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Taking into account the real world situations, in this paper we have developed a stochastic 
model of HIV pathogenesis in HIV-infected individuals under very general conditions. In 
this model, we have considered five different types of CD4(+) T cells, two different types of 
HIV (M-tropic versus T-tropic) as well as infected and un-infected macrophage. This is a 
9-dimensional stochastic process. For this process, we have developed stochastic differential 
equations for different types of cells. By using these stochastic equations, we have generated 
some Monte Carlo data to study the stochastic behavior of the HIV pathogenesis and the 
HIV progression. 

Through Monte Carlo studies, we have revealed an acute infection stage in the early stage 
of the HIV infection and have confirmed the basic role played by lymph nodes and some 
long-lived cells such as macrophage in serving as reservoirs of HIV to escape elimination 
by the immune system during the long asymptomatic stage of HIV infection. The Monte 
Carlo results have shown that the HIV heterogeneity and diversity may be a major factor to 
determine the time period since infection for uninfected T cells to drop to below 200/mm3 
of blood. The numerical results have also confirmed our previous findings (see [l])  which 
concluded that the probability distributions of T cells and free HIV can be classified into 
three periods over time: The latent period, the transition period and the pseudo-steady period. 

Keywords: Productively infected C D ~ ( + )  T cells, macrophage, monte carlo studies, M-tropic HIV. 
stochastic differential equations, T-tropic HIV 

1 INTRODUCTION 

The HIV pathogenesis starts with the infection of 
C D ~ ( + '  T cells by free HIV in the plasma or in 
lymphocyte. Recent studies by Ho et al. [2], Perel- 
son et al. [3] and Wei et al. [4] have shown that this 
is a highly dynamic process. They have shown that 
both the free HIV and the productively HIV-infected 
C D ~ ( + )  T cells are short lived so that the turnover of 
free HIV are both rapid and continuous. It follows 
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that free HIV are continuously removed and replen- 
ished by the death of productively HIV-infected T4 
cells. For in-depth understanding of the HIV patho- 
genesis, obviously, mathematical models of the HIV 
pathogenesis at the cellular level are needed. For 
these purposes, some deterministic models have been 
developed by Kirschner et al. [ 5 ] ,  Perelson et al. 
[6], Phillip [7], Schenzle [8] and Stilianakis et al. 
191 among others. They have shown that most of 
the important features of the HTV epidemic can be 
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explained by the interaction between the HIV and the 
T cells. However, being deterministic, these models 
have ignored random variations of many biological 
factors and the stochastic nature of the HIV epi- 
demic process. Since the HIV epidemic is basically a 
stochastic process, one may wonder how the random 
nature of the process would affect the future course of 
the HIV progression. To answer this as well as other 
questions, Tan and Wu [1,10] have developed some 
stochastic models for the HIV pathogenesis at the cel- 
lular level in HIV-infected individuals. In this paper, 
we will extend the Tan-Wu model into complex mod- 
els involving different types of HIV and macrophage. 
Our research was motivated by the following obser- 
vations: 

(i) Nowak and McMichael [ l l ]  have illustrated that 
the heterogeneity of HIV strain is the main driv- 
ing force for the HIV progression and the persis- 
tence of the disease. Connor et al. [ 121 and Con- 
nor and Ho [13] have shown that both the quality 
and quantity of HIV have important impacts on 
the HIV pathogenesis and the progression of 
HIV. This suggests the importance of the HIV 
heterogeneity in HIV pathogenesis. 

(ii) The macrophage are long-lived cells [14- 161. 
Since the HIV-infected macrophage can infect 
T cells and will constantly release free HIV 
without serious damage to itself [17-181, one 
may suspect that the macrophage may serve as 
a reservoir of HIV to escape elimination by the 
immune system, to maintain replication of HIV 
and to deplete the T cells during the long low- 
level asymptomatic stage of HIV progression 
[17-211. 

(iii) Perelson et al. [22] have demonstrated that under 
treatment by combination drugs, the decline of 
free HIV in plasma can be divided into two 
phases, with the decline of HIV much slower 
in the second phage; they have attributed the 
second phage to the effects of macrophage 
and lymph nodes. Lafeuillade et al. [23] have 
compared the rates of decline of HIV in plasma 
and in lymph nodes. They have demonstrated 
that in the first phase, the decline in lymph nodes 
is much slower than that in the plasma due to 

the presence of some long-lived cells such as 
macrophage in the lymph nodes; after the first 
phase, however, the decline rates of HTV are 
about the same in both lymph nodes and plasma. 
Orenstein et 01. [24] have demonstrated the role 
of macrophage as a source of HIV during oppor- 
tunistic infections. All these results suggest the 
importance of macrophage andlor other long- 
lived cells in HIV pathogenesis and progression. 

Unlike most of the publications in the literature 
which use deterministic models, in this paper we will 
develop stochastic models. The following are some 
of the rationales: (1) If one ignores the random dis- 
turbances in the risk variables and the random noises 
associated with the process of HIV pathogenesis, then 
one has readily a deterministic model. In this sense 
we will consider the deterministic model as a spe- 
cial case of the corresponding stochastic model under 
some special conditions. (2) The stochastic model is 
more realistic th'an the deterministic model since it 
takes into account the random nature of the process. 
(3) By using the stochastic model, one may readily 
assess impacts of the stochastic nature of the pro- 
cess and the random variation of many of the risk 
variables on the future course of the epidemic. This 
is certainly not possible by the deterministic model. 
(4) By using the stochastic model, one may study the 
probabilistic properties of the process and the prob- 
ability distributions of the T cells and free HIV at 
different times. (5) As illustrated in Tan and Xiang 
[25-261, the stochastic model is needed to develop 
state space models (Kalman-filter models) for the 
HIV pathogenesis which combine informati011 from 
both the stochastic system model and some statistic 
models based on observed data of the system; see 
[25-261. 

In Section 2, we will describe how to derive 
stochastic models for the HIV pathogenesis in HIV- 
infected individuals under complex situations by tak- 
ing into account basic mechanisms of the HIV patho- 
genesis. Using results from Section 2, in Section 3 
we will derive stochastic equations for the numbers 
of different types of T cells, macrophage and HIV. 
To assess the stochastic behavior of the HIV patho- 
genesis and HIV progression, in Section 5 we use 
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stochastic equations of Section 3 to generate some 
Monte Carlo studies. Finally in Section 6, we will 

draw some conclusions and discuss some relevant 
issues regarding stochastic models of HIV pathogen- 
esis in HIV-infected individuals. 

2 STOCHASTIC MODELS OF HIV 
PATHOGENESIS UNDER COMPLEX 
SITUATIONS 

For the HIV pathogenesis in HIV-infected individu- 
als, Tan and Wu [1,10] have developed a stochastic 
model involving normal, uninfected CD4(+) T cells 
(T cells), latently HIV-infected C D ~ ( + )  T cells (T(') 
cells), productively HIV-infected C D ~ ( + )  T cells (T(2) 
cells, also referred to in the literature as actively 
HIV-infected T cells) and free HIV. In this paper 
we will extend the Tan-Wu model into a more 
complex model involving two strains of HIV (Vl 
for T-tropic HIV and V2 for M-tropic HIV) and 
macrophage (M for uninfected macrophage and MI 
for HIV-infected macrophage). Let T:" and T,(2) 
denote the T(') cells and T ( ~ )  cells infected by Vi, 
i = 1,2,  respectively. Let T(t), Vi(t), T/"(t), T:*'(t), 
M ( r )  and Ml(r) denote the numbers of T cells, V,  
HIV, T/ ' )  cells, T/*' cells, M macrophage and MI 
macrophage at time t respectively. Then we are enter- 
taining a 9-dimensional stochastic process ~ ( t )  = 

{T(t), ~ ' " ( t ) ,  T:'(t), V,(t), i = 1 ,2 ,  M(t), M l ( t ) ) .  
This stochastic process is specified by the following 
biological observations and assumptions: 

(a) New normal un-infected CD4(+) T cells as well 
as macrophagelnatural killer cells are produced 
by precursor stem cells in the bone marrow 
and thymus. As in Tan and Wu [1,10], we will 
model this by Poisson processes with rates si (t) 
(i = 1 for T cells and i = 2 for macrophage). 
Since free HIV can infect the precursor stem 
cells [5-6,17,27-281, we will assume si(t) as 
a decreasing function of the numbers of free 
HIV. Following 15-61, we take s,(t) as si(t) = 

sicti /{ai + V (t)), where V(t) = Vl(t) + V;(t) and 
ai is the scaling parameter. 

