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Several AIDS cohort studies observe that the incubation period between HIV infection 
and AIDS onset can be shorter than 3 years in about 10% seropositive individuals, or 
longer than 10 years in about 10-15% individuals. On the other hand, many individuals 
remain seronegative even after multiple exposures to HIV. These distinct outcomes have 
recently been correlated with some mutant genes in HIV co-receptors (e.g., CCR5,CCR2 
and CXCR4). For instance, the mutant alleles A32 and m303 of CCRS may provide full 
protection against HIV infection in homozygotes and partial protection in heterozygotes; 
moreover, infected heterozygotes may progress more slowly than individuals who have no 
mutant alleles. Frequencies of these mutant alleles are not very low in Caucasian populations, 
therefore, their effects may not be insignificant. Based on available data, we propose a one- 
sex model with susceptibles classified as having no, partial or full natural resistance to 
HIV infection, and infecteds classified as rapid, normal or slow progressors. Our goals are 
to investigate the impact of such heterogeneity on the spread of HIV and to identify key 
parameters. The basic reproductive number Ro is derived from a simplified model. The 
relative contributions to Ro from the three groups of infecteds are investigated. We present 
a rough estimating procedure making use of limited data to estimate some new parameters 
specific to our model. Finally the rough estimating procedure is applied to an example 
focusing on CCR5-A32 in San Francisco gay men. The relative contributions to Ro among 
the three infected groups are compared using two different classifying criteria for infecteds. 
Under given assumptions, we conclude that, without any intervention, HIV infection will 
continue to spread in this population and the epidemic is mainly driven by the normal 
progressors. The transmission rates from infecteds are identified as key parameters. 
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1 INTRODUCTION within the first 2-3 years (rapid progressors). On 
the other hand, many individuals remain seronegative 

The studies of Sheppard, Lang and Ascher (1993) even after multiple exposures to HIV from infected 

and Phair (1994) find that about 10- 15% of HIV partners (Detels et nl. 1994, Paxton et al. 1996, 
infected individuals remain AIDS free for 10 years or Fowke et al. 1996). These distinct outcomes pose an 
longer (non-progressors), while another 10% progress interesting question to HIVIAIDS researchers: What 
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makes the difference? Genetic heterogeneity among 
individuals may contribute significantly. Several 
recent studies have demonstrated the protective 
effects of certain mutant genes on HIV infection 
orland AIDS pathogenesis. For instance, Samson 
et nl. (1996) show that a mutant allele, A32, of 
CCRS chemokine receptor gene is present at a high 
frequency of 0.092 in Caucasian populations. The 
frequencies of homozygotes and heterozygotes for 
the mutation are about 1% and 16%, respectively. 
However, in a cohort of HIV-1 infected Caucasian 
patients, the heterozygote frequency is 35% lower 
than in the general population and no homozygotes 
with two A32 alleles are found. These observations 
suggest A32 may provide, at least partial, resistance 
to HIV-1 infection. Dean et al. (1996) report the 
same mutant allele with a similar frequency (- 

10%) in the Caucasian population of the United 
States. Their results indicate that the homozygotes 
with two A32 alleles may escape from HIV-1 
infection and heterozygous infecteds may have a 
slower progression than other infecteds. 

Recently Quillent et al. (1998) characterize another 
CCRS gene mutation, m303, which is present among 
Europeans at an allele frequency of under 1%. Indi- 
viduals with genotype m303lm303 or A32/m303 
acquire resistance to HIV-I infection. Similarly, the 
m303 heterozygosity may give partial protection 
against infection and slow down the progression once 
infected. 

In another chemokine, CCR2, Smith et a[. (1997) 
describe a mutation, 641, which occurs at an allele fre- 
quency of 10- 15% among Caucasians and African 
Americans. Although this mutant gene dose not 
seem to provide protection against HIV-1 infection, 
it does indicate a 2-4 years delay of progression 
among infecteds. Moreover, the effects of CCR5- 
A32 and CCR2-641 on AIDS progression are deter- 
mined as genetically independent. Among rapid pro- 
gressors (AIDS onset less than 3 years since infec- 
tion), about 38-45% do not have either of the two 
mutant alleles, A32 and 641; while among non- 
progressors (avoid AIDS for 16 years or more), about 
28-29% can be explained by a mutant allele in 
either gene. 

