
Journnl of Theorericnl Medicine, Vol. 2, pp. 307-315 
Reprints available directly from the publisher 
Photocopying permitted by license only 

@ 2000 OPA (Overseas Publishers Association) N.V. 
Published by license under 

the Gordon and Breach Science 
Publishers imprint. 

Printed in Malaysia. 

New Dimensions in Gompertzian Growth 
ZELJKO BAJzER~,~.* and STANIMIR VUK-PAVLOVIC~,~ 

aBiomathernatics Resource Core, b~epartment of Biochemistry and Molecular Biology, 'Stem Cell Laboratory, Mayo Clinic 
Comprehensive Cancer Center, Mayo Clinic and Mayo Foundation, Rochester, MN 55905, USA 

(Received I3 December 1998; In final form 25 February 1999) 

The Gompertz function was formulated to represent an actuarial curve, yet it often fits 
growth of organisms, organs and tumors. Despite numerous attempts, no consensus has 
been forged about the biological foundation of the broad applicability of the model. Here 
we revisit the Gompertzian notion of the "power to grow" and equate it with growth 
fraction. Aside from conferring biological interpretability to the model, this approach allows 
a conceptual separation of the growth fraction term from the kinetic term in the model, 
leading to the possibility of exploring the behavior of Gompertzian growth with fractal 
kinetics. Significantly, we found that empirical models such as the logistic model, the von 
Bertalanffy model and the von Bertalanffy-Richards model, together with the originative 
Gompertz model, are special cases of Gompertzian growth in fractal space. This finding 
permits an analysis of the growth kinetics of tumors which might affect model-based design 
of chemotherapy protocols. 
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1 INTRODUCTION 

Most of the 20th century saw the attempts to under- 
stand the kinetics of tumor growth through efforts to 
decide which of the numerous proposed tumor growth 
models "fits the growth data best". The major impetus 
for these attempts has been the need for a quan- 
titative description of tumor growth (cf. Simpson- 
Herren and Lloyd, 1970; Steel, 1977; Wheldon, 1988; 
Asachenkov et al., 1994), for the understanding of 
basic mechanisms regulating growth (cf. Bajzer et al., 
1984; Bajzer and Vuk-PavloviC, 1990; Michelson and 
Leith, 1996; Adam and Bellomo 1997), and for pre- 
diction of tumor response to therapy (cf. Sullivan 

and Salmon, 1972; Martin et al., 1990; Swan, 1990; 
Webb, 1992; Panetta, 1996, Cameron, 1997). The 
simplest models included nothing more than a term to 
encompass tumor growth (increase in volume, mass, 
or cellularity due to cell division) and a term to 
account for the loss of volume, mass, or cellularity by 
cell death and shedding. In a recent classification of 
deterministic and phenomenological models of tumor 
growth, we termed these models "empirical" (MaruSiC 
et al., 1994a). The two terms in empirical models, 
one describing tumor gain and the other tumor loss, 
are either based on simple biological assumptions 
or no assumption at all. The model by von Berta- 
lanffy is an example of simple assumptions - gain 
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in tumor mass proportional to tumor surface and loss 
of tumor mass proportional to tumor volume (von 
Bertalanffy, 1957; Vaidya and Alexandro, 1982). The 
model applied most broadly and most successfully 
in fitting to experimental and clinical data comprises 
virtually no assumptions applicable to tumors - the 
well known Gompertz model originally developed 
as an actuarial curve for the population of England 
almost two centuries ago (Gompertz, 1825). 

In the past, the field of mathematical modeling 
of tumor growth was relegated mostly to a rather 
special community of mathematicians, experimental- 
ists and clinicians. Nonetheless, in the last decade 
the field became re-energized by the always increas- 
ing advent of experimental and clinical data. Par- 
ticularly important have been advances in noninva- 
sive medical imaging (mammography, fluorography, 
magnetic resonance imaging, computerized tomog- 
raphy, ultrasound, etc.) with their high resolution 
that allows detection and follow-up of ever smaller 
tumors. Application of these techniques to popula- 
tion screening continues to amass large sets of data, 
admittedly still volumetric, that nevertheless contain 
a wealth of biomedical information waiting to be 
decoded by the application of mathematical models. 