(b) HIV can infect both T cells, macrophage as 
well as other cells. Based on the type of cells 
infected by HIV, the HIV strains have been 
classified as the T-tropic HIV (V1) which infect 
only T cells, and the M-tropic HIV (V2) which 
infect macrophage as well as T cells (T cells 
express C D ~ ( + )  receptors, CCR-5 receptor as well 
as CXCR-4 (fusing) on the cell surface, see 
[29-301). T-tropic HIV strains are syncytium- 
inducing and hence are rapid replicating 
and cyto-pathogenic strains (RapidIHigh; see 
[12,17,20,31-321. On the other hand, the M- 
tropic HIV strains are not syncytium-inducing 
and are slow replicating and less cyto-pathogenic 
strains (SlowLow, see [12,17,20,31-321, As 
shown in [12,20,31] and [32], at the early 
stage and the late stage of HIV infection, most 
HIV are T-tropic (RapidIHigh) strains: but after 
seroconversioll and during the asymptomatic 
stage (steady state stage), M-tropic HIV 
(SlowLow) are dominant. It appeared that 
tropism of HIV was determined by the interaction 
of the V 1 /V 2 and V 3 loops on gp120 in some 
unknown way permitting interaction with cell 
surface receptors [20.331. The change from M- 
tropic to T-tropic is probably the result of a 
change in co-receptor usage, from the CC-CKR5 
receptor used by M-tropic HIV, to the CXCR-4 
receptor used by T-tropic HIV [20,33]. To model 
this, we will let v,(t) be the tropism changing 
rate from V, to V, at time t (i # j ,  i ,  j = 1,2). In 
the Monte Carlo studies. we will select ui(t) to 
comply with observations by [12]. 

(c) As demonstrated in [5-7,17,20,27] and [34], the 
Vi HIV (i = 1,2) can infect both resting (non- 
dividing) normal T cells and actively (dividing) 
normal T cells, giving rise to latently infected 
T cells (T:') cells) and productively infected 
T cells (T? cells) respectively. To model this 
process, as in [1,7,10] we let wi(t) be the 
proportion of T;') cells among the infected T 
cells so that 1 - wi(t) is the proportion of T?' 
cells among the infected cells. Let G(t) be the 
proportion of dividing T cells at time t and qi(t) 
the probability that the viral DNA will not be 
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removed from the cytoplasm of the T cell at time 
t after the resting T cell has been infected by 
a free HIV. Then, wi( t )  = [ l  - [ i ( t ) ]q i ( t ) / { [ l  - 

Si ( t>l~ i ( t>  + <i(t>)+ (If [1(t> = 0.1 and ~ i ( t )  = 
0.0278, then approximately wi( t )  = 0.2.) We 
notice in passing that i ~ ,  ( t )  is the major parameter 
which determines the size of the T?' populations. 

(d) The T cells have finite life span so that with 
positive probability they will die or be removed 
over the time span. On the other hand, in the 
presence of antigen and free HIV, T cells are 
stimulated to proliferate stochastically to activate 
the immune system. Based on biological studies 
by [17,20,27-281 and [35-361, we will model 
this by a non-homogeneous stochastic birth and 
death process with birth rate b T ( t )  and death 
rate dT( t )  = pT(t) ,  independently of the infection 
process of T cells by free HIV or by infected 
macrophage. That is, the probabilities that each 
T cell at time twill give rise to 2  T cells, 0  T  cells 
and 1 T  cell at time t  + A t  by the proliferation and 
death process are given respectively by qT2(t) = 
bT( t )A t  + o ( A t ) ,  qrO(t)  = dT( t )A t  + o ( A t )  and 
qT1( t )  = 1 - [ b ~ ( t )  + dy( t ) ]A t  + o ( A t ) ,  where 

o ( W  o ( A t )  is defined by lima,,o ---- = 0. Follow- 
A t  

ing [5-61 and [37], we will assume b T ( t )  as 

br( t )  = - ( T ( t )  + x;=, ~ f = ,  q i ) ( t ) ) / ~ ~ , l  
V ( t ) / [ P v  + V ( t ) ] ,  where ,Bv is the saturation fac- 
tor of V ( t )  and y is the proliferation rate of T cells 
by activation of antigen and HIV. 

(e) As the T cells, the ~ , ( ' ) ( i  = 1,2; u  = 1,2)  cells and 
the free HIV (V, , 14 = 1,2)  have finite life span 
so that these cells will die during the life span. 
However, many studies [5-6,17,20,27,34] have 
shown that the life span of the T,(')(u = 1,2)  cells 
are not significantly different from that of T cells. 
On the other hand, because of cyto- pathogenic 
effects or apoptosis [2-4,17,20,27,34-361, the 
Ti2)(u = 1,2) cells are short lived with life span 
much shorter than that of T cells (about 10- 
fold less). Let pl i ( t )  and ~ ; ? ~ ( t )  denote the death 
rates of T/ ' )  cells and T / ~ )  cells respectively, 

i = 1,2. Then pl i ( t )  pT( t )  and pzj(t) > pli(t), 
i = 1,2. Further, because T-tropic HIV ( V 1 )  are 

syncytium-inducing whereas M-tropic HIV are 

not, ~ 2 1 ( t )  > p22W. 
Similarly, it has been documented that free HIV 
(V,, u  = 1,2) are short lived with life span much 
shorter than that of Tj2)(u = 1,2)  cells respec- 
tively. (The average life span of free HIV is 
about 0.3 days; see [2-41) Furthermore, the 
HLV viral clearance rate is not affected by dis- 
ease status although advanced disease is asso- 
ciated with higher virus load [38]. Hence, as 
in [2-61, one may assume that the death and 
removal rate p ~ ,  ( t )  of V, are fairly constant so 

that PV, ( t )  = PV, .  

(f) Since the T,(*)(u = 1,2)  cells are short lived with 
life span much shorter than that of T cellc 
(about 10-fold less) and thus will die upon activa- 
tion, one may assume that the T,(*)(u = 1,2)  cells 
would not proliferate by activation. Similarly, it 
may also be assumed that the ~ , ( ' ) ( u  = 1 ,2)  cells 
will not proliferate by activation since upon acti- 
vation, these cells will become T , ( ~ ) ( u  = 1,2)  cells 
which are short lived. This latter assumption has 
also been made in the literature [5-61. 

(g) The T,(')(u = 1 ,2)  cells are not HIV producing 
cells but can be activated to become Tj2)(u = 1,2)  
cells by the integration of viral DNA into the 
host genome [5-6,27,34]. The activation rates 
a,(t)(i  = 1 ,2)  of this process are fairly con- 
stants so that by u , ( t )  = u,(i  = 1,2)  1.5-6,27,34]. 
On the other hand, when a T , ( ~ ) ( u  = 1,2)  cell 
is activated at time t, it will die and gener- 
ate a large number (Nu ( t ) )  of free V,  (u  = 1,2) 
HIV. To model this, let ~ J ( u ) ( t )  be the num- 
ber of free V,  (u = 1,2)  HIV released by the 
death of the j th  T , ( ~ )  cell at time t .  Let D2,(t) 
be the total number of death of T , ( ~ )  cells at 
time t .  Then one may assume that given D2,,(t), 
the ~, ' " ' ( t ) ,  j = 1, . . . , DzU(t),  are independently 
and identically distributed (iid) random variables 
with mean N,(t) and variance ai ( t ) .  Following 
[I-4,101, we will assume N,(t) as a function 
of t  given by N,(t) = No,, exp(-#)t) + ~ ; ' { 1  - 
exp(-#)t)) unless otherwise stated. Notice that 
because of syncytium-inducing of V 1 ,  Nl ( t )  > 
N2(t). The Monte Carlo studies in Section 5  
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have shown that the pattern of acute infection 
and the early behavior of HIV pathogenesis are 
mainly determined by the parameters Nuo and 

whereas the period of the long asymp- 
tomatic low-level stage is mainly determined by 
the parameter ~ f ) .  

