal et a / .  1996, Joel 
et al. 1996). Therefore, as shown elsewhere (Gard- 
ner, submitted), the AUC depends on the total dose 
administered but not on the schedule by which it 
is given, assuming the drug concentration decays 
exponentially with a half life that does not change if 
it is given by different schedules. While the drug half 
life in the host may not be the same for schedules 
as different as a highly concentrated dose spike ver- 
sus a very low-concentration, prolonged CI (Sobrero 
et al. 1997), it is likely to be similar for less dramatic 
differences in scheduling (Cornandone et al. 1998). 
Thus, for a given dose that is known not to be overly 
toxic, the model predicts the schedule to minimize 
tumor size and/or maximize the time to host death. 
It is assumed that the total dose and drug concen- 
tration at any point in time is that which reaches 
the tissue or organ containing the tumor. Finally, 
there is no spatial component to the model, and it is 
assumed that the drug is evenly distributed through- 
out the tumor. Although for a large solid tumor 
with poor blood perfusion this is an inappropriate 
assumption, it may be a reasonable assumption for 
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a blood tumor like leukemia, a highly vascularized 
solid tumor, or for cancer in which there are many, 
small micrometastases. 

The questions of how resistance evolution inter- 
acts with factors such as the rate of cell proliferation 
and the application schedule, and how this inter- 
action differs for drugs with contrasting effects on 
cell kinetics, is what is attempted here. While a 
number of excellent chemotherapy resistance mod- 
els have been developed, the questions addressed 
by the model proposed here differ, as do some of 
the assumptions, from those of other studies. Most 
theoretical studies model one or the other of CS 
drugs (Hokinson ef al. 1986, Birkhead et al. 1987) 
or CNS drugs (Coldman and Goldie 1987a, Harnevo 
and Agur 1991, Murray 1995, Panetta 1998), but do 
not juxtapose how the two kinetically disparate types 
of drugs select for resistance. One study (Duk and 
Nickolls 1987) does so, but assumes that all mor- 
tality is drug-induced. This assumption affects the 
rate of evolution of resistance (Coldman and Goldie 
1987b) and is at odds with empirical findings of high 
rates of natural apoptosis and cell turnover (Steel 
1977, Meyer 1989, Watson 1991, Kerbel 1995). 
Moreover, most resistance models generally assume 
that drugs are applied as a series of dose spikes, 
but do not compare bolus versus CI therapy (but 
see Murray 1995, Duk and Nickolls 1987), or short 
duration versus long duration C1. Finally, in con- 
trast to models which assume that cells are either 
fully susceptible or fully resistant (but see Harnevo 
and Agur 1991, Michelson 1993 for exceptions), 
the model presented here incorporates the possibility 
that drug dose affects both the fraction of suscepti- 
ble cells that are killed as well as drug susceptibility 
itself, since dose response curves for different clones 
within a tumor depend on the level of resistance 
possessed by that clonal lineage. 

Although the model developed here clearly has 
shortcomings, such as the simplifying assumptions 
described above, it is intended to be a logical tool 
to help make sense of the conflicting arguments 
and empirical results regarding bolus versus CI 
scheduling of a given, cumulative drug dose, like 
the debate discussed above for MTX. Specifically, 

this model is aimed to shed light on the following 
questions: Is it better to administer a drug as many 
or as a few fractions, and is it better to give the 
drug rapidly or by prolonged CI at each fraction? 
Does the answer depend on whether the drug is 
CS or CNS? In addition, these analyses address the 
question of whether a CS or a CNS drug may be 
more effective against a tumor with a fast versus 
a slow cell cycle time of proliferating cells, or a 
high versus a low proliferative fraction. It is hoped 
that experimental tests will be performed to assess 
the validity of the predictions from this model for 
drugs in which resistance may evolve in a stepwise 
manner. 

METHODS: THE MODEL 

In this section, equations are presented to model 
tumor growth and resistance evolution in the pres- 
ence of a CS or CNS drug. The tumor is subdivided 
into proliferating and resting cells in the GO state 
(Figure 1). Cells may transfer between these two 
states. As modeled elsewhere (Birkhead et al. 1987), 
cells in the proliferating compartment divide expo- 
nentially at a rate b. Cells in the GO state may die 
by necrosis at a rate v, and those in the proliferat- 
ing state may die by apoptosis at a rate a .  The rate 
of apoptotic cell death in the absence of the drug 
is assumed to be 85% of the rate of cell division 
of proliferating cells (a = 0.85b), based on empiri- 
cal estimates (Meyer 1989, Watson 1991). CS drugs 
generally can kill cells only while they are in a 
specific phase of the proliferative state, so only a 
fraction f of proliferating cells are vulnerable to the 
drug. A CNS drug can kill cells in both the prolif- 
erating and the resting states. Cell kill is assumed 
to be negative exponential with drug dose (Skipper 
et al. 1967, Steel 1977). 