Innovations in technology and data quality have 
been accompanied by fresh ideas about applica- 
tion of empirical mathematical models to the under- 
standing of tumor growth with the possible use in 
design and optimization of clinical protocols (Shochat 
et al., 1998). Initially, these models were applied 
in chemotherapy (cf Swan, 1990; Martin et al., 
1990), but more recently there are new approaches. 
Here, understanding the kinetics of tumor growth 
promises optimization of time-dependent chemother- 
apy regimens that are more effective in eradication 
of tumors an less toxic to vital functions, particularly 
hematopoiesis (Cojocaru and Agur, 1992; Agur et al., 
1992; Agur, 1998). The promise for application in 
cancer therapy begets the field a new prominence, but 
also the expectations of better mathematical insight, 
numerical reliability and robustness, biologic founda- 
tion and, particularly, interpretability. It is ironic that 
the oldest and arguably the most often applied mathe- 
matical model of tumor growth, the Gomperz model, 

is in want for a biological foundation as the basis 
for meaningful and applicable interpretation. It is no 
wonder that the quest for this foundation for Gom- 
pertzian growth has been a coveted goal of many over 
the decades. 

A century after publication, the Gompertz law was 
proposed as a model for biological growth (Wey- 
mouth et al., 1931; Winsor, 1932) and has been stud- 
ied since in numerous theoretical and applied papers 
dealing with organisms (e.g., Laird et al., 1965; Laird, 
1966; Wosilait et al.. 1992; Begall, 1997) and tumors 
(e.g., Laird, 1964; Durbin et al., 1967; Simpson- 
Herren and Loyd, 1970; Sullivan and Salmon, 1972; 
Norton et al., 1976; Gratton et al., 1978; Akanuma, 
1978; Michelson et al., 1987; Norton, 1988; Bassukas 
and Maurer-Schultze, 1988; Bassukas, 1994a, 1994b; 
MaruSiC et al., 1994a, 1994b, Olea et al., 1994; Parfitt 
and Fyhrie, 1997). The success of the model in 
describing growth of biological systems prompted 
the question whether there is in Gompertzian growth 
something inherently biological, an implied assump- 
tion that underlies the ability of the formula to con- 
form to the measured curves of biological growth. 

Recently, we reviewed attempts to derive the 
model from some basic principles (cf. Bajzer et al., 
1997). These attempts included derivations within 
the framework of "synergistic and saturable systems" 
(Savageau, 1979), cell kinetics (Frenzen and Murray, 
1986; Gyllenberg and Webb, 1989), and "senescence 
in biological hierarchies" (Witten, 1985). In these 
and other efforts (Xu, 1987; Makany 1991; Bajzer 
et al., 1996), the Gompertz formula was derived or 
approximated as a special case of more general mod- 
els. However, in each study at least one assumption 
was not more biologically founded than the Gompertz 
formula itself (Bajzer et al., 1997). The argument of 
entropy change was used for a derivation of asymp- 
totic Gompertzian growth (Calderon and Kwembe, 
1991), but the assumptions were not fully justified 
(Bajzer et al., 1997). Another entropy-based argu- 
ment led to a predicted advantage of the Gompertz 
model over the logistic model and the von Berta- 
lanffy model (Ling and He, 1993), but the predic- 
tion has not been tested experimentally (Bajzer et al., 
1997). An attempt to derive Gompertzian growth 
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from cell population heterogeneity and ideas from 
statistical mechanics (Kendal, 1985) failed because 
it was mathematically unsound (Bajzer et al., 1997). 
Clearly, a simple, biologically convincing, and math- 
ematically sound argument for Gompertzian growth is 
still needed. The first goal of this paper is to develop 
such an argument. In that, we consider growth as 
a macrophenomenon, devoid of microscopic mecha- 
nisms except for the basic fact that a growing bio- 
logical system consists of proliferating and quies- 
cent cells. 