(h) Many studies [5-9,17,20,27,35-361 have reve- 
aled that for a typical infected individual, the 
virus load has reached a steady state condition 
with very low concentration a few months after 
infection and stay in this steady state for several 
years before the immune response begins to col- 
lapse. Since the macrophages are longlived cells 
(average life span is between 100-200 days; see 
[6,14-161) whereas the T,(~)(u = 1 , 2 )  cells and 
free HIV are short lived [2-41, the HIV escape 
removal by hiding as provirus in macrophage 
and in lymph nodes during the low concentra- 
tion steady state-stage [14-231. The H1V-infected 
macrophage can infect T cells and will regularly 
release free HIV without causing serious dam- 
age to itself [17-181. It follows that despite the 
low virus load during the steady-state period, the 
number of T cells would still decline and the 
replication of free HIV would still be kept up. 
This suggests the importance of macrophage and 
possible some other unknown long-lived cells as 
a reservoir for HIV and as an avenue to keep 
up the replication of free HIV. To model effects 
of macrophage, in this paper, we will let kM(t) 
denote the infection rates of T cell by HIV- 
infected macrophage, khfv ( t )  the infection rates 
of macrophage by V2 HIV and to order of o(At), 
NM(t)At the number of V2 free HIV released 
by infected macrophage during ( t ,  t + At], unless 
otherwise stated. 

(i) It is well documented that the HIV viral genomes 
have extremely high mutation rates so that each 
newly synthesized HIV genome carries on the 
average approximately one mutation [39-411. 
This has led Nowak and his colleagues [42-431 
to propose a diversity threshold theory to describe 
the HIV pathogenesis and progression. Thus, as 
illustrated by Nowak and McMichael [ I l l ,  the 
HIV genome continuously develop new mutants 

to increase the diversity and variation of the HIV 
genome to escape elimination by the immune sys- 
tem. They have argued that such variation and 
diversity is the main driving force leading to rapid 
depletion of C D ~ ( + )  T cells in the late stage of 
HIV infection. To account for this in mathemat- 
ical models, Stilianakis et al. [9] assumed that 
increased genetic variation led to increased infec- 
tion rates as the process of HIV pathogenesis 
progresses. To corporate this into mathematical 
models, they have thus assumed that the infec- 
tion rates (i.e., the k, (t)'s) of T cells would satisfy 
a differential equation given by Equation (14) of 
Section 3 so that these rates are increasing func- 
tions of time since HIV infection. 
To illustrate effects of increased mutation and 
genome diversity in late stages, in this paper 
we will follow Stilianakis et al. [9] to let the 
infection rates to satisfy the above mentioned 
differential equation. Through Monte Carlo stud- 
ies, in Section 5 we will demonstrate that the 
value of the diversity parameter a, (t) is the major 
factor which determines the decreasing slope of 
the uninfected CD4(+) T cells in the late stage 
and the time since HIV infection to AIDS; see 
Sections 5-6. 

(j) HIV would normally exist in the plasma as free 
HIV or be trapped by follicular dendritic cells in 
the germinal center of the lymph nodes. As con- 
firmed by [17,20,23] and [28], both free HIV in 
the plasma and HIV in lymph notes can infect T 
cells, generating similar dynamics in the plasma 
as well as in the lymph nodes. Since most lym- 
phocytes do not circulate in either the blood or 
lymphatic but reside in spatially heterogeneous 
environments [44], for the C D ~ ( + )  T cells and 
macrophage, one may expect that under cteady 
state conditions, the numbers flowing from the 
lymph nodes to the plasma are approximately 
equal to the numbers flowing from the plasma to 
the lymph nodes. However, it has been observed 
that the HIV replication is much faster in the 
lymph nodes than in the plasma [17,20,23,28]. 
This has led Fauci [28] and many others to 
emphasize the importance of lymphoid tissues as 
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a major reservoir of HIV during all stages of HIV 
infection. This is especially true in the late stage 
of HIV infection since in the late stage, the total 
number of CD4 T cells is very small (close to 
zero, e.g. 2/mm3) while the number of RNA virus 
copies is extreme high (10" lo7 per mm3). To 
model the HIV pathogenesis in the plasma, we 
thus follow Kirshner and Webb [44] to assume 
a net flow of HIV from the lymph nodes or 
other tissues to the plasma. Let C(t)  = g(t)At 
be the net flow of HIV from the lymph nodes 
or other tissues to the plasma during (t, t + At] 
and Qv(t) the inhibitor factor for the net flow 
at time t; see [45]. (&(t) = 1 if no inhibition 
and Ov(t) = 0 if there is complete inhibition.) 
Following Kirshner and Webb [45], the mean 
number of net flow of V, from the lymph nodes 
or other tissues to the plasma during (t, t + At] 
is, to order o(At), g(t)Ov(t)V,(t)/(6~ + V(t))At, 
where Sv is the saturation factor for V, and 
EG(t) = g (t)At . Notice that g ( r )  measures the 
difference of potentials between lymph nodes and 

plasma at time t and hence is expected to be pro- 
portional to the difference of numbers of RNA 
copies between these two compartments at time t. 

(k) Given ~ ( t ) ,  - conditionally the above processes are 
assumed to be independently distributed of one 
another. 
Given the above biological specifications and 
assumptions, one may readily derive stochastic 
differential equations for the numbers of different 
types of CD~(+ '  T-cells, macrophage and free 
HIV. This is illustrated in detail in the next 
section. For clarity of presentation, we give in 
Figure 1 a flow diagram describing some main 
features of the HIV pathogenesis. 

3 THE STOCHASTIC EQUATIONS FOR THE 
NUMBERS OF DIFFERENT TYPES OF 
CD4") T-CELLS AND FREE HIV 

Based on the biological specifications as given in the 
previous section, in this section we proceed to derive 

activation by H N  

Precursor Stem Cells H 
Generate CD4 T cell \ 

\ 
Generate macrophage 

Resting Dividing \ 

L-- Activation \ 
of T :" Death of T 12) releasing V I Death of T f' releasing V2 Release V2 by MI 

FIGURE 1 Scheme showing interaction between CD4' T cells, macrophage and HIV (T-tropic, M-tropic): T = Uninfected CD4' T cells, 
T(') = Resting T cells, T ( ~ )  = Dividing T cells, V1 = T-tropic HIV, V2 = M-tropic HIV, TI') =Latently HIV-infected T cells infected by 

Vi. T!') = Prodectively HlV-infected T cells infected by Vi, i = 1,2, M = Uninfected macrophage, MI = HIV-infected macrophage. 
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stochastic equations for the numbers of different types M (t) and Ml(t), i = 1 , 2  respectively: 
of T cells, macrophage and free HIV. To proceed, 
denote by: ~ ( t  + At)  = ~ ( t )  + s , ( t )  + Br(t)  - ~ ~ ( t )  

Sl(t)(S2(t))=Total number of new T cells 
(macrophage) per unit volume generated by the (1) 

]=I  
precursor stem cells in the bone marrow and 
thymus during (t ,  t + At], ~ ' " ( t  + ~ t )  = ~ , ( ' ) ( t )  + ~ , ( t )  + d12 ~ ~ ( t )  

