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A neural cell detection system (NCDS) for the automatic quantitation of fluorescent lymphocytes in
tissue sections was used to analyze CD26 expression in muscle-invasive T-cells. CD26 is a cell surface
dipeptidyl-peptidase IV (DPP IV) involved in co-stimulatory activation of T-cells and also in adhesive
events. The NCDS system acquires visual knowledge from a set of training cell image patches selected
by a user. The trained system evaluates an image in 2 min calculating (i) the number, (ii) the positions
and (iii) the phenotypes of the fluorescent cells. In the present study we have used the NCDS to identity
DPP IV (CD26) expressing invasive lymphocytes in sarcoid myopathy and to analyze the associated
cell surface phenotypes. We find highly unusual phenotypes characterized by differential combination
of seven cell surface receptors usually involved in co-stimulatory events in T-lymphocytes. The data
support a differential adhesive rather than a co-stimulatory role of CD26 in muscle-invasive cells. The
adaptability of the NCDS algorithm to diverse types of cells should enable us to approach any invasion
process, including invasion of malignant cells.
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1. INTRODUCTION

Dipeptidyl-peptidase IV (DPP IV, CD26) is a cell

surface transmembrane protein characterized by a short

N-terminal cytoplasmic domain and a long extra cellular

region with a sugar rich and a Cys-rich domain. A third

260 aminoacid C-terminal extra cellular region was

found to exhibit DPP IV enzyme catalytic activity,

(Hegen et al., 1990; Darmoul et al., 1992; Tanaka et al.,

1992). DPP IV is a member of the prolyl oligopeptidase

family which is defined by the requirement of the

catalytic triad in the unique order Ser, Asp, His (Abbott

et al., 1994). The enzyme cleaves amino-terminal

dipeptides with either L-proline or L-alanine in the

penultimate position.

DPP IV has been shown to be expressed by a variety of

cell types including T- and B-lymphocytes, activated NK

cells, and by epithelia of the intestine, the prostate, and the

proximal tubuli of kidneys (Stein et al., 1989; Hegen et al.,

1990; Bühling et al., 1995). DPP IV is implicated in

inflammatory processes and appears to play a part in the

progression of certain malignant tumors (Morrison et al.,

1993; Iwata and Morimoto, 1999). Given the cellular

immune response (Morimoto and Schlossman, 1998), an

important function of DPP IV is its role as a co-

stimulatory cell surface protein that is involved in the

activation of the T-lymphocyte.

Within the T-cell activation cascade, antibody-induced

stimulation of DPP IV leads to tyrosine phosphorylation

of several intracellular proteins with a similar pattern to

that seen after stimulation of the T-cell antigen receptor

(TCR)/CD3 complex of CD4- or CD8-expressing T-cells

(Hegen et al., 1997). Given stimulation of T-cells via this

complex, CD26 provides a true co-stimulatory function

that can up-regulate the signal-transducing properties of

the TCR.
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In peripheral blood the T-lymphocytes that express DPP

IV are either CD4 or CD8 positive cells, and, as a rule

show co-expression of intact TCR/CD3 complexes. Hence

a T-cell that can be co-stimulated via CD26 is a

CD4+/CD3+/TCR+/CD26+, or a

CD8+/CD3+/TCR+/CD26+ T-cell. In addition, the majority

of these T-cells also express CD2, which can provide an

alternative pathway of T-cell activation (Davis et al.,

1998).

In the present paper we have addressed the expression

of DPP IV and DPP IV-associated cell surface phenotypes

in muscle-invasive T-lymphocytes. Multi-epitope imaging

microscopy (Schubert, 1992) was used to co-localize

seven different cell surface proteins including CD26 on

the cell surface of these muscle-invasive T-cells. The latter

technology was coupled to a new learning algorithm

(Nattkemper et al., 1999, 2000a), which automatically

recognizes T-cells within tissue sections obtained from

patients suffering from chronic inflammatory muscle

disease. We have selected chronic sarcoid myopathy,

which represents a human disease type showing T-

lymphocyte invasion of the muscle tissue. The T-

lymphocytes are present to a large extent within the

connective tissue between the muscle fiber fascicles, a

space that is defined as the perimysium. In addition,

sarcoid myopathy is characterized by the formation of

giant cells, that is supposed to be driven by the

cooperation between T-cells and macrophages (Wahl-

strom et al., 1999).