Our point of departure is Gompertz' original idea. 
He developed his model from the insight that: ". . . the 
average exhaustion of man's power to avoid death [is] 
such that at the end of equal infinitely small intervals 
of time, he [loses] equal portions of his remaining 
power to oppose destruction which he had at the com- 
mencement of those intervals . . .." (Gompertz, 1825, 
p. 518). In 1932, Winsor formulated this insight for 
biological growth: "In equal small intervals of time 
the organism looses equal proportions of its power to 
grow" (Winsor, 1932). Although this postulate is intu- 
itively acceptable, the notion of the "power to grow" 
lacks biologic specificity. Probably because of that 
lack, the concept has not been developed much fur- 
ther; even Winsor himself used it only parenthetically 
to allude to the exponential behavior of the relative 
growth rate (Winsor, 1932). 

In this paper, we examine Winsor's postulate of 
growth within the confines of our inference that the 
"power to grow" is quantified by the directly mea- 
surable growth fraction, the fraction of proliferat- 
ing cells in the system. Here, the larger the growth 
fraction, the greater "the power" of the system to 
continue proliferating. On the basis of this interpre- 
tation of the "power to grow" and the notion that 
the increment in cellularity in a brief time inter- 
val is proportional to the number of proliferating 
cells and the time interval (first-order kinetics), we 
arrive at a plausible and mathematically rigorous 
derivation of Gompertzian growth. Scrutinizing this 
derivation, we realized that the first-order kinetics 
may be insufficient to account for the complexity 
of cell proliferation and loss. Consequently, our sec- 
ond goal was to investigate models still based on 

Gompertzian growth fraction, but with more general 
kinetics, such as fractal kinetics. We found that fractal 
Gompertzian growth leads to Piitter's (1920) growth 
model, which encompasses other "classical" mod- 
els (i.e. von Bertalanffy, the Bertalanffy-Richards, 
and the logistic model). In addition we discuss the 
self-similarity in Gompertzian growth (Bajzer 1999), 
and demonstrate that the recently invoked power-law 
growth (Hart et al., 1998) can be considered a limit- 
ing case of Gompertzian growth. 

2 GOMPERTZIAN GROWTH 

Along Winsor (1932), we assume that a biological 
system loses equal proportions of its "power to grow", 
P(t), in equal small intervals of time, At .  In mathe- 
matical terms, this assumption can be expressed as 

P(t, + At) - P(t,) P(t2 + At) - P(t,) - - 
P (tl) 

< 0. (1) 
P(t2) 

Here tl and tz are arbitrary times elapsed since 
the onset of growth, and P(t)  is assumed to be a 
continuous function. From Equation (1) it follows 
that, for any time t ,  

where the function +(At) > 0 does not depend on t. 
Assuming P(t)  # 0 for any finite t, Equation (2) can 
be considered as a functional equation of the form 
P(t  + u) = P(t)f (u), f (u) = 1 - +(u). This equation 
has a trivial constant solution, and a solution given by 
the exponential function (Acztl, 1966; Bajzer, 1999): 

Here b = - ln(l - +(I)) > 0. It is noteworthy that, 
in deriving (3), we have not used the assumption that 
At  is small. This means that if Winsor's postulate 
holds for small time intervals, it also holds for any 
time interval. 

At this point, the "power to grow" can be specified 
in terms of a biolo&ally more meaningful quantity; 
we interpret the "power to grow" as growth fraction, 
the ratio of the number of proliferating cells m(t) to 



the total number of cells n(t): 

One can consider P(t)  as the probability that cells 
proliferate at time t .  Since at the inception of growth, 
the growth fraction is 1 (because the initial cell itself 
divides), from Equation (3) it follows that 

Assuming first order kinetics, the increment in 
cellularity n(t) of the biological system within a brief 
time interval, At ,  is proportional to the number of 
proliferating cells and to At:  

n(t + At) - n(t) = ~ m ( t ) A t .  (6) 

This equation implies that both the actual prolifer- 
ation of cells and the loss of cells due to shedding and 
death in a brief time interval are proportional to the 
number of proliferating cells. For the rate of dying 
and shedding, this assumption might be unfounded 
and is being dealt with in the next section. 