B T ( ~ )  = Total number of new T cells per unit vol- t - D ( t  i = 1 ,2  (2) 
ume generated by cell proliferation through activa- 
tion by free HIV during (t ,  t + At], 
F, ( ~ ) ( F M  (t)) = Total number of T cells per unit 
volume infected by V, HIV (infected macrophage, 
i.e. MI macrophage) during (t ,  t + At] to become e) cells (T:' cells), i = 1,2. j = 1,2, 
F ~ v ( t )  =Total number of macrophage per unit 
volume infected by V2 HIV during (I, t + At] to 
become MI macrophage (Note that macrophage 
can only be infected by V2 HIV), 
W,( t ) (W~(t) j  = Total number of T,(') cells (T;" 
cells) among the infected T cells per unit volume 
infected by the V, HIV (MI macrophage) during 
( t , t  +At ] ,  i = 1,2, 
Al(t) = Total number of T,(" 4 T,(*) (i.e. activation 
of T,") cells) per unit volume during (t, t + At], 
i = 1,2, 
L, ( t )  = Total number of net-flow of V, per unit 
volume from the lymph nodes or other tissues to 
the plasma during (t ,  t + At], i = 1,2,  
~ ( " ( t )  = Total number of free V, HIV generated 

by the death of the j th T?) cell at time t ,  i = 1,2, 
~ ' " ' ( t )  = Total number of free V2 HIV released 
by the j th MI macrophage during ( t ,  t + At], j = 

1 , .  . . ,Ml(f), 
Cdt)(C21 (t)) = Total number of V2 HIV (V! HIV) 
per unit volume arising from V1 HIV (V2 HIV) by 
change of tropism during (t, t + At], 

D T ( ~ ) ,  Dlr (t), D21(t), D M ( ~ ) ,  D M I ( ~ >  = Total 
numbers of death of T cells, T,(') cells, T,(*) cells, 
V, free HIV, M macrophage and MI macrophage 
per unit volume during (t, t + At] respectively, 
i = 1,2. 

Then, by taking into account the input and 

~ : ~ ' ( t  + At) = ~,("( t )  + [Fi(t) - Wi(t)] 

+Ai( t ) -Du(t) ,  i = 1 , 2  (3) 

D?l (t) 

Vl(t + At) = V,(tj + C ~ , " ' ( t )  + Ll(i) + Ci, (t) 
j=1 

D32(t) 

V2it + At) = V2(t) + C Ay2)(t) 

M(t  + At)  = M(t) + S2(t) - D M ( ~ )  - F M ~ ( ~ ) ,  (6) 

where dl2 is the Kronecker's delta defined by 
S12 = 1 if i = 2 and 6,2 = 0 if i # 2. To spec- 
ify the probability distribution of the random 
variables in Equations (1)-(7), denote by X ( t )  = 

[BT(~) ,  D ~ ( t > l  and 4 (t) = CAI (t), Dl1 (t)l(i = 1,2), 
Yl(t) = [Fl(t), DVl(t), Cli(t)l, Y2(t) = [F2(f), F M V ( ~ ) ,  
D v ~ V ) ,  C21(t)l, and L = L i t ) ,  L20)l. Let X - 
B(n,p)  denote that the random variable X is dis- 
tributed as a binomial random variable with param- 
eters (n ,p)  and let ( X I ,  . . . , X, ) - ML(n;p!, . . . ,p,) 
denote that the random vector (XI, .  . . , X,) is dis- 
tributed as a r-dimensional multinomlal random vec- 
tor with parameters (n , p l  , . . . .p, ). From specifica- 
tions given in the previous $ection, then the condi- - 

output of the state variables, we have the following tional distributions of the above variables given the 
stochastic equations for T(t), ~ , ( ' ) ( t ) ,  ~ , ( ~ ) ( t ) ,  Vl (t), numbers ~ ( t )  at time t are, to order o(At), given by: - 
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Further, given U(r) ,  conditionally Si ( t ) ,  X ( t ) ,  Xi ( t ) ,  

Y i ( f ) ,  U t ) ,  ~ i ( t ) , w ~ ( t ) ,  & ( r ) ;  D M ( ~ )  and D M I ( ~ )  
are independently distributed of one another and 
are jndependently distributed of the i\~i(': '(t) 's and 

the N;'M'(t)'s. Also, given DZi(t) .  the ~ ; " ( t ) , j  = 
1,  . . . , D2i ( t ) ,  are independently and identically dis- 
tributed with mean N i ( t )  and variance 5i i ( f ) .  Finally, 

( M  given Dhf l ( t ) ,  the Nj ( t ) ,  j = 1 ,  . . . , DM I ( t ) ,  are 
independently and identically distributed with mean 
NM ( t ) A t  and variance C& ( t ) A t  . For generating 
Monte Carlo data, we will assume that the ~ y ' ( r ) ' s  

and the i2i;(")(tj3s are distributed as negative bino- 
mial variables with parameters {Si ( t ) ,  K ;  ( t ) }  and 
(1  - 6" ( t ) A t  , K M  ( t ) )  respectively. (Note that given 
the mean and the variance, the parameters of 
the negative binomial variable are uniquely deter- 
mined. For example, for the N,(')(t), ~ ~ ( t )  = ~ ; i ( t ) ( l  - 

&(t ) ) /S i ( t )  and uii = ~ i ( t ) ( l  - Si(t)>/[6i (t)12; for 
~ j ( ~ ) ( t ) ,  N, ( t )  = K~ ( t )& ( t )  + o ( A t )  and a; ( t )  = 
KM (t)6,w ( t ) )  + o(Af>) .  

Let E ( ~ ) = [ E T ( ~ ) ,  &li(t)r ~ 2 i ( t ) ,  % ( t ) ,  i = 1 ,  2, &M(t)r 
EM ( t) lT denote the vector of random noises for the 
deviation from the respective conditional mean num- 
bers. From the above distribution results, one may 
readily derive the conditional means of the random 
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E M I ( ~ > A ~  = [ F M v ( ~ >  - M(t)Vz(t)k~v(t>atI  - [DMI (t) 

- M l ( t ) ~ ~ i ( t ) A t ] .  

Then, denoting by dX(t) = X(t + At)  - X(t), 
Equations (1)-(7) are equivalent to the following 
stochastic differential equations: 

~ l ( t )  + T( t ) [b~( t )  - 11T(t)l 

well as with elements of E(T) for all t f T. Further, 
because the random noises are basically linear combi- 
nations of Poisson, binomial and multinomial random 
variables, the variances and covariances as well as 
higher cumulants of elements of ~ ( t )  can easily be 
derived, although the formulas are quite long. 

To account for HIV diversity via increased muta- 
tion as the HIV pathogenesis progresses, we fol- 
low Stilianakis et al. [9] to assume that the k,(t)(i = 

1,2,  M)  satisfies the following equation: 

where KM is the diversity saturation constant and 
ui(tj is the parameter for HIV diversity. (cr,(t) 2 0. 
If oi(t) = 0, then there is no diversity.) The solution 
of the above equation is 

d ~ , ' ~ ' ( t )  = {[I - wi(t)]Vi(t)T(tjki (t) 
+KMi [I  - exp ( - L O ~ ( ~ ) V ( X ) ~ X  

+ 6i2[l - ~ w ( t ) l M i ( t ) T ( t ) k ~  (6 

+ ~ , ( " ( t ) a ~  (t) - T/2)(t)p2i ( t ) } ~ t  

> 1 
In this paper we will let q ( t )  = ui and assume dif- 

ferent values of a, to assess how the value of ui(t) 
+ ci2(t)At, i = 1,2> (10) would influence the time since infection to develop- 

ing AIDS and the decling slope of the uninfected 
CD4(+) T cells in the late stage. This is illustrated in 

+ [vJ (t w, (t) - V, ( t ) ~ l  (f )I 

- v, (t)[T(t)k, ( t )  + &zM(t )kv~  (t) 
4 THE EXPECTED NUMBERS OF T CELLS, 

MACROPHAGE AND FREE HIV 
+ Plirct,l>At + &I4 ( f l a t ,  

The deterministic model of the HIV pathogenesis 
i j = 2 i = 1,2,  (I1) of Section 2 assumes that the variables of ~ ( t )  are - 

dM(t) = {~2(t)  - M(t)[Vz(t)k~v(t) + ~ ~ ( t ) l } A t  deterministic functions of time t, ignoring completely 
randomness of the process. This model is described 

+ EM ( t P k ,  ( I2 )  by a set of differential equations which are derived 

dMl(t) = {V'(t)M(t)kMV (t) - M I ( ~ ) ~ L M I  (t)}at 

+ EM I ( t w ,  (13) 