In the present study we have examined whether muscle-

invasive T-lymphocytes exhibit a cell surface phenotype

required for T-cell activation and CD26-associated T-cell

stimulation. Using a library of seven different monoclonal

antibodies we find that the majority of the T-cells do not

co-express the cell surface receptor sets, which would be

required for T-cell activation via the co-stimulator

molecule CD26. Instead these T-cells express unusual

cell surface phenotypes by heterogeneous receptor

combinations, most of which are minus-variants of the

phenotypes found in the blood. We suggest that these

“unusual” cell surface phenotypes are involved in

differential adhesion mechanisms and T-cell migration

rather than T-cell activation.

We also describe a learning algorithm, by which T-cells

within the tissue can be automatically recognized and

quantified. Given that a large number of tissue sections

have to be mapped by multi-epitope imaging, the

algorithm opens the possibility for high-throughput

screening of invasive lymphocytes in tissues (Nattkemper

et al., 2000a). The adaptability of the algorithm to diverse

types of cells should enable us to approach any invasion

process, including invasion of malignant cells.

2. IMAGING METHODS

In order to address the CD26-associated phenotype of

muscle-invasive T-cells, we have applied seven mono-

clonal antibodies directed against cell surface antigens

(CD antigens) in cryosections of diagnostic biopsies. The

antigens are listed in Table I. All antibodies were directly

conjugated to dyes and applied to the tissue sections as

described earlier (Schubert, 1992). Each fluorescent signal

was recorded as a digitized image by a cooled CCD

camera. Fluorescent cells were either localized by medical

experts using a mouse-delineation of the fluorescent area,

or were automatically recognized by the learning

algorithm described below.

3. AUTOMATIC T-CELL FLUORESCENCE

PATTERN RECOGNITION

To identify CD26 positive T-cells and other T-cell types in

tissue sections we used a modular computer system that

detects the positions of up to 95% of all fluorescent

lymphocytes in one given input image M, the digitized

fluorescence micrograph (Nattkemper et al., 1999). The

first module of the cell detection system is a trained cell

classifier that classifies a square image region p of

15 £ 15 pixels to a so called evidence value CðpÞ [ ½0; 1�

representing the probability that the center of p is occupied

by a fluorescent cell. The second module evaluates the

evidence values of all points in M to a list of positions of

fluorescent lymphocytes. The positions of the detected

cells are visualized on a screen and stored in a database. In

the following subsections we describe the cell detection

system briefly, see (Nattkemper et al., 1999, 2000b) for

details.

TABLE I CD cell surface antigen analyzed in this study

CD antigen Specificity Monoclonal antibody clone

CD 26 DPP IV; adhesive deaminase binding protein L272
CD 8 Co-recognition receptor for MHC class I with TCR B9.11
CD 4 Co-recognition receptor for MHC class II with TCR 13B8.2
CD 11 b a M integrin chain of MAC-1 complex, C3bi receptor “CR3” 44
CD 19 Receptor of the Slg family, modulates B cell responsiveness J.4.119
CD 2 SRBC receptor, ligand for LFA 3 (CD58) 39C1.5
CD 3 Signal transduction receptor complex associated with TCR UCHT1
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4. TRAINING OF THE CELL CLASSIFIER

The cell classifier C( p ) is a trained artificial neural

network (ANN). Neural networks have been shown to be

powerful classification tools in many industrial computer

vision applications. In biomedical image analysis the

application of ANNs is not frequent, and only recently

applications have been published (Sjoestroem et al.,

1999).

To map an image region p to its evidence value, six

numerical feature values are calculated for p and

combined to a so called feature vector x [ IR 6. Here the

term “vector” describes a set of numerical elements as

used in the field of computational pattern recognition. The

computation of the feature vector is described in 12. The

trained ANN computes the evidence value for p by

mapping its feature vector x to C(x) using the learned

classification mappings C : IR6 7! IR.