Finally, we assume that the size of the system is 
allometric to its cellularity, 

Allometry takes into account the total tumor (or 
organism) volume (or mass) comprised of cells, extra- 
cellular space and fluids, vascular lumina, etc. When 
size is measured by cellularity, then obviously C = 1 
and a = 1. 

To obtain the rate of change in size, we combine 
Equations (4-7) to yield the differential equation+ 

For b # 0,  solution of Equation (8) is the 
Gompertz growth law that is most often written in 

:Equation (8) can be recast into a system of autonomous 
differential equations from the class of "synergistic and saturable 
systems" (Savageau, 1979): 

where x = k P l b .  Recently, we interpreted this system as "a par- 
ticularly simple dynamics in which the growth rate and the growth 
fraction decay rate are governed by the same rate constant" (Bajzer 
et al., 1997). This interpretation is inaccurate because x is only 
proportional, and not equal to the growth fraction P. 

equivalent forms (Gompertz, 1825; Winsor, 1932; 
Norton, 1988): 

y (t) = pqrr = p exp[- exp(c - bt)] 

where y(0) = yo > 0 and b , g , c  = I n g , p  = yoexp(g), 
q = exp(-g), r = exp(-b) are characteristic param- 
eters. For b = 0, the solution of (8) is exponential 
growth y (t) = yo exp(kt) which corresponds to the 
maximal growth fraction, P(t)  = 1. Such solution can- 
not be obtained directly by choosing real values for 
parameters in any of the expressions (9); for example, 
in the last expression one cannot find real values of 
yo, g ,  and b, so that this expression becomes a simple 
exponential function.$ Initial growth in many biolog- 
ical systems, including solid tumor appears exponen- 
tial (Laird, 1966; Wheldon, 1988). 

Traditionally, Gompertz function (9) was consid- 
ered as the solution of (8), but also of the autonomous 
differential equation 

which was often used in attempts to rationalize Gom- 
pertzian growth (Kendal, 1995; Xu, 1987; Gyllenberg 
and Webb, 1989; Calderon and Kwembe, 1991; Ling 
and He, 1993; Bajzer et al., 1996). 

Gompertzian growth is unique among growth mod- 
els because it can be viewed as a self-similar process. 
This becomes apparent when autonomous growth 
kinetics is represented by the functional, rather than 
differential, equation (Bajzer, 1999): 

Here growth kinetics is defined by a continuous 
function f (y, s) that relates the size y = y(t) of the 
system at time t to its size s time units later. If 
this function is self-similar in y ,  the solution of (1 1) 
is the Gompertz function or exponential function 
(Bajzer, 1999). Self-similarity, in its general meaning, 
implies invariance to scaling (cf. Bassingthwaighte 
et al., 1994). In our case, it is assumed that, for 

$However, if g is assumed to be dependent on b ,  i.e., g = k l b ,  
where k  does not depend on b ,  then limbdo y = yo exp(kt). 
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each s and for any scaling factor X > 0 ,  f [O; , s )  is 
a homogeneous function of the degree P(s) > 0 with 
respect to variable y: 

According to Mandelbrot (1983), for ,3(s) # 1 such 
function is self-affine with respect to exponent B(s) 
and to zero focal value; for P(s)  = 1 ,  it is a self- 
similar function in the strict sense. 

Equation (12) can be viewed as a functional 
equation for f that can be solved by setting y = 1 to 
yield f (y , s )  = a(s)y3("), a ( s )  = f (1 ,  s). Together with 
( 1  I ) ,  this defines the following functional equation 
in y :  

y(t + s )  = c u ( s ) l y ( t ) p .  (13) 

Solution of this equation is the Gompertz func- 
tion (9 )  with P(s)  = exp(-bs) = rS and a ( s )  = p1-3(s) 

(Bajzer, 1999). For b = 0 ,  it follows that $(s) = 1, 
which implies strict self-similarity. In this case, the 
solution of (13) is an exponential function. 

3 GOMPERTZIAN GROWTH WITH 
FRACTAL KINETICS 

The essence of Gompertzian growth is the exponen- 
tial decay of the "power to grow" or, in our inter- 
pretation, of the growth fraction. Staying with this 
interpretation, we examine Gompertzian growth when 
cell proliferation does not obey the first order kinet- 
ics. Rather, the change in cellularity of the system 
is proportional to the power of the number of pro- 
liferating cells, i.e., growth obeys fractal kinetics (cf. 