In stromal-derived factor (SDF-1, the principal 
ligand for CXCR4), Winkler et al. (1998) also 
identify a gene variant, 3'A, that shows recessive 
restriction on AIDS pathogenesis. HIV infected indi- 
viduals with SDF1-3'A/3'A ( ~ O I ~ O Z ~ ~ O U S  recessive) 
genotype have a significantly lower relative hazard to 
AIDS onset and the protection is approximately twice 
that seen with CCR2 or CCRS protection. Moreover, 
CCR and SDFl protection seem to be additive. 

All the information above clearly indicates the 
existence of genetic heterogeneity with respect to 
susceptibility to HIV infection and to rate of AIDS 
progression in general populations. Such kind of het- 
erogeneity has not been studied in the modeling litera- 
ture. Our special interest in this paper is to investigate, 
using mathematical models. the impact of such het- 
erogeneity on the spread of HIV and to identify key 
parameters. To accommodate the genetic heterogene- 
ity on one side and being limited by data availabil- 
ity on the other side, we propose a deterministic 
one-sex model with susceptibles classified as hav- 
ing no, partial or complete resistance to HIV infec- 
tion and infecteds as rapid, normal or slow progres- 
sors. The details of the general model are presented 
in Section 2. Under some simplifying assumptions, 
the basic reproductive number, Ro (Diekmann et al. 
1990), is obtained in terms of model parameters in 
Section 3. Based on the limited available information 
and scarce data, a rough estimation of some param- 
eters is carried out in Section 4. In Section 5 the 
rough estimating procedure is applied to an example 
focusing on CCRS-A32 among gay men in San Fran- 
cisco. The relative contributions to Ro among the 
three infected groups are compared under two dif- 
ferent classifying criteria for infecteds. Finally some 
concluding remarks are provided in Section 6. 

2 MODEL DESCRIPTION 

As the first step in our efforts to incorporate 
genetic heterogeneity in epidemiological models, 
we focus on the simplest possible scenario, 
i.e., a homosexually-active homogeneously-mixing 
population, to investigate the role of differential 
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susceptibility and pathogenesis in HIV infected 
populations. 

Based on the level of natural resistance to HIV, 
susceptibles are classified into three groups: no resis- 
tance (SI), partial resistance (S2) and complete resis- 
tance (5'3). We assume that &-individuals never 
become infected. Similarly, based on AIDS patho- 
genesis, infecteds are classified into three groups: 
rapid progressor (II), normal progressor (12) and slow 
progressor (13). AIDS patients are assumed sexually 
inactive, thus they do not play a role in HIV transmis- 
sion and are not included in our model. Throughout 
this paper, the index i refers to group of susceptibles 
and the index j to group of infecteds. 

We assume that recruitment occurs at a constant 
rate, x, to replenish the three susceptible groups 
with respective fractions, g, (i = 1 . 2 , 3  and El  gi = 
1). which are related to the frequencies of relevant 
genotypes. Although genotype frequencies usually 
change with time due to random fluctuation or/and the 
disease, the frequencies in the homosexual population 
do not affect the frequencies among the newcomers, 
who are progeny of heterosexual populations. How- 
ever, heterosexual populations are not included in our 
model and the dynamic of g, is unknown. Hence, 
we assume, for convenience, that gi are constant. 
Because frequencies of mutant alleles are relatively 
small, it is expected that 

gl > 92 > g3; (1) 

that is, a large fraction of individuals has no resis- 
tance, a small fraction has partial resistance, and an 
even smaller fraction has complete resistance. 

All individuals are subject to the common per- 
capita natural removal rate, y .  The average num- 
ber of partners per unit time is denoted by ci (i = 

1 ,2 ,3 )  for Sf-individuals and by di 0' = 1 ,2 ,3 )  for 
Ij-individuals. The per-capita progression rates for Ij 
individuals are denoted by 3; 0' = 1, 2,3). Because 
11% is the average incubation time of $-individuals, 
it is obvious that 

71 > 7 2  > Y3. (2) 

The infectiousness of Ij individuals is reflected by 
the per-partnership transmission rate, 4 = 1,2,3).  
We assume that rapid progressors (1,) have the highest 

viral load, thus are most infectious; and that slow 
progressors (I3) have the lowest viral load, thus are 
least infectious. More specifically, we hypothesize the 
following relation: 

It has been shown that the viral load and the 
infectiousness may change dramatically during the 
incubation period. However, to incorporate this fact 
we would need to keep track of the "age" of infection 
for each individual and end up with a complicated 
model. For the sake of simplicity, here we assume gj 
are constant as in Anderson, Gupta and May (1991) 
and in McLean and Blower (1993). 