The ANN used for cell classification is of Local Linear

Map-type (LLM) which was introduced by Ritter (1991)

and has been shown to be a powerful tool in fast learning

of non-linear mappings,

C : IRdin 7! IRdout ;

such as classification tasks in Computer Vision appli-

cations (Heidemann and Ritter, 1999). The LLM-approach

was originally motivated by the Kohonen Self-organizing

Map (Kohonen, 1989) with the aim to obtain a good map

resolution even with a small number of units. In the LLM

learning scheme unsupervised and supervised learning are

combined in contrast to the widely used multi-layer

perception trained with back-propagation (Rummelhart

et al., 1986). The LLM is given through

win
i [ IRdin ;wout

i [ IRdout ;A1 [ IRdinxdout ; i ¼ 1. . .n
� 	

and a triple

vi ¼ win
i ;w

out
i ;Ai

ÿ �
is called node. In the present work the LLM parameters

are din ¼ 6, dout ¼ 1, n ¼ 25.

By calculating

CðxÞ ¼ wout
k þ Ak x 2 win

k

ÿ �
the input feature vector x is mapped to the evidence value

C(x ). k holds

k ¼ arg min kx 2 win
i k

� 	
;

so win
k is the nearest neighbor to input x. An illustration is

given in Fig. 1.

The three free parameters of each of the n nodes

win
i ;w

out
i ;Ai; i ¼ i. . .n

ÿ �
are trained with a pre-selected set G of m (input, output)-

pairs,

G ¼ {ðxa; yaÞ};a ¼ 1. . .m

that is composed of two subsets G ¼ Gpos < Gneg. The so

called positive set

Gpos ¼ xpos
a ; 1

ÿ �� 	
consists of feature vectors xpos

a computed (see below)

from image patches centered at positive training

samples for fluorescent cells, together with the target

output value

ypos
a ¼ C xpos

a

ÿ �
¼ 1

of the classifier. The negative set

Gneg ¼ xneg
a ; 0

ÿ �� 	
consists of feature vectors xneg

a computed from non-cell

image patches (see below) and their target classification

output value

yneg
a ¼ C xneg

a

ÿ �
¼ 0:

To obtain 15 £ 15 sized image patches for computing,

the feature vectors xpos
a [ Gpos are an interactive program

displaying the digitized microscope fluorescence images

and allowing users to select cell centers with the aid of a

mouse cursor. The set G neg is then generated automati-

cally by randomly selecting image points in a minimum

distance of rneg ¼ 5 pixels from any of the selected cells of

G pos. For each of these randomly selected points a feature

vector xneg
a is computed by the same procedure as for G pos.

In one training step of the LLM first one input–output pair

ðxa ; yaÞ is selected randomly from the training set

G ¼ {ðxa; yaÞ}, secondly the best-match node vk is

found, and third its weights are changed according to the

FIGURE 1 Example illustrating a Local Linear Map (LLM)
approximating a mapping with six nodes. The LLM’s nodes win

i form
Voroni cells of the input space. The mapping into the output space is
performed by a local linear transformation given by Ak and wout

k : First, the
nearest neighbor win

k to the input is selected, then the input is mapped via
the coupled matrix Ak.
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following learning rules

Dwin
k ¼ 1 in xa 2 win

k

ÿ �
ð1Þ

Dwout
k ¼ 1outðya 2 CðxaÞÞ þ AkDwin

k ð2Þ

DAk ¼ 1Aðya 2 CðxaÞÞ
xa 2 win

k

ÿ �T

kxa 2 win
k k

2
ð3Þ

with 1 in, 1out, 1A [ ½0; 1� as exponentially decreasing

learning step sizes. Looking at the rules, one can observe

that learning rule (1) is an online version of k-means

(Moody and Darken, 1989) for positioning the n centers of

win
i , And (2) and (3) adjust a linear mapping specified by

vector wout
ki and matrix Ak in the vincinity (Voroni cell)

around the best match node.