Kopelman, 1988; Ahmed, 1993; Dewey, 1997): 

n ( t  + A t )  - n ( t )  = n m d ( t ) A t ,  d > 0 .  (14) 

In Equation (14), all change in cellularity is still 
related to the number of proliferating cells at any 
given time, but changes due to cell death and shed- 
ding can be accommodated with more flexibility 
allowed by the exponent d [compare to Equation (6)].  

Now, Equations (14) and (7),  together with (4)  and 
(5),  yield 

y' = k C t y "  y(0) =yo (15) 

with 

k = C ' - ' U K ,  S = (d  + a - l ) / a ,  y = bd > 0.  

(16) 
Equation (15) describes growth in terms of Win- 

sor's postulate, of our substituting "power to grow" 
for the growth fraction, and of fractal kinetics (14). 

For 6 # 1, Equation (15) can be solved by the 
standard separation of variables yielding 

yl-* = k ( l  - 6 ) / y  + yAe6 - k ( l  - S)e-?t/y. (17) 

This equation implies that for all t > 0 the real 
solution exists only if the constant term in (17) is 
positive, i.e. if 

K = k ( l  - 6 ) l y  + yip* > 0 .  (18) 

The solution of (15) assumes the form: 

y ( t )  = A(l  + B ~ C ' ) ~ ,  (19) 

where 

D = 1 / ( 1  - 6) .  B = k / ( y l K ) ,  A = K ~ ,  

Aq = * / / ( I  - 6).  (20) 

Function (19) is known as Putter's growth func- 
tion (Piitter, 1920; cf. Lebeau et al., 1986; Jolicoeur 
and Pirlot, 1988). Putter's function encompasses 
also the von Bertalanffy growth model and the von 
Bertalanffy-Richards model. Indeed, for D < 0 (6 > 
I), it follows that B > 0.  Then, from Equation (19) 
one obtains 

e -'" [[O; / A ) ' / ~  - 1 ] / B  (21) 

which, reintroduced into Equation (15), yields the 
autonomous differential equation 

Y'  = y1y [ 1  - ( ~ l W ' ~ 1  (22) 

known as the von Bertalanffy-Richards growth model 
(cf. Turner et al. 1976; Bajzer et al., 1996). For D = 
- 1, (6 = 2),  this equation becomes the standard logis- 
tic equation with the carrying capacity A. 



Analogously, for D > 0, (6 < I), one obtains 
the generalized von Bertalanffy model (cf. Bajzer 
et a/., 1997), 

6 
Y' = b l ~  - 71Y? (23) 

with bl = k/lB 1 .  For 6 = 213 (which implies D = 3 in 
(18)), this becomes the standard "surface rule" von 
Bertalanffy model based on the notion that volume 
buildup is proportional to surface area. 

For 6 = 1, the function (19) with (20) is not defined. 
However, solution of Equation (15) is the original 
Gompertz function (9). It is noteworthy that 6 = 1 
does not imply fractal kinetics, because (d + a - 
l ) /a  = 1 yields d = 1. In other words, the original 
Gompertz model is devoid of fractal kinetics. 

On the basis of the preceding discussion, we con- 
clude that Equation (15), Gompertzian growth with 
fractal kinetics, actually describes the logistic and 
the von Bertalanffy models and their generalizations. 
For 6 # 1, Equation (15) is equivalent to autonomous 
differential Equations (22) and (23) which, together 
with the original Gompertz model [(15) with 6 = 1, or 
(lo)], constitute what we named the generalized von 
Bertalanffy-logistic model (MaruSiC et al., 1994a). It 
is interesting that in a recent study of growth of pri- 
mary breast cancer, Equation (15) described the data 
most adequately with 6 = 514 (Spratt et al., 1993) 
indicating that in this case growth was described by 
the von Bertalanffy-Richards law. In a study of tumor 
xenografts (Michelson et a/., 1987), the Bertalanffy- 
Richards model (termed "modified Verhulst model") 
yielded 6 = 1.005, very close to the Gompertz model 
(6 = 1); in one case, 6 = 1.5 was found. 