During the partnership between an S2-individual 
and an I,-individual, the transmission rate Jj of the 
infected partner is reduced to .xj (3j, with 0 < x, u, 1 to 
account for partial resistance to HIV in Sh-individuals. 
Newly infected Si-individuals ( i  = 1.2) join the three 
infected groups with respective proportions Ai, which 
satisfy 

We expect the new infecteds who come from S1 
to generate a larger fraction of rapid progressors (II) 
and a smaller fraction of slow progressors (I3) than 
those coming from S2, that is, 

Because we are looking at a homosexually active 
population, processes of pair formation and dissolu- 
tion are not followed explicitly, instead, a propor- 
tional mixing pattern is assumed. The total number 
of sexual partnerships is defined as 

For a susceptible, given he pairs (i.e., forms a 
pair with an individual), the chance of pairing with 
an I, -individual is di$ /A (Busenberg and Castillo- 
Chavez 1991). Thus, the force of infection for S,- 
individuals is 
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and for Sz-individuals is we further assume that disease status does not affect 

3 pairing behavior, i.e., c = d, as in Anderson, Gupta 

0 2 :  = ~ x j f i d l l j / ~ .  ( 8  and May (199 1 j and McLean and Blower (1993). In 

J = I  addition, we reparameterize the transmission rates via 

Hence, the rate of new infections in S, -individuals P:  = P2 3 Or more specifically, 

(i = 1,2), or the incidence from S, , is PI = b l P  and P3 = b3P. (13) 
Si : = ci S; oi . (9) Relation (3) implies that the multipliers 

These newly infected individuals enter the class I; 
0' = 1,2 ,3)  at the rate 

bl >_ 1 and b3 < 1. 

2 Currently there are no data that throw some light on 

p j : =  Cjj6,. (10) whether or not the reduction factors xj for Pj depend 
i=l on j .  To continue our goal of analyzing the simplest 

called "birth rate or the incidence of I,. We denote possible genetic-epidemiological model, we assume 
the overall incidence by S1 as that .xi = x for all j. Relevant variables can now be 

2 3 simplified as follows: 
R : = ~ s .  =CW, (11) 3 

i = l  j = l  (15) 

where equality holds because of condition (4). We are 
now ready to present our mathematical model: 

s, = g,7r - PSI - 6, 

s2 = g27r - ps* - S2 

S3 = 83T - pS3 

11 = Pl  - (P  + 71 111 

13 = p3 - (P + 73113 (12) J = I  

In order to make this model analytically tractable, 
E l  = cS lo l ;  

some simplifications are required. A simplified model S2 = cS202 = xcS201; 
and the derived basic reproductive number are pre- 
sented in the next section. 

To study the potential of disease spreading, we 
shall compute the basic reproductive number, Ro 

3 THE BASIC REPRODUCTIVE NUMBER (Diekmann et al. 1990), which indicates whether a 

Most individuals do not know their genotypes at loci 
related to HIV susceptibility orland AIDS pathogen- 
esis, hence, it is reasonable to assume that genetic 
heterogeneity does not influence pairing behavior. 
The assumption that all individuals of a given disease 
status have the same average number of partners per 
unit time, i.e., c, = c for all i and d, = d for all j .  
is thus not too limiting. To make our model simpler, 

disease may invade a population in demographic 
steady state when there is no disease present. The 
computation is done by linearizing our system (12) 
around the disease-free state and looking for condi- 
tions that guarantee the growth of the three infected 
classes, I,. The resulting 3-dimensional system is rep- 
resented in the following form: 
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where 

with 

The three eigenvalues of the matrix MD-' are 0, 
0 and A, where 

" + 'TI} (24) + --- 
~ + T I  P+Y2 p+73 

= K { Q l +  1 + Q 3 )  (25) 

with 

Because all elements on the right hand side of (24) 
are positive, it is clear X > 0. Therefore, X is the 
dominant eigenvalue of M D ' ,  which is also referred 
to the basic reproductive number, Ro (Diekmann et al. 
1990). If Ro > 1, then the disease will successfully 
invade. Hence, it is important to evaluate the relative 
contribution of each infected group, determined by b; , 
7-i and yj, to Ro. If Ql < 1 and Q3 < 1, then the group 
of normal progressors, 12, contributes the major part, 
K ,  to Ro. Under this situation, if K > I ,  then certainly 
Ro > 1, which implies the disease will spread; if 
K < 1, it may still be possible to have Ro > 1 when 