5. CALCULATION OF CELL FEATURES

In the development of a classification system a suitable

feature computation is crucial for the performance of the

system. In the context of this work the cell features should

be robust against small changes of size, intensity and

curvature of the fluorescent cells in the 15 £ 15 patches.

FIGURE 3 (caption opposite)

FIGURE 2 Eigencells calculated from manual mouse-click selection of
120 cross-sectioned lymphocytes.
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Because the cells are in muscle tissue, their size, intensity

and shape show considerable variation. One way to map an

image point p to a feature vector x [ IR6 is to calculate

the overlaps of a surrounding image region of size

15 £ 15 with a set of 6 filters, such as Gabor filters (Dunn

et al., 1994; Lee, 1996) or steerable derivatives of 2-

dimensional Gaussians (Rao and Ballard, 1995). The

disadvantage of such filters is that they contain several

parameters (radius, orientations, etc.), which have to be

fitted according to the particular application. This is

difficult and/or time- consuming for a non-expert user. To

avoid such problems we use here a Principal Component

Analysis (PCA) on a set of 15 £ 15-sized image patches

of centered cells, which is a data-driven approach.

In this application the PCA-technique uses 6 eigen-

vectors ul [ IRN 2

(so called “eigencells”) of the

FIGURE 3 The detection of CD26 fluorescent lymphocytes in muscle tissue is illustrated. Figure 3A shows the input image of invading lymphocytes in
muscle tissue. The cells were immunolabeled with anti-CD26. The evidence map computed by the LLM is illustrated in Fig. 3B. The evidence values are
scaled to [0;255] for visualization purposes. A high value stands for a high evidence of a fluorescent cell. The finally detected positions of fluorescent
cells as indicated by white boxes are shown in Fig. 3C. A typical image showing five lymphocytes is shown in the inset on the right hand side of each
picture.

TABLE II Simultaneous detection of 24 T-cell phenotypes expressed different combinations of seven different cell surface receptors

Combinatorial phenotype

Frequency (%) of T-cell in muscle CD2 CD3 CD4 CD8 CD11b CD19 CD26

35.1 0 0 1 0 0 0 0
29.9 1 0 0 0 0 0 0
15.2 1 0 1 0 0 0 0
5.0 1 1 1 0 0 0 0
3.1 1 0 0 0 1 0 0
2.0 0 0 0 0 1 0 0
1.8 1 0 0 1 0 0 0
1.5 1 1 0 1 0 0 0
1.3 1 1 0 1 0 0 1
1.3 1 1 1 0 0 0 1
1.1 0 0 0 0 0 1 0
0.9 1 0 1 1 0 0 0
0.9 1 0 1 1 0 0 1
0.7 1 1 0 0 0 0 0
0.7 0 1 1 0 0 0 0
0.7 0 0 1 0 1 0 0
0.6 1 0 0 0 0 0 1
0.4 1 1 1 1 0 0 0
0.4 0 0 1 0 0 0 1
0.4 1 0 0 0 1 0 1
0.2 1 0 1 0 1 0 1
0.2 1 0 0 0 0 1 0
0.2 1 0 0 1 0 0 1
0.2 0 0 1 1 0 0 1
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covariance matrix of 15 £ 15 image patches. The patches

are the 15 £ 15-sized image regions around the

handselected image points of fluorescent cells which

were selected for training (see above). The usage of such

eigenvectors is a well-known technique for detection tasks

(Turk and Pentland, 1991; Varchim et al., 1997). A listing

of the eigenvalues in descending order reveals that the

majority of the variance in the image data is described by

the six eigencells of the six highest eigenvalues. Figure 2

shows 6 eigencells computed from the training set. These

are taken to generate the 6-dimensional feature vector x

for an image point by scalar multiplication of its 15 £ 15

neighborhood with the six eigencells.