4 POWER-LAW GROWTH, A LIMITING 
CASE OF GOMPERTZIAN GROWTH 

Recently Hart et al. (1998) obtained the growth law 
for primary breast cancer from distribution of tumor 
sizes determined by mammography. The authors 
found that the Gompertz model and the logistic model 
could not describe this distribution as well as the 
power-law growth (Mendelsohn, 1963) that was pre- 
viously used to describe the growth of mammary 
tumors (Dethlefsen et al., 1968). 

Here we note that the power-law growth, 
defined by 

can be considered a limiting case of Gompertzian 
growth. Indeed, in the limiting case b  + 0, which 
implies P( t )  --t 1, Equation (15) reduces to (24). 
When P ( t )  = 1 for all t ,  it means that the growth 
fraction is constant, contrary to Gompertzian notion 
of diminution of the "power to grow". 

Consistent with power-law growth (24) and fractal 
kinetics (14), one can also assume that the growth 
fraction is inversely proportional to the power of the 
number of cells: 

Simple algebra reveals that 7 in (24) is related to 
exponents a > 0 in (7) and d > 0 in (14) as 17 = 

d(1 - &)/a + 1 - l l a .  Thus, the power-law growth 
could be considered consequence of fractal kinetics 
or first order-kinetics (d = 1) and of the growth frac- 
tion that decreases with cellularity as in (25). Despite 
the decrease in growth fraction, the overall growth 
given by (24) is an ever increasing function with- 
out asymptote: 

This function is defined for all t ,  when q < 1, and 
only for a limited time if 7 > 1. Hart et a/. (1998) 
found 7j = 0.5 and Dethlefsen et al. (1968) also found 
q smaller than one. 

5 DISCUSSION 

We have used the notion of the "power to grow" and 
interpreted it as growth fraction, a biologically mean- 
ingful quantity that is easy to perceive and measure. 
This interpretation allowed us to separate conceptu- 
ally the growth fraction from growth kinetics in the 
Gompertz model, resulting in the demonstration that 
inherent in Gompertzian growth is the elementary 
natural principle of cell division and its diminishing 
probability as the system grows. Another important 
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consequence of the separation of the growth fraction 
from growth kinetics is the opportunity to analyze 
Gompertzian growth under different kinetic regimens. 
The classical Gompertz model implies first-order 
kinetics as inherent in human reproduction. Yet, vol- 
ume growth of organisms and tumors takes place in 
fractal space of noninteger number of dimensions (cf. 
Kopelman, 1988; Vicsek, 1992; Nonnenmacher et al., 
1993). We found that Gompertzian growth, general- 
ized for 6 # 1. includes other well known empirical 
deterministic models such as the logistic model (6 = 

2), models of von Bertalanffy (6 < 1; 6 = 2/3) and 
the von Bertalanffy-Richards model (6 > 1). Thus, 
for biologic (organism, tumor) growth, the originative 
Gompertz model is just a special case of Gompertzian 
growth that is based on fractal kinetics. In practi- 
cal terms, when, for example, the Gompertz function 
does not fit the data and the von Bertalanffy-Richards 
function does, it suggests that the cell population (or 
volume) changes size within a fractal space. 

Beyond the new insights, extension of the Gom- 
pertz model into Gompertzian fractal growth pro- 
vides new opportunities to study the natural history 
of organisms, tissues and tumors. For example. from 
experimentally determined values of the growth frac- 
tion and from measured growth curves, it is now 
possible to deduce the fractal signature of the growth 
space within a biological system. 

We noted that the power-law growth (Mendelsohn, 
1963; Hart et al., 1998) can be interpreted as a limit- 
ing case of Gompertzian growth with growth fraction 
constant. However, this is not the only interpretation 
of the power-law growth. When we separated concep- 
tually the growth fraction from the kinetic equation, 
we found that the power-law growth is consistent also 
with a diminishing growth fraction that is propor- 
tional to the negative power of the total cell number. 
Such growth fraction behavior could be essentially 
different from the exponential growth fraction decay 
that characterizes Gompertzian growth. 
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