K,  Ql and Q3 are not too small. The definitions 
of 7 (2) and b; (14) imply that, in e l ,  bl 2 l 
and ( p  + 7 2 ) / ( p  + 71 ) < 1. The third term 7-1 /r2 may 
be larger or smaller than unity, depending on A;. 
Similarly in Q3, b3 < 1 and ( p  + 72)/(p + 73) > I ,  
while the third term r3/r2 is indeterminant. Overall, 
it is difficult to compare the magnitudes of Ql and Q3 
without knowing more precisely the values or ranges 

of the parameters involved. Further issues about Ro 
are discussed in Section 5, where known values of 
most parameters are used. 

4 ESTIMATION OF NEW PARAMETERS 

Estimates of most social-demographic and biomedical 
parameters (e.g., per-capita natural removal rate. p; 
recruitment rate, T ;  average number of partners per 
unit time, c; overall per-partnership transmission rate. 
P;  and overall per-capita rate of progression, y) 
are readily available in the literature. The additional 
parameters specific to our model include the dis- 
tributing fractions (g , )  for newly accrued susceptibles, 
per-partnership transmission rates (,;3,) and per-capita 
rates of progression (yj) for different infected groups, 
reduction factor (.x) for ;3,, and distributing fractions 
K;) for newly infected individuals. The gi can be esti- 
mated from allele or genotype frequencies. The defi- 
nitions of rapid, normal and slow progressors should 
give some hints about %. However, there is no direct 
information about 13, x and f ,  . For the moment we 
treat ,!?; and x- as free parameters. To have an edu- 
cated guess at the values of &, some "retrospective" 
information, like frequencies of protective genotypes 
among infecteds categorized by incubation duration 
(e.g., Figure 2 in Smith e t a / .  1997 and Figure 2(B) 
in Winkler et al. 1998), is used. Let lzji denote the 
observed fraction of infecteds in I j  who were in S i ;  
that is, h;; give "retrospective" information on A;. 
By definition, x;=, hji = 1 for j = 1.2,3.  The rough 
estimates of the fractions of rapid, normal and slow 
progressors, denoted respectively by ql ,  qz and q3 
with x;=, qj = 1, among all infecteds are also avail- 
able (e.g., Sheppard, Lang and Ascher 1993, Phair 
1994 and Smith et al. 1997). The hji and q; are usu- 
ally estimated based on data cumulatively collected 
over long periods of time in cohort studies. They do 
not refer to prevalence nor to incidence, but may be 
viewed as "average" fractions for the given period of 
time. Using our simplified model together with some 
additional assumptions, we now show how the "ret- 
rospective" h;; can be used to give an estimate of its 
"prospective" counterpart, Aj. 
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First we let Q:= S2/S1.  Since the majority of 
susceptibles are in S1, it is expected that 0 < 0 < 1. 
From expressions (1 l), ( 1  8) and (19), we obtain the 
following: 

The available hd and qj are obtained from cohort 
studies where individuals did not become seropos- 
itive all at the same time. Moreover, the longi- 
tudinal patterns of hji and qj are not known. To 
make rough use of these fractions, we assume that 
they are constant over time. This assumption helps 
relate them with the incidence associated with indi- 
viduals who seroconverted at about the same time. 
With the given qj,  the incidence of Ij can be 
expressed as 

In our notation and under the above-mentioned 
assumption, the "retrospective" information about the 
incidence is described by 

for j = 1,2 ,3 .  Rearranging the above equations, the 
Ai can then be expressed as 

Summing the above two equations over j and 
making use of condition (4), one obtains 

where 

are known quantities. Here the unknown quantity 
involving xQ can be evaluated by either 

Plugging the results of expressions (37) and (38) 
respectively into Equations (32) and (33) gives the 
required estimates for .f,. 