In Equations (8)-(13), given ~ ( t )  the above ran- - 
dom noises have expectation zero conditionally. It 
follows that the expected value of ~ ( t )  is 0. Using 
the basic formulae Cov(X, Y) = E{Cov[(X, YjIZ]} + 
Cov[E(X/Z), E(Y /Z)]. it is also obvious that elements 
of ~ ( t )  are uncorrelated with elements of ~ ( t )  as 

w 

by deleting the random noise terms from equations 
(8)-(13). Because the model given by equations 
(8)-(13) is non-linear, however, the equations of 
the deterministic model are not the same as the 
equations for the means of the stochactic model. 
To illustrate this, let uT( t ) ,  ul(l)(t), uj2'(t), ~ ~ ( t j ,  
i = 1,2,  u ~ ( t )  and U M I  ( t )  denote the mean values of 
T(t), ~'"(t), ~ ' ~ ' ( t ) ,  VL ( t ) ,  i = 1,2,  M(t)  and Ml(t) 
respectively. Then, by taking expectation on both 



254 W.-Y. TAN AND 2. YE 

sides of equations (8)-(13), after some simple algebra d 
-UM ~ ( f )  = U V Z ( ~ ) U M  ( t ) k ~ v  ( f )  

we obtain the following set of differential equations dt 
for these mean numbers: 

From Equations (15)-(20), because of the exis- 
tence of covariance terms, the equations for the 
mean numbers of the stochastic model are not the 
same as the corresponding equations for the deter- 
ministic model. These covariances are expected to 
be significant when the numbers of T,O')!i, j = I ,  2) 
cells and free HIV (Vi, i = 1,2)  are small. Thus, 
one would expect that in the early stage when the 
numbers of T?', i , j  = 1 , 2  are very small, results of 
the deterministic model would provide poor approx- 
imations to the corresponding mean numbers of the 
stochastic model. On the other hand, when the num- 
bers of T ( ' )  cells and free HIV ( V i )  are very large 
so that these covariances are very small, the mean 
behavior of the process is closely approximated by 
the corresponding results of the deterministic model. 
As shown in the next section, these are clearly 
the observations and conclusions from the Monte 
Carlo studies. 

By using Equations (8)-(13) and the procedures 
given in Tan and Hsu [46], one may similarly 
derive equations for the variances and covariances 
as well as higher cumulants of the state variables 
{ T ( t ) ,  ~ : ) ( t ) ,  V i ( t ) ,  M ( t ) }  and Ml( t ) .  Because the 
formulas are quite complicated and will not be used 
in this paper, we will not present it here. We note 
in passing, however, that by using the stochastic 
model, one may not only study the mean behavior, 
but also the variations and the probabilistic proper- 
ties of the process; this is certainly not possible by 
deterministic models. 

5 MONTE CARL0 STUDIES 

In this section we will assume some parameter values 
and generate some Monte Carlo studies by using 
the model from Sections 2 and 3. The values of the 
unknown parameters are given in Table I. Most of 
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TABLE I Parameter Values for Monte Carlo Studies 

Variables and Parameters In~tial or Defaul~ Values 

Unifected T Cells 
Latently Infected T 
Cells by V, 
Actively Infected T 
Cells by V,  
T-tropic HIV 
M-tropic HIV 
Uninfected Macrophage 
Infected Macrophage 

Parameters Associated with Generation of T Cells 
or Macrophage from Precursor Stem Cells 
.sl(t) = .T I  Rate of Generation of T Cells 

from Precursors Stem Cells 
s2(t)  = s? Rate of Generation of Macrophage 

from Precursors Stem Cells 

a l ( f )  = 01 Rate of V~rus Effects to Decrease sl 
n > ( t )  = a? Rate of Virus Effect\ to Decrease s? 

Parameters for Cell Proliferation of T Cells 
by Activation of HIV and Antigens 

yfr) = Rate of Stimulated Growth of 
T Cells by Activation 

Tmx Maximum Size of T 
Cell Population 

Death Rates of T Cells, Free HIV and Macrophage 
P7(t) = ILT Uninfected T Cells 

L L I ~ ( ~ )  P T ( ~ )  T:" cells 
= p 7 i  = 1.2 

~ 2 l ( t )  = p?i T:" cells 
~ 1 2 2 ( t )  = ~ 2 2  T:~' cells 
@vi(t) = PV, Vi HIV 
i  = 1.2  
I-LM ( t  = PM Uninfecred Macrophage 
M M ,  ( f  ) = PM, Infected Macrophage 

(5) Parameters for Infection of T Cells and Macrophage 
o,( i  = 1.2) HIV Diversity for V, 

K,$I~ ( i  = 1 . 2 )  Diversity Saturation Constant 
<w HIV Diversity for M L  

Diversity Saturation Constant 

w,( t )  = ~ i (  Proportion of T ( ' )  among 
i = 1.2  Infected T Cells by V, 

UM ( t )  = I'M Proportion of T:" among 
Infected T Cells by M I  

KMV ( t )  = KMV Infection Rare of Macrophage 
by Vz (M-tropic) 

(6) Activation of T,"' Cells, i = 1.2 

a; (t) = ai Activation Rate of T:" Cells 

I lmm" 
l/mm3 

0. h2lday 
0.3 llday 
3.llday 
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TABLE I (Continued) 

Variables and Parameters Initial or Default Values 

(7) Parameters Associated with Ni(r) = NO,e-';'r + , ' ,"(l-eb';)t) ,  i = 1.2 
and uf ( t )  = 2Ni(tl 
No I T-tropic HIV 2000 

L#,') T-tropic HIV 0.00018 

' T-tropic HIV 6000 
No2 M-tropic HIV 800 

$? M-tropic HIV 0.000009 

,d;) M-tropic HIV 3000 

(8) Parameters Associated with NM ( t )  and u; ( 1 )  

Nnl ( t )  = NM = 30 and cri ( t )  = 0; = 60 

(9) Parameters for Virus Flow from Lymphoid Nodes or Other Tissues 
@,/(i) = 8v Prohibition Factor 1 .0 
&(t) = bv Virus Saturation Factor 2.0/mm3 

Lymphoid Virus Source 4 1 . 2 1 m m ~ a y  
g ( l  - e ~ - O  00051 ) O < i < r ,  t l  = 2880 (day) g(t)  = K i  ,q(l - e - o  OoOst k 0 O0065(1-1,) t ,  i t <- t2 t2 = 3600 (day) 

(10) Parameters (v2( t ) )  for HIV Tropism Change Satisfies 
f.  

0 . W l  - e - e )  0 5 r < t i  r ,  = 900 (day) 
v,(;;:;;(t) =f ( t )  = 

) < t 5 tz i2 = 3600 (day) 

these parameter values were taken from the estimates 
from some biological studies and from the literature 
[ l -  10,22,35,37,45]. For clarity, we give the follow- 
ing remarks for the choice of some of the parameters 
and the scaling of these parameters. 

(a) Since the numbers of HIV virus and the T cells 
should be dealt with as non-negative integers, as 
in [ l ,  101, we have transformed these parameters 
in terms of the volume unit dm3 instead of mm' 
as used by Kirschner et al. [5] and Perelson 
et al. [6]. 

(b) Because the T-tropic HIV are syncytium-inducing 
whereas the M- tropic HIV are not, one may 
expect that the death rates of T,(2) cells are much 
greater than those of T?' cells and Nl(t) much 
greater than N2(t). TO account for this we let 
pZl(t) have values double those of ,u22(t) and 
chose Nol > No2 and P21 > P22. 