Within both the proliferating and the resting 
states, a tumor is composed of a number of 
clonal cell lines, each with a level of resistance 
r (Figure 2). The probability of a small mutation 
that increases the level of resistance an incremental 
amount is assumed to be ps = lo-', based on 
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Dynamics of Tumor Growth 
and Drug Effects 

Resting GO Proliferating 

Invulnerable - 
FIGURE I Diagram of the model. Cells in the proliferating state divide at a rate b. die via apoptosis at a rate a ,  and may transfer 
to the resting state at a rate go. Cells in the resting state die via necrosis at a rate r .  or transfer back to the proliferating state at a rate 
nz. CNS drugs can kill cells in either the reqting or the proliferating state, whilc CS drugs can kill only a fraction f of proliferating - 
cell? at any one time. 

Resistant 

'\, t P' 
' @ Susceptible 

FIGURE 2 Diagram of resistance evolution. Cells may acquire 
a small mutation increasing the level r of resistance by one, 
with probability p,. or they may sustain a large mutation that 
increases r up to the maximum resistance in one cell generation. 
with probability /I[.. 

empirical estimates of the rate of gene amplification 
(Schimke 1984). The probability of a large mutation 
p~ that confers full resistance to a drug in a single 
cell generation is assumed to be either lop6 or 
1 0 ~ " .  The greater probability lop6 is chosen based 
on estimates of the average mutation rate per protein 
observed in human systems. The lower value lop" 
was selected based on estimates of the frequency of 
single base-pair changes in human DNA, and is an 
appropriate choice for the value of p~ if resistance 

requires specific mutations at particular locations 
in the DNA, as seems to be the case (Goldie and 
Coldman 1998). 

Resistance r is an integer that ranges from zero 
for susceptible cells to r,,,, = 3 for fully resistant 
cells. The value of r - r,,, represents the slope of 
the log-linear dose response curve of cell survival 
for cells in the susceptible part of the cell cycle, 
so that if r = r,,, the cell does not suffer reduced 
survival as a result of drug exposure. Four states 
for r seemed like a reasonable balance between a 
two-state system if resistance were all-or-nothing 
(i.e. single gene of large effect, not gene amplifi- 
cation) and a much larger system, for example, with 
ten states, in which nine gene amplifying mutations 
would be necessary for complete resistance. Such a 
large number of steps would require many cell divi- 
sions before substantial levels of resistance evolved 
by gene amplification, resulting in model predictions 
that one would always observe resistant tumors to 
arise by mutations of large effect (pL) rather than by 
gene amplification (ps). In fact, with p~ = lo-'' and 
r,,,,, = 10 the model makes the unrealistic prediction 
that moderate levels of resistance will not evolve 
before the tumor is detected at lo9 cells, and, there- 
fore, that cure may be easily achieved. In summary, 
r,,, = 3 seems to be a reasonable choice. 
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Before Chemotherapy Begins 

The number of cells at time t in state s and with 
resistance r is given by N ( r .  s, t ) ,  where s = GO if 
cells are in the resting state and s = P if cells are in 
the proliferating state. In the absence of the drug, the 
rate of change of the number of cells in the resting 
state is 

rlN(r, GO, t )  

rlr 
= -mN(r. GO, t )  + goN(r ,  P, t )  

for I .  = 0, 1 ,2 .3 .  where nz is the rate of transition 
from the resting to the proliferating state, go is the 
rate of transition from the proliferating to the resting 
state, and u is the rate of necrosis. The rate of 
change in the number of proliferating cells for which 
r = 0 , 1 , 2 i s  

where the first term on the right represents cells 
which divide and do not incur any mutations that 
increase resistance, the second term represents cells 
which divide and undergo a small mutation that 
increases r by one, the third term represents apop- 
totic cell death, the fourth term describes cells that 
enter the resting state, and the fifth term indicates 
cells that reenter the proliferating from the resting 
state. If r = r,,, = 3 then the change in the number 
of proliferating cells is 

The third, summation term in Equation 3 that is 
additional to the terms described Equation 2 rep- 
resents divisions in which large mutations generate 
fully resistant cells. In the absence of the drug, resis- 
tance can evolve, although it confers no selective 
advantage. 