We are aware of a potential problem with this 
rough estimatillg procedure. The quantities 771 and 712 

come from q, and h,, which are assumed constant 
over time. This assumption may result in strange 
behaviors. For instance, from expression (37) one 
obtains 

1 1 - 71 
,*Q = - - 1 = -. 

771 r)l 
(39) 

With constant .w and 71, Equation (39) implies C )  

should be constant as well, which is not true in gen- 
eral, but is true when the population is at equilibrium. 
However, when the population is not at equilibrium, 
the estimates of fi, may still be reasonable if Q does 
not change much over time. 

Although the above estimating procedure does not 
have a sound statistical base and depends on strong 
assumptions, it may provide sensible guesses, which 
may be useful especially under the current situation. 
Furthermore, it is important to note that, in some 
sense, this is the best that we can hope for given the 
fact that the available clinical data were not collected 
to address the questions raised by our model. Lack of 
data should not constrain the type of questions that 
may be raised. In fact, we hope that our model results 
may motivate the collection of the data required here. 
The application of this rough estimating procedure 
will be illustrated in the following example. 

5 EXAMPLE 

We choose the population of gay men in San Fran- 
cisco as target with the focus on the mutation CCRS- 
A32 to illustrate the estimating procedure for Aj as 
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well as to assess the relative contributions of the three 
infected groups to Ro. Whenever possible, we take 
parameter values specific for this population: oth- 
erwise we take values from other Caucasian AIDS 
cohorts. 

As in McLean and Blower (19931, we use 1 / ~  = 32 
years, ri = 2000/year and l / a  = 5/3 years. As for 
the value of PC, because normal progressors are 
the majority in the infected population, we assume 
P2c can be described by the parameter values esti- 
mated for the whole infected population, e.g., P2c = 

PC = 0.62lyear. No information about P1 and P3, 
or equivalently about bl and 63, is available, thus 
they are considered as free parameters. According to 
data on homosexually active men in the San Fran- 
cisco City Clinic Cohort (SFCC) presented in Dean 
et al. (1996, Table 11), the frequencies of the three 
genotypes are estimated as gl = 0.75, gz = 0.23 and 
g3 = 0.02. Based on pooled data of Caucasians in five 
AIDS cohorts (including SFCC) presented in Smith 
et al. (1997, Figure 3), we define that rapid progres- 
sors have an incubation time of less than 3.5 years, 
slow progressors of more than 13 years, and nor- 
mal progressors of in between 3.5 and 13 years; i.e., 
l /y l  < 3.5 years, 3.5 years i 1/32 i 13 years and 
l /y3 > 13 years. Accordingly we choose yl = 1/2, 
7 2  = 1/8 and y3 = 1/16 as an educated reasonable 
guess. When the AIDS criterion of 1993 is applied 
to these data (top panel in Figure 3 of Smith at al. 
1997), the fractions of these three groups are approx- 
imated by ql = 0.115, qz = 0.645 and q 3  = 0.240, and 
the within group distributions are approximated by 
hl l  = 0.89, h12 = 0.1 1, hZl = 0.81, h22 = 0.19, h31 = 
0.72 and h32 = 0.28. These values are only approx- 
imations due to three reasons: 1) they are estimated 
from a figure, not directly from counts; 2) this figure 
is constructed based on pooled data of five AIDS 
cohorts; and 3) in the figure CCR2-641 mutation is 
also considered in addition to CCR5-A32 mutation. 
However, these are the best approximations that we 
can get from published, aggregated data. We note 
that the frequency of heterozygotes in two Euro- 
pean cohorts of seropositive Caucasians is 35% lower 
than in the general populations (Samson et al. 1996). 
Hence, we select the value of x = 1 - 0.35 = 0.65. 

With the above values of q, and h,, the q in (36) 
is calculated as 0.799, resulting in (I  + xB) = 1.254. 
Using (32) and (33), we obtain f i l  = 0.128, fi2 = 
0.655, f13 = 0.217, f21 = 0.063, f22 = 0.605 and fi3 = 
0.332. These fractions look reasonable and satisfy 
conditions (4) and (5). Together with other param- 
eters, the magnitude of Ro and relative contributions 
from the three infected groups can be assessed using 
(25). Because the value of x is suggested from geo- 
graphically distinct populations, we decide to treat x 
first as a free parameter and then take the value of 
0.65 for further investigation. 