(c) Connor et al. [12] observed that at the begin- 
ning and the late stage of the HIV epidemic, 
most of the HIV are T-tropic whereas during the 
asymptomatic stage after seroconversion, the M- 
tropic HIV are dominant. To comply with this 
we chose v, (t) = vl (t) to satisfy the following 

condition: 

1 0.95 (1 - exp (- &)) 
for 0 5 t < tt 
with tl  = 9000(0.1 days ) 

for t l  5 t < tz 
\with tz  = 36000(0.1 days) 

5.1 Data Generation 

To illustrate how to generate Monte Carlo data, 
consider the time interval ( t , t  + At]. Then, given 
the numbers u = {T(t), T,("(t), ~ , ' ~ ) ( t ) ,  V, (t), i = 1,2,  
M (t), M, ( r ) )  -at time f, by the distribution results 
given in Section 3, we use a Poisson generator with 
mean s, (f)At to generate Sl(t) and use binomial 
generators to generate Dzl (t), D~/l(t)  and DM l(t) 
by assuming Dzl (t) - B[T,'~)(~), p2, (t)Atl, DM (t) 
BtM(t), pM(f)At], and D ~ i ( t )  B[Ml(t), P M I ( ~ )  
At], respectively; we generate [BT(t), DT(t)l, [AI([), 

D~, ( t ) l ,  [ F I ( ~ ) ,  D v ~ ( t ) ,  C12(t)17 [Fz(t), F M V ( ~ ) ,  Dv2(th 
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C21 (t)] and [Ll it), L2(t)] from the multinomial distri- 
bution, ML[T(t), br(t)At, pr(t)At], ML[T,")(~), a, ( t )  

At ,  pi, (t)Atl, ML[Vi(t), kl(t)T(t)At, pv ( f l a t ,  q ( t )  
At], ML[V2(f), k2(t)T(t)At. ~ M V  (t)M(f)At,  PV (?>At, 
vdt)Atl, andML{g(t)At, $1, (f)Vl (t)/[Sv + V(t)l, $11 

(t)V2(t)/[Sv + V (t)]). respectively. Given F, (t) and 
FM (t), then W, (t) and WM (I) are generated from the 
binomial distributions, B[F,  (t), w, (t)], and B[FM (t). 
i~(h1 (t)], respectively. Given D2, (t) and DM 1 it), we 
then use negative binomial distributions as described 
in Section 3 to generate ~ , " ) ( t )  and y'"' respectively. 
Then Equations (1)-(7) were used to construct the 
next step values ~ ( t  + At) from those of U(t). For 

& - 
generating these random variables, all the random gen- 
erator? are taken from the IMSL 1471 library functions. 

We will let At correspond to 2.4 hours (or 0.1 day) 
because a free HIV would usually lose its infectivity 
in 4-6 hours [1,10]. Starting with t = 0, we generate 
the observed numbers of ~ ( t )  cells for every 2.4 ?.. 
hours over a period of 10 years by using the above 
procedure. We repeat the stochastic process a large 
number of times and compute the means and the 
variances of these numbers based on these Monte 
Carlo realizations. We also compute the frequency 
distributions of these numbers over different titnes 
for different models. These results are given in the 
following subsections. 

5.2 The Probability of Extinction of HIV by 
Chance 

In many cases there is a positive probability that 
the HIV may drift to extinction by chance even 
though the number of HIV released by the death 
of a single T(') cell is very large. It appears that 
the size of this probability is determined by the 
amount of HIV in the body and hence are influenced 
significantly by the proportion w, of T(') cells among 
the HIV infected T cells, the presence of macrophage 
and lymph nodes as well as by other factors which 
contribute to the increased number of T(" cells. Thus, 
as confirmed from Table 11, the larger the w, (= J), the 
larger the extinction probability of HIV by chance. 
This is expected since large value of w, leads to 

more T(') cells and less T ( ~ )  cells which are HIV 
producing and since the contribution to HIV from T(l) 
is very small. Similarly, as confirmed by results from 
Table 11, since macrophage and lymph nodes serve 
as reservoir of HIV, the presence of macrophage and 
the increased flowing of HIV from lymph nodes or 
other tissues to the plasma would reduce significantly 
the extinction probability of HIV by chance. (In 
Table 11, BV is the inhibition factor controlling the 
amount of net flow with large value of BV indicating 
more flow.) 

5.3 Early Behavior 

As s h o m  in Figure 2a (upper left), the number of 
free HIV drops dramatically from the initial counts, 
1000tdm" to the lowest point (much less than l/dm3 
in three days after infection (see Table 111). This 
may be the consequence of the fact that initially 
there are no productively infected T cells (i.e. the 
T ' ~ )  cells) to produce free HIV [2,4]. After three 
days, however, the number of free HIV increases 
sharply, reaching a maximum of approxinlately 4 
billion cells (4000/mm3) at around the 2.5 month 
and then decreasing to a very low steady-state level 

TABLE I1 Estimated Probabilities of Extinction of HIV by 
Chance Based on 500 Runs 

(')The corresponding probabilities from the model without macrophage 
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FIGURE 2 Plots showing the generated numbers per m m b f  CD4+ T cells and free HIV with macrophage over time. 

(about 200/mm3) at around the six month. This is 
probably due to the fact that some T ( ~ '  cells have 
been generated, and that the T ( ~ )  cells are short lived 
and at the death of each T(') cell a large number of 
free HIV are generated in the simulation. Figure 2a 
shows that the low steady-state HIV level may last 
several years before starting to increase steadily to a 
new high level between lo5 and lo6, leading to AIDS 
symptoms. These pictures appear to be well matched 
by some of the laboratory observed curves [17]. Note 
also that the selected parameter values of v, have 
given arise to the V1 and V2 curves which match very 
well with the laboratory observed curves described in 
Connor et al. [12]. That is, at the early stage and late 
stage, most of the HIV are T-tropic whereas during 
the long asymptomatic stage, the dominant HIV are 
M-tropic. 

From Figures 2b and 2c, before 9 years since 
infection the curves of the T,(" cells and the ~ , ( 2 )  cells 
are quite similar to those of the V, HIV, i = 1,2 ,  albeit 
the numbers of the T"' cells and the T" cells are 
much smaller. On the other hand, Figure 2d shows 
that the un-infected T cells decrease very sharply 
from 1000/mm3 to about 5001mm3 in the first five 

months; after that it decreases steadily to 200/mm3 
or below in about 8.2 years since infection and to 
below 50/mm" in 10 years. This picture matches 
some of the observed curves as given in [17]. Notice 
also that the presence of macrophage increases the 
speed of the T cell decline, due presumably to the 
fact that infected macrophage can also infect the 
T cells. 

5.4 Effects of Macrophage 

As shown in Figure 3, the number of un-infected 
macrophage first decreases to a low level plateau at 
around the third month; the number remains at this 
plateau for several months before starting to decrease 
very slowly to a low steady-state level at around 
6 years. This steady-state level lasts about 2 to 3 
years before decreasing further to reach a very low 
level about the 120 month. On the other hand, the 
curve of the number of HIV-infected macrophage 
first increases to reach a plateau at around 7 years 
and remains at this plateau for several months before 
starting to decrease sharply to reach a very low level 
in about ten years. These results clearly are consistent 
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TABLE 111 Conditional Means of T Cells and HIV per mm3 for the First 30 Days 

Day 3 6 9 12 15 
Uninfected T 999.99 999.97 999.23 981.59 956.01 
Cells (999.99) (1000.01) (999.81) (986.25) (960.60) 
Total HIV 4.78 x 10-4 8.47 x lo-" 0.168 8.44 28.72 

(4.62 x W 4 )  (4 19 x l V 5 )  (0.04) (6.37) (25.55) 
T-tropic 4.75 x 1 0 ~  8.36 x 0.165 8.23 27.86 

(4.59 x (4.19 x lo-') (0.04) (6.22) (24.78) 
M-tropic 3.00 x 1.13 x 0.003 0.2 1 0.86 

(2.90 x lo-') (0.00) (0.00) (0.16) (0.77) 
Total Infected 2.00 x 4.00 x 2.02 x 0.02 0.09 
T Cells (I .OO x (2.00 x (3.90 x 10-j) (0.01) (0.07) 
T Cells Infected 2.00 x 4.00 x 1 0 P  2.00 x lo-" 0.01 0.08 
by T-tropic (1.00 x 1 V 6 )  (2.00 x 1W6) (3.80 x I o ~ - ~ )  (0.01) (0.07) 
T Cells Infected 0.00 0.00 2.00 x 0.00 0.01 
by M-tropic (0.00) (0.00) ( 1  .OO x 10-9  (0.00) (0.00) 