Chemotherapy with a CS Drug 

Once the tumor is detected at t = td,,,,, when it 
reaches lo9 cells (approximately a cubic centime- 
ter), chemotherapy begins. The drug concentration 
at time t is given by y ( t ) .  The probability that a cell 
in the proliferating state with resistance r survives 
a CS drug at concentration x is 

Surv(r, f ' ,  .u) = 1 -~ f '  + t  exp[-x(r,,,,, - r ) ]  (4) 

where 1 - f' is the fraction of cells that are invul- 
nerable to the drug because of their position in the 
mitotic cycle, and f exp[-x(rm,, - r ) ]  is the prob- 
ability of survival of vulnerable cells exposed to a 
concentration of x times the vulnerable fraction f .  
The log survival of vulnerable cells versus drug con- 
centration is a line, as observed empirically (Skipper 
et al. 1967), with slope r - r,,,. 

Thus, for CS drugs with r = 0,1,2 

+ mN(r, GO, t )  ( 5 )  

The first term on the right models cells which divide, 
survive division, and do not undergo resistant muta- 
tions. The second term represents cells which divide, 
survive division, and do undergo a small resistant 
mutation. Drug-induced kill and cell division are 
linked because they always appear as the product 
bSun~( r ,  f ,y(t)). Thus, surviving the CS drug is 
more important if b is large than if b is small. As 
before, the last three terms describe apoptosis and 
transitions between the proliferating and the resting 
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states. If r = r,n,x = 3 there is an additional term for 
the probability of large resistance mutations, so 

dN (I.,,, . P . t ) 
dt = bN(r,,x, P ,  t)  

Treatment with a CS drug does not affect the cells 
in GO, so the rate of change of the resting subpop- 
ulation still follows Equation 1. The Equations 5-6 
are similar to the equations presented by Norton 
and Simon (1977, 1986) for tumor growth in the 
presence of a CS drug. Their model, however, did 
not include the evolution of resistance, cells in the 
resting state GO, and cells in the proliferating state 
which may nonetheless be invulnerable to the drug 
(e.g. cells in G1 phase are invulnerable to an S-phase 
specific drug such as MTX). 

Chemotherapy with a CNS Drug 

For CNS drugs, drug-induced mortality affects all 
cells regardless of their mitotic status. Thus, the 
probability that a cell in either GO or P survives 
a CNS drug of concentration x is Suw ( r ,  f ,  x), 
with f = 1, and kill occurs independently of the rate 
of cell proliferation. So the rate of change in the 
number of tumor cells for r = 0 ,1 ,  2 is 

- aN(c,  t)  - goN(r,  P ,  t )  

+ mN (r .  GO, t)  (7) 

and for r = r,,,,, 

+ mN(rmaX, GO, t )  (8) 

In contrast to Equations 5-6 for the CS drug, 
Equations 7-8 for the CNS drug include drug- 
induced cell lull independently of cell division. The 
CNS drug may also kill cells in GO. so (for r = 

0.1.2 ,3)  

dN(v, GO. t )  - - - 
dt 

n ~ N ( r ,  GO, t ) +  goN(r .P,  t )  

- vN(r,  GO, t)  

- N(r .  GO, r )  

Solutions were computed numerically using 
fourth-order Runge-Kutta, beginning with a suscep- 
tible tumor of 100 cells (N (0, P : 0) = 100). If the 
number of cells in a subpopulation was less than one 
then the size of that subpopulation was set to zero. 

In the results presented, it was assumed that nz = 
0.05, 7: = 0.01, go = 0.1, and b = 0.5 unless specified 
otherwise. These values produced results that were 
similar to empirical data: a growth fraction (fraction 
of proliferating cells) of 52% at the time of tumor 
detection, and a cell cycle time of 33 hours (Steel 
1977). Sensitivity analyses were used to examine 
the effects of the scheduling of chemotherapy on 
the minimum tumor size for tumors with transition 
rates 100% higher or 90% lower than the baseline 
values specified above (except for b, which took on 
a minimum value of 0.2, since lower values did not 
result in tumor growth). 