As shown in Figure 1, the relative contribution 
of rapid progressors, Ql ,  is rather small, ranging 
between 0.05 and 0.23 with bl E [ I ,  41 and x E (0, I), 
and is more sensitive to bl than to x .  The upper 
bound of bl is chosen for illustrative purpose. With 
bS t (0, I] and x E (0, I),the relative contribution of 
slow progressors, Q3,  is mostly larger than Ql ,  but 
still less than unity with a range between 0 and 0.63. 
As can be seen from Figure 2, the value of Q3 is also 
more sensitive to bl than to x .  Because Q1 < 1 and 
Q3 < 1, the normal progressors contribute the most 
to Ro, with K evaluated by 

For 0 < x < 1, we obtain 1.95 < K < 2.50, which 
"guarantees" the disease will continue to spread in 
this population. 

When x is fixed at 0.65, the magnitude of Ro for 
different values of bl and b3 can be calculated using 
(25) as follows: 

which is also plotted in Figure 3. Because the coeffi- 
cient of b3 is about 11.5 times of that of bl , Ro is much 
more sensitive to value of b3 than to bl. With bl E 

[1,4] and b3 E (0, 11, we obtain 0.053 5 Ql 5 0 . 2 1 2  
and 0 < Q3 5 0.609, which are clearly less than 
unity. Hence, the normal progressors gives the major 
contribution to Ro with K = 2.308 > 1 (this fact is 
generally true for x E (0, 1) as presented in (40)). 
The resulting range of Ro is between 2.43 and 4.20. 
When bl = 1 and b3 = 1, we obtain Ro = 3.84 with 
Ql = 0.053 < Q3 = 0.609; while when bl = 4 and 
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FIGURE 1 Relative contribution to basic reproductive numher, Ro, from the rapid progressors, Q l ,  as a function of the corresponding 
multiplier of reference transmission rate, b, ,  and the reduction factor for the per-partnership transmission rate, x. 

b3 = 0.25, Ro = 3.15 with Q, = 0.212 > Q3 = 0.152. 
Thus, depending on the values of bl and b3, the rela- 
tive contribution of rapid progressors may be smaller 
or larger than that of slow progressors. 

The way we classify rapid, normal and slow pro- 
gressors based on incubation period in the above 
example is somehow arbitrary. However, there does 
not seem to be a standard classification presented 
in the literature. To investigate the effects of the 
classification, we now repeat the same evaluation 
with a different cut-off value, 216 years, for slow 

progressors. More specifically, we define rapid pro- 
gressors as before, but slow progressors have an 
incubation period of at least 16 years, and thus nor- 
mal progressors lie between 3.5 and 16 years. The 
new values for the rates of progression are cho- 
sen as 72 = 1/10 and yg = 1/18. The relevant frac- 
tions approximated from Smith et al. (1997, Figure 3) 
are q2=0.845, q 3  =0.040, h2, =0.79, h22 =0.21, 
h31 = 0.77 and h32 = 0.23. The prospective fractions 
are calculated as fil = 0.128, f i 2  = 0.834, fi3 = 0.038, 
f , ,  = 0.063, fiz = 0.890 and f23 = 0.047, which again 
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FIGURE 2 Relative contribution to basic reproductive number, Ro, from the slow progressors. Q3,  as a function of the corresponding 
multiplier of reference transmission rate, b3, and the reduction factor for the per-partnership transmission rate, x .  

satisfy conditions (4) and (5). When x is fixed at 0.65, 
the magnitude of RO for different values of bl and b3 
can be calculated by the following formula: 

which is also more sensitive to b3 than to b l ;  however, 
the coefficient of 03 is only about 2 times of that of b l .  
With hl E [ l ,  41 and b3 E (0, I ] ,  we obtain 0.034 5 
(21 < 0.136 and 0 < Q3 5 0.071, which are clearly 
less than unity. Moreover, Q l  and Q3 here are smaller 
than the earlier evaluation due to larger fiz and 
f22 in r2 and a smaller 7% For Q3 the additional 

influence comes from much smaller fi:, and fi3 in 
7 3  and a smaller 7 3 .  The contribution to Ro from 
normal progressors is K = 3.583, which is larger 
than the K = 2.308 in the earlier evaluation also due 
to larger fiz and fz2 in ~2 and a smaller y2. The 
value of Ro ranges between 3.70 and 4.32, which is 
also larger than the earlier evaluation. When bl = 1 
and 63 = 1, we obtain Ro = 3.96 with Ql = 0.034 < 
Q3 = 0.071; while when bl = 4 and b3 = 0.25, Ro = 