Day 
Uninfected T 
Cells 
Total HIV 

Total Infected 
T Cells 
T Cells Infected 
by T-tropic 
T Cell? lnfected 
by M-tropic 

(*)The correspondmg numbera from the model without macrophage 

with the observed results that macrophage can only interesting to note, howeves, that after 10 years since 
be infected by M-tropic HlV whereas the M-tropic infection, the total numbers of different types of T 
HIV are very low in the early and late stage of the cells and free HIV between models with and without 
HIV progression but are dominant during the long macrophages are almost identical, due presumably to 
asymptomatic stage [12]. the fact that in the late stage of infection, most HIV 

Comparing results from models with or without are T-tropic whereas HIV-infected macrophages only 
macrophage, it appears that in the presence of contribute to M-tropic HIV; see [12]. 
macrophage the total numbers of free HIV ( V ( t )  = 
Vl(t) + V2( t ) )  and of HIV-infected T cells (both 
latently infected and productively infected cells) have 
increased considerably but the number of un-infected 
T cells has been decreased (See Figure 2d); further, 
in the presence of macrophage, the probability of 
extinction of HIV by chance has been reduced 
(See Table 11). Clearly, this is a consequence of the 
fact that the infected macrophage can infect the T 
cells and would constantly release free HIV (i.e Vz 
HIV) without serious damage to itself [18-191. It is 

5.5 The Role of Lymph Nodes as a Source of 
HIV 

During the late stage of HIV infection, in some cases 
the observed total number of CD4") T cells (both 
infected and uninfected) is very small but the number 
of RNA virus copies can be very high. For example, 
in patient No. 104 considered in [3], at the time 
to start the treatment the total observed number of 
CD4(+) T cells including both infected and uninfected 
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FIGURE 3 Plots showing the numbers per mm" of uninfected and HIV infected macrophage over time 

T cells was 2 per mm" of blood but the total number 
of RNA virus copies was 5.2 x lo4 per mm3 of blood. 
Since the total number of T cells is very small, such 
high level of HIV in plasma can not be attributed to 
productively infected T cells; also since in the late 
stage the T-tropic HIV is dominant, it also can not be 
attributed to infected macrophage. (Note that infected 
macrophages contribute only to M-tropic HIV.) This 
suggests an important role for lymph nodes as a 
source of HIV, especially in late stage. This role is 
further underlined by the observation that the HIV 
replication is much faster in the lymph nodes than in 
the plasma [17,20,23,28]. Our Monte Carlo studies 
appear to provide additional support for this role of 
lymph nodes. For example, if we assume Bv = 0.1, 
then the total number of HIV at the 10th year is 

about 4000 per m r d ,  much less than lo5. On the 
other hand, if 0" = 1, then the number of HIV per 
mm3 is between 105 and lo6 at the 10th year. This 
may also provide some explanation for the results by 
Piatak et al. [48] which have revealed high level of 
HIV-1 in plasma during all stages of HIV infection. It 
is interesting to note, however. that the lymph nodes 
do not seem to affect the pattern of HIV infection 
and progression although they will provide a source 
of HIV to uphold the level of HIV and may also 
contribute to the depletion speed of uninfected T cells 
in late stage; see Section 6. 

5.6 Effects of HIV Heterogeneity 

To account for effects of HIV heterogeneity via 
increased diversity, we have followed Stilianakis 
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TABLE IV The Monte Carlo First Passage Time Since HIV Infection for the Number of Uninfected T Cells 
to Drop to Below 200/mm3 in Blood 

u Ov = 0.0 0" = 0.1 0" = 0.4 6'" = 0.7 Ov = 1.0 

0.0 > 1201.1 113.60 [0.16] 107.50 [0.14] 105.07 [0.14] 103.50 [0.12j 
10-l6 > 120I.I 112.95 [0.19] 106.95 [0.13] 104.53 [0.14] 
10-15 

102.90 [0.11] 
113.19 [0.69] 106.15 [0.35] 101.48 [0.25] 99.13 [0.20] 96.99 [0.30] 

10-l4 79.08 r0.331 75.04 [0.26] 69.26 [0.18] 65.54 [O. 191 
10-13 

62.49 [0.15] 
3.83 [0.14] 2.88 [0.05] 2.24 [0.02] 2.02 [0.12] 1.86 [0.02] 

[*]The corresponding standard deviation 

TABLE V Conditional Means and Deterministic Numbers per m m b f  T Cells and Free HIV 

Year Uninfected T DE Total Infected DE Total HIV DE 
Cells T Cells 

~ ~ ------------ 

1 455.97 [0.04] 448.30 4.13 [0.003] 4.94 280.52 [0.681 347.97 
2 448.57 [0.05] 430.66 5.36 [0.006] 6.91 396.01 [ I  .49] 529.50 
3 434.96 [0.06] 408.82 6.32 [0.008] 8.31 472.98 11.661 651.51 
4 423.44 [0.06] 391.41 7.18 [0.008] 9.43 546.37 [ 1.751 761.91 
5 386.84 [0.08] 353.21 10.41 j0.011 12.16 885.92 [2.73] 1092.14 
6 307.48 [0.11] 282.10 14.24 [0.01] 14.65 1460.72 [4.09] 1588.46 
7 243.73 [0.11] 224.76 14.13 [0.02] 13.97 1765.51 [5.10] 1838.77 
8 203.25 [0.12] 191.16 13.07 [0.02] 12.71 1904.57 [6.24] 1924.18 
9 109.52 [0.07] 102.99 12.92 [0.01] 12.41 3297.68 [6.03] 3283.73 

10 0.40 [0.01] 0.40 1.19 (0.0031 1 .08 14443.10 [2.62] 14467.98 

[']The corresponding standard deviation. DE = Determinisr~c result 

et al. [9] to let the infection rates k, ( t ) ,  (i = 1,2,  M )  
as functions of time t satisfying equation (14) of 
Section 3. 

The simulation results showed clearly that increas- 
ing the parameter value of CT, ( t )  = a, would signif- 
icantly speed the decline of uninfected T cells and 
shorten the time to AIDS; see Table IV. These results 
appear to support the important role played by muta- 
tions of the HIV genome in HIV pathogenesis and 
progression. 

5.7 The Conditional Mean Numbers 

Given in Table V are the conditional mean numbers 
of the T cells and free HIV together with results from 
the corresponding deterministic model. These results 
show that unlike the results in [1,101, in many cases, 
especially before the sixth year, there are substan- 
tial differences between the conditional Monte Carlo 
sample means conditional on the infected steady 
state (i.e. the HIV process has not drifted to extinc- 
tion by chance) and the corresponding results of the 

deterministic model. These results are not surprising 
since in the complex models there are more risk vari- 
ables subject to stochastic varaition. However, an 
overall examination of the results suggests that the 
trends of the HIV pathogenesis as time since infection 
progresses are quite similar in both cases. It follows 
that the deterministic models are still useful for study- 
ing the trend of the conditional mean behavior of the 
T cells and free HIV given that the process does not 
drift to extinction by chance. Notice also that after 
5 years, the mean numbers of the T cells and free 
HIV are quite close to the corresponding results of 
the deterministic model, due presun~ably to the fact 
that the process has reached steady state condition 
after 5 years since infection. 

5.8 The Conditional Distributions of the T cells 
and HIV 

To study the conditional distributions of the T cells 
and free HIV virus, we generated 500 Monte Carlo 
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samples for 10 years after infection under infected- 
steady-state (This sample size is big enough based on 
the suggestion of Ratkowsky [48]). The Monte Carlo 
results appear to confirm our previous claim [1,10] 
that these distributions can be described by three 
phases: The latent period, the transition period and 
the steady state period. Again it seems that the latent 
period covers the period of the first two years but the 
transition phase appears to be longer than those of the 
model in [1,10] (more than 8 years), due presumably 
to the complex nature of the present model. 