The above assumptions about the transition rates 
in tumors describe a number of situations in 
which tumor growth is exponential, at least over 
an observed range (e.g. Steel, 1977, pp. 42-43). 
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However, in some situations a saturating curve such 
as Gompertzian growth provides a better fit to data 
(Marusic et ul. 1994). Gyllenburg and Web (1989) 
showed that Gompertzian growth may occur if the 
transition rate from the proliferating to the resting 
state is logarithmic with total tumor size. Thus, we 
examined model predictions for a tumor in which 
the growth rate decreases with tumor size. The 
constant transition rates nz, v, and go were replaced 
with functions that depended on tumor size N :  m = 
0.23 - 0.006 Iog(N), = 0.0003 log(N), and go = 
0.01 log(N). chosen by trial and error to predict 
a reasonable growth fraction (30%) and ratio of 
necrotic cells to (GO + P) cells (15%) at the time 
the tumor is detected (Steel, 1977, Gasparini et al. 
1991). The predictions about treatment schedules 
using the size-dependent transition rates, resulting 
in saturating tumor growth, were qualitatively and 
quantitatively similar to predictions for the case 
of exponential tumor growth, modeled using the 
constant transition probabilities. In the interest of 
space, only results assuming exponential tumor 
growth are presented. This is a common simplifying 
assumption in models of cancer growth and 
resistance evolution (Birkhead et al. 1987, Duc and 
Nickolls 1987, Murray 1995, Panetta 1998). 

Drug Concentration 

It is assumed that one applies a total (cumulative) 
drug dose of D mg n r 2 ,  split into z fractions, each 
given at an interval of q ,  which is assumed to be 
14 days. Each fraction is given by infusion for a 
duration of u days at a rate of D / ( z u )  mg mp2 day. 
Then, for t 5 q the drug concentration in the body 
changes at the rate of 

dCr(t 5 q)) - D/(zu)-Xy(t) f o r t s u  
dt - { -Ay(t) for t > u 

Integrating and setting y (0) = 0 yields the drug con- 
centration at time t 5 q 

For the z th fraction, y ( t  > zq) was set equal to y ( t  - 
[z - 119) calculated with Equations 10- 1 1, so that 
drug concentration during each fraction followed the 
same pattern as in the first fraction. 

RESULTS 

When CS drug delivery is too fast (Figure 3A), not 
all the cells divide during the period of infusion, 
and thus come cells escape drug exposure and sur- 
vive despite that they are genetically susceptible to 
the drug (Figure 3B). The drug concentration is ade- 
quately high for a sufficiently long time, however, to 
eliminate the small subpopulation of partially resis- 
tant cells. If the probability of a large mutation for 
resistance is low (pL = 10-lo), then highly resistant 
cells (with r = 3) are not predicted to appear until 
the burst of population growth that occurs when the 
drug application is finished. If another dose of the 
drug is applied again later, it will have little effect 
on the growth of the tumor, already enriched with 
resistant cells. Alternatively, if large mutations are 
more probable ( p L  = lo-') then fully resistant cells 
are predicted to evolve to a fairly high frequency 
of one in every 10,000 cells before the tumor is 
detected. 

At the other extreme, the same cumulative amount 
of a CS drug as used in Figure 3B may be applied 
at too slow a rate if CI is too prolonged (Figure 3C). 
In this case. although all susceptible cells are killed, 
many of the partially resistant cells survive. Again, 
if LLL = 10 then highly resistant cells reach high 
levels early in treatment. If p~ = lop1() they appear 
after 2,000 days of tumor growth, later than if the 
drug is given too fast as in Figure 3B since the tumor 
contains fewer cells, and thus fewer opportunities, 
for mutations conferring high resistance. 

Finally, when the CS drug is infused at a rate 
intermediate between that pictured in Figures 3B-C, 
calculations indicate that the tumor may be killed 
before clones with substantial levels of resistance 
appear, provided p~ = lop1' (Figure 3D). The total 
time of treatment is long; since 52.5% of cells are 
in the GO state when treatment commences, to reach 



SCHEDULING CHEMOTHERAPY 

A 

Time 

Time 

r=3, p =10 h, r =O 

r=2 

500 700 900 1100 1300 
Time 

FIGURE 3 A) Cumulative drug dose versus time for parts B) ,  C), and D), with curvcs labeled as such. B-D) The number of cells 
in each susceptible ( r  = O), partially (r = 1 or 2). or fully resistant ( r  = 3) wbpopulation in the tumor versus time in days, when a 
CS drug is applied. Tumor growth starts at r = 0 days, and the tumor is detected after approximately 500 days of growth. In B) the 
CS drug is applied too quickly, and the susceptible population survives chemotherapy (u = 14 days, z = 30 fractions. i.e. continuous 
infusion for 420 days). In C) drug application is too slow. and partially resistant cells survive (u = 14 days. z = 90 fractions. i.e. 
continuous infusion for 1260 days). In D) the rate of drug application and the duration of cheniotherapy is intermediate between those 
in parts B and C. and cure is predicted if p~ is small (u = 14 days. z = 60 fractions). The dashed line represents the subpopulation 
with r  = 3 if p~ = 10-1°, and the dotted line if ALL = 10 6 .  Cure is predicted only if p~ = 10 "', since if p~ = 1 0 ~ ~ u l l y  resistant 
cells make up a considerable proportion of the tumor even before chemotherapy is started. D = 2000 mg m '. 