4.14 with Q1 = 0.137 > Q3 = 0.018. As before, the 
relative magnitude between QI and Q3 depends on 
the values of bl and b3. 
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FIGURE 3 B s i c  reproductive number, Ro, as a fi~riction oS the multipliers of reference transmission rate, bl and b-,, with the reduction 
factor for the per-partl~ership transmission rate, s = 0.65 

6 CONCLUDING REMARKS 

We have presented a novel model to incorporate 
genetic heterogeneity into HIV / AIDS epidemiology. 
The basic reproductive number for this model 
has been derived and the relative contributions 
from different infected groups have been discussed. 
Because published data are limited, values of some 
parameters are not available and have to be estimated 
in a rough way. Our rough estimating procedure 
for distributing fractions of infecteds, fi,., has 
provided reasonable estimates in the above example. 

To improve the accuracy of this estimation, data 
collected in a prospective manner, e.g., keeping track 
of how many S, individuals become I, individuals, 
would be very helpful. However, it may take a long 
time and a lot of efforts to observe a sufficient 
number of new infection cases and follow them 
until AIDS onset. The alternative is to develop more 
sophisticated estimating procedures to make use of 
the retrospective data. 

Among the three free parameters, i.e., x, bl and 
b3, the basic reproductive number Ro for the homo- 
sexual population in San Francisco seems to be more 
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sensitive to factors of transmission rates, bl and b3, 
than to the reduction factor, x. Therefore, more efforts 
should be devoted to the estimation of 6,. or equiv- 
alently the transmission rates Bj. When x = 0.65, the 
value of Ro lies between 2.43 and 4.32. depending 
on classifying criterion for infecteds and values of b, 
and b3. Anyway, it clearly indicates that HIV infec- 
tion will continue to spread in this population and 
the major contribution to Ro is from the normal pro- 
gressors, who are the majority among infecteds. This 
implies HIV prevention and treatment interventions 
should certainly include this major group. Further 
investigation on effects of treatment and vaccina- 
tion in this population will be published elsewhere 
(Hsu Schmitz 1999). The relative contribution from 
rapid progressors may be smaller or larger than that 
from slow progressors, again depending on classify- 
ing criterion for infecteds and values of bl and h3. 
A standard classifying criterion for infecteds will be 
welcomed and is awaited, so we will have less con- 
fusion when several studies are compared. 

The estimation and evaluation applied to the 
example are mainly for illustrative purpose. The 
assumptions required by the model and the rough 
estimating procedure might not all be satisfied in the 
example population. For instance. the fractions qj and 
hji might not be constant. Furthermore, treatment is 
commonly used in this population in recent years. Our 
model without considering treatment effects might 
not reflect the real epidemic. However, the main 
purposes of this exercise are: 1) to motivate clinical 
researchers to collect required data (e.g., -h, 4, x 
and j j )  and to standardize the classifying criterion 
for infecteds; and 2) to identify key parameters, e.g., 
01 and b3. 

In our model infecteds coming from S1 and those 
from S2 are pooled together. It would be more infor- 
mative, and probably also more realistic, to have 
three infected groups specifically for S1 -individuals 
and another three infected groups for &-individuals. 
However, this will give three equations more in the 
model and make the analysis and interpretation Inore 
difficult. Moreover, this requires additional parame- 
ters to be estimated from more detailed data, which 
are not readily available. 

As mentioned in the Introduction, there are several 
mutant alleles of different loci related to susceptibility 
to HIV odand rate of progression to AIDS. Thus, 
it may be more appropriate to consider a cornbined 
locus accommodating several relevant loci, instead of 
focusing on a single locus. For instance. Smith et al. 
(1997) combine the CCRS locus and the CCR2 locus 
into a compound locus. More data should also be 
collected to cover this aspect. 
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