6 CONCLUSIONS AND DISCUSSION 

Nowak and McMichael [I11 have shown that the 
heterogeneity of HIV strains might be a major factor 
for the persistence of HIV progression and the devel- 
opment of AIDS. Connor et al. [12] have pointed out 
that both the quality and quantity of HIV have signif- 
icant impacts on the HIV progression and the severity 
of the disease. Perelson and Kirschner 161 have noted 
the importance of macrophage and lymph nodes as 
reservoir of H1V for escaping the elimination of HIV. 
To model the interaction between the T cells and the 
free HIV virus, in this paper we have thus extended 
the model in Tan and Wu [ I  ,101 to complex situations 
involving T-tropic HIV, M-tropic HIV, macrophage 
and lymph nodes. This is a 9-dimensional stochastic 
process and is Markov in the absence of treatment. 
For this process, we have developed stochastic differ- 
ential equations for different types of C D ~ ( + )  T cells, 
macrophage and free HIV under some general con- 
ditions. To assess effects of macrophage and hetero- 
geneity of HIV strains on the probabilistic behavior 
of the process and the HIV progression as well as the 
probabilities distributions of T cells, macrophage and 
free HIV in HIV-infected individuals, in this paper 
we have used these equations to generate some Monte 
Carlo studies by computer. Our Monte Carlo studies 
have revealed the following results: 

( I )  In most of the cases, there is a positive prob- 
ability that the process will drift to extinction. 
Our Monte Car10 studies have shown that this 
probability is determined by the amount of free 

HIV and hence is affected significantly by the 
number of released free HIV and the number of 
actively infected T cells as well as by the pres- 
ence of macrophage and net flow of HIV from 
lymph nodes. As shown in Table 11, it appears 
that this probability is significantly reduced by 
the presence of macrophage and flow of HlV 
from lymph nodes; furthermore, as in Tan and Wu 
[I], the larger the parameter value of wi = II: the 
larger this probability. This is expected since if 
w.! is large, then most of the HIV-infected T cells 
are latently infected T cells whose contribution 
to HIV is very small. 

(2) Our Monte Carlo studies have revealed an acute 
infection stage during which the RNA virus 
load and the HIV-infected T cells (both latently 
infected and productively infected T cells) are 
very high. This stage is very short and occurs 
between the first and fifth month; see Figure 2a. 
Thus, shortly after infection the virus load 
reduced to a very low level; this occurs in the 
first few days due presumably to the short life 
span of free HIV and the lack of T") cells (See 
Table 111). Then the virus load goes up sharply 
and reaches a peak at around 2.5 month before 
decreasing to a very low steady-state level at 
around six month; this low steady-state level may 
last several years depending on situations before 
sharply increases to a very high level leading to 
clinical AIDS; see Figure 2. These results appear 
to be consistent with recent studies by Ho et al. 
[ 2 ] ,  Perelson et al. [3] and Wei et al. [4] who 
have observed that the life span of the HIV and 
infected T cells are very short so that there is a 
high turnover rate for HIV. 

(3) Our Monte Carlo results have shown that after 
five years since infection, the conditional mean 
numbers of the T cells, the HIV-infected T 
cells (both the latently infected and the actively 
infected T cells) and free HIV (Vl and V2)  given 
that the process has not drifted to extinction, are 
quite close to the corresponding numbers of the 
deterministic model; for the first five years, how- 
ever, there are some notable differences between 
the mean numbers of the stochastic model and 
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the corresponding numbers of the deterministic 
model. Nevertheless, the trend of HIV pathogen- 
esis as time since infection progresses are quite 
similar in both cases. These results indicate that 
one may use the deterministic model to assess the 
trend and asymptotic mean behavior of the free 
HIV and the un-infected as well as the infected 
T cells. 

(4) Comparing results from models with or without 
macrophage, it appears that in the presence of 
macrophage, the total numbers of free HIV and 
of HIV-infected T cells (both latently infected 
and actively infected cells) have increased 
considerably whereas the number of un-infected 
T cells has been reduced (See Table V); further, 
in the presence of macrophage, the probability of 
extinction of HIV by chance has been reduced 
(See Table 11). Clearly, this is a consequence of 
the fact that the infected macrophage can infect 
the T cells and would constantly release free 
HIV (i.e. V2 HIV) without serious damage to 
itself [17- 181. Thus one effect of the macrophage 
is to speed up the T cell depletion because 
of additional infection of T cells by infected 
macrophage: another effect of the macrophage 
is to increase the M-tropic HIV virus load so 
that both the total numbers of free HIV and of 
the HIV-infected T cells (latently infected and 
actively infected) will increase. Also, because 
of the increased virus load in the early stage, 
the presence of macrophage would significantly 
reduce the probability of extinction of free 
HIV by chance. These differences of results 
between models with and without macrophage 
decrease as the total numbers of Free HIV 
and T cells approach steady-state condition. For 
example, as shown in Figure 2d, after 10 years 
since infection, the number of uninfected T 
cells are almost identical between models with 
and without macrophage. This appears to be a 
consequence of the two observations: (1) After 
10 years since HIV infection, the total number of 
HIV is very large so that the relative contribution 
to the HIV pool from infected macrophages 
appears to be very small. (2) As shown in [12], 

in the late stage of HIV infection most HIV are 
T-tropic whereas macrophages contribute only to 
M-tropic HIV. 

(5) To assess impacts of HIV heterogeneity via 
increased diversity and variation by mutations, 
we have compared results from models with con- 
stant infection rates with models with variable 
infection rates by letting the infection rates sat- 
isfy some differential equations proposed in [9]. 
Our Monte Carlo results show clearly that there 
are significant differences between these models, 
especially in the late stage of infection. It appears 
that the larger the diversity and variation of 
HIV, the faster the decline of uninfected C D ~ ( + )  
T cells. 

(6) The Monte Carlo studies have also confirmed 
the role of lymph nodes as a source of HIV, 
especially in late stage when the number of pro- 
ductively infected T cells is very small and the 
T-tropic HIV is dominant. However, the net flow 
of HIV from lymph nodes do not seem to affect 
the pattern of HIV infection and progression. 
This may be the reason why many mathematical 
models [ I  ,5-101 can still provide good explana- 
tion of some important features of HIV patho- 
genesis even though these models did not take 
into consideration of the net flow of HIV from 
lymph nodes. 

Concerning the pattern of HIV pathogenesis, our 
Monte Carlo studies have shown that the early behav- 
ior of HIV infection is mainly determined by the 
values of the parameters No, and @') whereas the 
length of the asymptomatic stage were mainly deter- 
mined by the values of the parameter /?:'. On the 
other hand, the behavior in the late stage and the 
time period since HIV infection to AIDS are affected 
mainly by the parameter o, which controls the HIV 
diversity as HIV pathogenesis progresses although 
the lymph nodes may also have some effects, albeit 
much smaller. For example, to display an acute 
infection phase in the early stage with a high peak 
of virus copies (>4000/mm3), Nlo  should be kept 
between 1500 and 2500 whereas ,Of) be kept between 
0.0002 > P:') > 0.00016; in order for the period of 
asympotolnatic stage to be between 4-8 years, one 
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need to keep the parameter @il) between 4000 and 
8000 with > 2@. For the time since infection ~h~ research by W.Y. T~~ was by a 

AIDS period), if Qv = O and u, = O research grant from National Institute of Allergy and 
or u, = 10-16, then with the parameter values from Infectious Diseases/NIH, Grant No. R21 AI31869. 
Table 1 it takes at least 10 years for the number of 
uninfected T cells to drop to below 200 per mm3 of 
blood (See Table IV); if n, = l.OE - 14, then in 5-7 References 

years the number of uninfected T cells will drop to 
below 200 per mm3, and if a, = 1.OE - 15, then it 
takes about 8- 10 years for the number of uninfected 
T cells to drop to below 200 per mm3 (See Table IV). 

Concerning the probability distributions of the T 
cells and the free HIV virus, our Monte Carlo data 
have confirmed our previous claim that the HIV 
progression might be partitioned into three periods 
which we have referred to as the latent period, the 
transition period and the steady state period respec- 
tively. As in [I], the latent period seems again to 
cover the first two years since infection but now 
the transition period is much longer because of the 
complex nature of the model. These Monte Carlo 
results therefore suggest that when the process has 
reached the steady state, one may assume Gaussian 
distributions for the numbers of T cells and the free 
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