all cells with the CS drug requires many months for 
them to enter the proliferating state. 

Calculations using a CNS drug generate similar 
results to those for the CS drug (Figure 4). The 
drug may be given too quickly since it takes some 
time to reduce the tumor down to one cell, and 
during that time a sufficiently high dose must be 
maintained for mortality to overcompensate division 
(Figure 4B). As with the CS drug, administering 
the drug too slowly allows partially resistant cells 
to survive (Figure 4C). Some intermediate rate of 
giving the drug is predicted to be most likely to 
cure the tumor (Figure 4D). 

Comparing Figures 3 and 4 suggest that a CNS 
drug may be given at a higher concentration for a 
shorter duration than a CS drug. One might increase 
the duration of drug exposure to a given, cumula- 
tive amount of drug either by prolonging CI at each 

fraction, or by dividing the dose into more frac- 
tions. Plotting the contours of the predicted time to 
patient death versus the number of fractions and the 
duration of CI at each fraction shows the schedule 
combinations likely to maximize survival time. For a 
CS drug, schedule combinations with 60- 100 frac- 
tions each given by CI for 7- 14 days are predicted 
to maximize the time to patient death (Figure 5A). 
For a CNS drug, dividing the total dose into only 
4-8 fractions is predicted to lead to the longest sur- 
vival of the host. As with a CS drug, prolonged 
CI for 10-14 days at each fraction is predicted 
to give the best prognosis for cure. With a CNS 
drug, dividing the dose into too few fractions is 
predicted to be more detrimental to the patient than 
dividing the dose into too many fractions. Contour 
plots of the nadir of tumor size show a similar pat- 
tern, with tumor cure predicted at some intermediate 
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FIGURE 4 As in Figure 3, using a CNS drug. A)  Cumulative drug dose versus time. In B) the drug is given too quickly (u  = 8 
days, ; = 2 fractions). In C), the drug is given too slowly ( u  = 6 days. z = 15 fractions). In D) the schedule is just right ( u  = 10 day$, 
z = 5 fractions). D = 60 mg m '. 

number of fractions and prolonged C1 at each frac- size than in a tumor with the baseline values of go 

tion (Figure 5C-D). and b. 
Results of sensitivity analyses varying the transi- 

tion rates m or 2) as specified in the methods predict 
that these transition rates have only minor effects 
on the schedule combinations (the number of frac- 
tions and the duration of CI) that minimize tumor 
size. The actual value of the minimum tumor size, 
however, depends on the values of the tramition 
rates, as these rates affect the fraction of prolifer- 
ating cells and the level of de novo resistance in 
the tumor. For example, increasing m or v results 
in a higher growth fraction, the effect of which 
will be discussed shortly. If the transition rate go 
is twice that of the baseline value or b is a low 
0.2, however, the model leads to predictions that 
the tumor may be cured with a CNS drug if it 
is applied in at least 6 fractions each given for a 
duration of at least 6 days (Figure 6). Using a CS 

Cumulative Dose 

Contour plots of the minimum tumor size versus the 
cumulative dose D and the duration of CI (applied 
continuously with no breaks between fractions) sug- 
gest that the duration of chemotherapy with a CS 
drug (Figure 7A) may have a greater impact on 
minimizing tumor size than the cumulative dose; 
when chemotherapy continues for only 150 days, 
any doses above 100 mg m-2 are not predicted to 
reduce tumor size by more than one order of magni- 
tude. Although this is a clinically substantial reduc- 
tion, it comes nowhere close to cure. High cumu- 
lative doses applied over 700 days, however, are 
predicted to reduce tumor size down to less than 
10 cells. 

drug on tumors with high go or low h is not pre- The cumulative dose is predicted to be more 
dicted to achieve cure, and the drug must be split important for a CNS drug than for a CS drug, 
into more fractions to obtain the minimum tumor provided chemotherapy is given for at least 40 days 
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FIGURE 5 A-B) Contour plots of the time to host death from tumor inception versus the number of fractions ; into which the 
cumulative dose is divided and the duration of CI at each fraction. Parts C) and D) plot the contours of the loglo (minimum tumor 
size + I). Contour lines are plotted for every one loglo of tumor size or 100 days of host survival. A) and C) illustrate results using 
a CS drug, and B) and D) represent results from applying a CNS drug. Long durations of CI at each fraction are predicted to result 
in the longest host survival and minimum tumor size. 60-80 fractions are predicted to result in tumor cure for the CS drug. while 
4-8 fractions are predicted to eradicate the tumor using a CNS drug. Parameter values used here and in the following figures unless 
specified otherwise are p~ = 1 0  D = 2000 mg m-' for the CS drug. and D = 60 mg m-* for the CNS drug. 

Duration of CI at 
Each Fraction (Days) 

FIGURE 6 The contour? of the loglo (minimum tumor size+l) 
as in Figure 5D) using a CNS drug applied to a tumor with 
go = 0.2. A plot of the same result for a tumor with b = 0.2 
looks similar. 

(Figure 7B). Similar patterns occur for the time to 
host death (Figure 7C,D). 

Cell Cycle Time and Proliferative Fraction 

The cell division rate b (b=log(2)ltime of 
cell cycle) influences the predicted outcome of 
chemotherapy differently for a CNS than for a CS 
drug (Figure 8A,B). The model calculates that a 
CNS drug may eradicate a tumor if b < 0.5, that 
is, the cell cycle takes at least 33 hours to complete. 
In comparison, if the cell division rate is slower 
than in typical human tumors (b < 0.3, i.e., the 
cell cycle takes 2-4 days to complete, Steel 1977) 
then the model predicts that the tumor may not 
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FIGURE 7 Contours of A) and B) the log,,, (minimum tumor size + I). and C )  and D) host lifespan following tumor inception 
versus the duration of chemotherapy (in dayb) and the cumulative dose ll mg m ?. Chemotherapy is give by continuous infusion 
for the entire duration of treatment. In A )  and C) the C S  drug is used, and in B) and D) the C N S  drug is applied. The duration 
of chemotherapy is more important in the success of treatment with a C S  drug, given that a mmimim threshold dose is applied. In 
contrast, the cumulative dose plays a larger role for treatment with a C N S  drug, given that a minimum threshold duration of drug 
exposure is achieved. 

be cured using a CS drug, but the time to host 
death will be long (about 10 years). For moderate 
cell division rates in which 0.4 5 b  5 0.5 (the cell 
cycle takes 33-42 hours), results indicate that it 
may be possible to cure the tumor using a CS drug 
given an adequate dose and duration of exposure. 
Calculations suggest that when the cell division rate 
is higher than in typical human tumors (b  2 0.6, 
cell cycle time is less than 28 hours, Steel 1977), 
neither a CS nor a CNS drug may be successful 
in eradicating the tumor, although a CS drug may 
prolong the host's lifespan up to 2 months longer 
than could the CNS drug (Figure 8C). In summary, 
a CNS drug is predicted to be more successful at 
treating tumors with slow rates of cell division, and 
may result in cure, while a CS drug is predicted to 

be more successful in extending the host's lifespan 
for tumors with a fast rate of cell division. 

The fraction of proliferating cells has a similar 
effect on the minimum tumor size and the time to 
host death to that of the cell cycle time. As the 
transition rate go to the resting state increases, the 
fraction of proliferating cells declines (Figure 9A). 
CS drugs (Figure 9B) are predicted to be able to 
eradicate tumors with higher proliferative (growth) 
fractions than are CNS drugs (i.e., for go = 0.1), 
while CNS drugs are predicted to be more effective 
again\t tumors with a low proliferative fraction 
(go > 0.18, Figure 9C). When the growth fraction 
is very low, less than 20%, highly resistant cells are 
predicted to appear through gene amplification (ps) 
even before chemotherapy begins, and even when 
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FIGURE 8 Minimum tumor size (solid line, left y-axis) and 
the time (days) to host death from tumor inception (dashed line. 
right y-axis) versus the cell division rate h of proliferating cells 
for A) a CS drug and B) a CNS drug. Calculations indicate that 
CNS drug? may eliminate tumors with low to intermediate cell 
division rates and CS drugs may do so for a narrow range of 
intermediate cell division rates. C) For high cell division rates. 
a CS drug (dashed line) is predicted to prolong host lifespan up 
to 2 months longer than a CNS drug (solid line). 

p~ is lo-". This is not the case for lower values 
of g o ,  and is the reason that cure is predicted to 
fail for tumors with very low growth fractions when 
they are treated with a CNS drug. The evolution of 

E 0.1 I I I I I I I 
CI 0.05 0.1 0.1.5 0.2 0.25 0.3 

Transition rate go from Proliferating to GO state 

- log ,o (N +1) ---- Time to death 

FIGURE 9 A) The fraction of proliferating cells at the time 
the tumor is detected versus the transition rate go from the 
proliferating to the resting state. B) and C) The minimum tumor 
size and time to host death. as in Figure 8A and B, versus go for 
B) CS and C) CNS drugs. CS drugs are predicted to achieve cure 
for slightly lower values of go (go = 0.1) than are CNS drugs. 
but the time to host death for lower values of go are predicted 
to be the same whether the drug is CS or CNS. CNS drugs are 
predicted to result in a better prognosis when go is above 0.18. 

high levels of resistance through gene amplification 
in tumors with low growth fractions occurs since 
the few proliferating cells must go through many 
rounds of cell division before the tumor reaches a 
detectable size. This provides more opportunities for 
proliferating cells to accumulate stepwise mutations 
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than in tumors with a higher growth fraction. In 
summary, tumors with either very low or very high 
proliferative fractions are not predicted to be cured 
by either CS or CNS drugs. Results suggest that 
only tumors with moderate proliferative fractions, 
between 25-45% of cells, may be curable with a 
single CS or CNS drug. 

DISCUSSION AND CONCLUSIONS 

The models lead to predictions that a CS drug may 
be applied most effectively by long-term chemother- 
apy, splitting the cumulative dose into at least 40 
fractions in order to expose all cells to the drug as 
they move from the resting to the proliferating state, 
but not more than 80 fractions so as to maintain 
sufficient drug concentrations to kill sightly resis- 
tant cells. In contrast, CNS drugs are predicted to 
be more effectively applied in five to ten fractions 
applied over a shorter term. The model suggests that 
administering each fraction by continuous infusion 
for more than 11 days may be more effective than 
giving the drug as a bolus, for both CS and CNS 
drugs. The reasoning is that maintaining moderately 
high doses for more than a week prevents tumor 
regrowth between fractions, particularly of partially 
resistant cells. It takes some time for cell death to 
overwhelm proliferation of surviving cells, and dur- 
ing that time a sufficiently high drug concentration 
to cause cell death must be maintained by contin- 
uous infusion. Finally, tumors with a low growth 
fraction or slow rate of cell division are predicted 
to be controlled more easily with CNS drugs since 
they can kill cells which are not dividing. In con- 
trast, tumors with a high proliferative fraction or 
fast cell division rate may respond better to CS 
drugs, since CS drugs preferentially kill the divid- 
ing cells which might otherwise give rise to resistant 
offspring. 

The model predicts that prolonged exposure to 
a CS drug may be more important in extending 
patient life and minimizing tumor size than using 
high doses. Dividing the total dose into a number of 
fractions and applying each fraction by continuous 

infusion for many days is predicted to yield the 
most promising results for the patient, although it 
may be possible to divide the dose into so many 
fractions of low concentration that resistance evo- 
lution is facilitated. A number of in vivo stud- 
ies have found improved success of CI relative to 
bolus treatment using CS drugs (Toussaint et al. 
1994, Leichman et ul. 1995, Fulton rt  al. 1996, Wol- 
mark et al. 1998). The theoretical predictions about 
dose response of a CS drug may help explain why 
Mackean et al. (1998) found no significant differ- 
ence in outcome between low and high dose 5- 
fluorouracil applied for the same duration at each 
dose level. 

In contrast, for CNS drugs, augmenting the dose is 
predicted to elicit a greater in~provement in cell kill 
than is possible from extending the duration of expo- 
sure. Indeed, in clinical trials high dose regimens 
using CNS drugs resulted in improved disease-free 
survival (Livingston 1994). Model results suggest 
that treatment with a CNS drug should be divided 
into fewer fractions of higher concentration com- 
pared with the treatment schedule of a CS drug, 
in support of the original hypothesis that a CNS 
drug should be given more quickly than a CS drug. 
Applying each dose fraction as a long duration 
CI is also predicted to be effective in minimiz- 
ing tumor size and maximizing host lifespan. This 
result contradicted the original hypothesis that bolus 
application of a CNS drug might be better than 
CI, and occurs since regrowth between dose spikes 
partially counteracts the tumor reduction achieved 
while the drug is at a high concentration. Empir- 
ical results using cell cycle non-specific antitumor 
antibiotics and alkylating agents support this pre- 
diction (McArthur et al. 1970, Farhangi and Osser- 
man 1973, Sikic et ul. 1978, Pacciarini et al. 1978, 
Skubitz et al. 1993, Campisi et al. 1998). However, 
literature surveys indicate that fewer clinical studies 
have compared CI versus bolus application of CNS 
drugs than of CS drugs. 

Swan and Vincent (1977) and Swan (1990) used 
optimal control theory to model tumor reduction 
for CNS drugs. Although they did not incorporate 
resistance evolution, they also concluded that CI is 
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superior to discrete dosage regimens. Murray (1 995) 
also modeled tumor control and resistance evolution 
for a CNS drug, and predicted that a combination of 
one or two dose spikes with an intervening period 
of CI minimizes tumor size. 

As illustrated in Figures 3-4, if cells which are 
fully resistant to high drug concentrations can evolve 
in a single step, then with p~ as high as 1W6 
cure may be impossible with a single drug. Highly 
resistant cells are likely to be present even before 
drug exposure occurs, and low drug concentrations 
will not facilitate the evolution of resistance any 
more than high concentrations. With many drugs, 
however, resistance in the clinical setting has been 
shown to evolve by gene amplification (Horns et al. 
1984, Curt et 01. 1983, Trent et al. 1984, Cardman 
et al. 1984. Kellen 1994, Bodey et al. 1997), and 
in these situations the double bind described here 

may apply. 
As mentioned in the introduction, tumor cell lull 

must be balanced with toxicity to the host. In clinical 
trials of a number of drugs and types of cancer, CI is 
less toxic than bolus treatments (Bleyer et al.  1978, 
Antman et al. 1989, Anderson et al. 1991, Zalupski 
et al. 1991, Wolmark et al.  1998). Some theoretical 
studies and experiments on animal models, however, 
suggest that CI may be more toxic to the host, 
since dividing host cells, as well as tumor cells, are 
also killed in higher numbers (Skipper et al. 1967, 
Ubezio et a / .  1992, Agur 1998). Cojocaru and Agur 
(1992) developed a model leading to predictions 
that spiked doses separated by an interval that is 
an integer multiple of the host cell-cycle time can 
minimize host toxicity, while "pathogen elimination 
may not necessarily be hampered" (p.94), called 
the Z-method (Agur 1998). Clinical trials have not 
applied bolus treatments using the Z-method, so it is 
unclear whether CI or bolus following the Z-method 
would be less toxic. 

It has been suggested that increasing the pro- 
liferative fraction may render more cells suscepti- 
ble to CS drugs and, consequently, improve cure 
rates (Simpson-Hersen and Lloyd 1970, Kimler 
et al. 1983, Paridaens et al. 1993, Fabian et al.  
1994). Such attempts, however, have not succeeded. 

Paridaens et (11. (1993) and Fabian e t a l .  (1994) 
administered estrogen before chemotherapy with CS 
and CNS drugs to breast cancer patients. Although 
hormonal treatment recruited more cells into divi- 
sion, they observed no difference in response rates or 
survival from controls in which chemotherapy was 
given without estrogenic recruitment. In other tri- 
als using hormonal recruitment, dangerous flares in 
tumor growth occurred (Suarez et al.  1982, Manni 
et al. 1987, Manni et al.  1988), and in one study 
a survival disadvantage was reported (Manni et al. 
1988). In other studies also, high curability does not 
always correlate with a high growth fraction (Goldie 
and Coldman 1984). Indeed, the model presented 
here leads to predictions that tumors with high pro- 
liferative fractions are unlikely to be cured by either 
CS or CNS drugs, and that they grow to lethal sizes 
more quickly than tumors with lower proliferative 
fractions. 

In conclusion, this model leads to predictions that 
CI of both CS and CNS drugs may minimize tumor 
size and maximize the survival of the host. Results 
suggest that a CS drug should be applied as a large 
number of fractions over a long period of time, while 
CNS drugs may be better applied in fewer fractions. 
Dividing the drug into too many fractions may be 
counterproductive, since partially resistant cells may 
survive and mutate to higher levels of resistance. CS 
drugs are predicted to be more successful than CNS 
drugs for tumors with high proliferative fractions 
or fast rates of cell division, while CNS drugs may 
be more effective against tumors with the opposite 
conditions. 
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