6. CELL DETECTION IN FLUORESCENCE
MICROGRAPHS WITH THE LLM

For the full automatic detection of CD26 positive cells and

other T-cell types in one given micrograph every image

point p is mapped to its evidence value [0,1] by calculating

the LLM output CðxÞ [ ½0; 1� for its feature vector x of its

surrounding 15 £ 15-image patch. Mapping evidences of

all points to their corresponding image positions we

achieve the so-called evidence map. A point pe, in the

evidence map, which has the highest evidence value C(x )

within a 5-pixel radius above a given evidence threshold

te ¼ 0:5; is the result position of the center of one

fluorescent cell, so C(x ) obeys

CðpÞ . 0:5 ^ CðpÞ ¼ arg max{Cðp0Þ} dðp0; pÞ , 5

One input micrograph (A), its evidence map (B) and the

detected fluorescent cells (C) are shown in Fig. 3.

7. RESULTS AND DISCUSSION

In the present paper we have analyzed invasive

T-lymphocytes in muscle tissue for the expression of

DPP IV (CD26). To analyze the cell surface receptor

expression patterns of these T-cells we used the multi-

epitope imaging approach (Schubert, 1992), in a new form

working at the level of single clearly identifiable cells

(details will be published elsewhere). Here we used a

limited number of seven monoclonal antibodies to

simultaneously detect seven different T-cell surface

proteins. By this approach we have addressed the role of

CD26 as a co-stimulatory molecule in the T-cell activation

cascade, in order to examine, whether muscle-invasive

T-cells in sarcoid myopathy do or do not show the

expected CD26- associated patterns of receptor

expression. This study extends the data obtained by the

analysis of lymphocyte associated proteins found to be

expressed in muscle tissue (Schubert et al., 1989, 1993;

Schubert, 1991; Haars et al., 2000).

The muscle-invasive T-cells were found to be present as

low-density infiltrates in the perymysium of the muscle

tissue. Surprisingly, the majority of these cells were

negative for CD26, indicating that activation of T-cells via

the CD26 dependent pathway does not play a key role in

this disease. CD19+ B-lymphocytes were rare and these

did not express CD26. Together, only 5, 4% of the T-cells

expressed CD26 (see Table II). These cells showed

substantial variation according to differential expression

of the six other cell surface receptors (CD2, CD3, CD4,

CD8, CD11b). Among the CD26-positive cell fraction, the

co-expression of CD3 and CD4 or CD8 and CD3 was seen

most frequently, whilst few CD26-positive cells showed

co-expression of CD4 or CD8 alone. An unusual T-cell

type was seen which shows co-expression of CD2, CD1lb

and CD2.6, whilst CD4, CD8 and CD3 were absent in

these cells. Finally the vast majority of T-cells, which were

negative for CD26 (,95%) also showed a highly unusual

phenotype characterized either by expression of CD4

alone, or CD2 alone, whilst co-expression of the CD3

receptor complex was restricted to only a minor fraction of

CD4-positive and CD8-positive T-lymphocytes (for

summary see Table II).

Together these data show, that muscle-invasive

T-lymphocytes in sarcoid myopathy show a highly

unusual phenotype at two levels: First, T-lymphocytes in

the peripheral blood, that express CD26, are CD4-positive

or CD8-positive T-cells which are also characterized by

co-expression of the CD3 complex, as a rule, and most of

these T-cells also show co-expression of CD2, which is

implicated in an alternative pathway of T-cell activation

(Davis et al., 1998). In the present study it is shown that

within the minor fraction of muscle-invasive T-cells,

which show the expression of CD26 (5, 6% of all cells),

only approximately one half of these cells do show the

CD2/CD3/CD4/CD26 or the CD2/CD3/CD8/CD26

phenotype as expected for a fully “equipped” T-cell.

The other half of the CD26-positive cells express minus-

variants of this pattern, characterized by omission of one

or more of the CD3/CD2/CD8 or CD4 receptors.

Interestingly, in these cells, CD26 may occur together

with the a M integrin CD11b. It is unclear at present,

whether the latter cells are T-cells or macrophages.

Together, a fraction of the muscle-invasive T-cells show

both cell surfaces that are compatible and others that are

not compatible with a role of CD26 as a co-stimulatory

signal of T-cell activation.

Second, the majority of T-cells, that have invaded the

muscle tissue in sarcoid myopathy are clear-cut minus-

variants of the T-cell surface expression patterns normally

found in the blood, because these cells in situ only express

either CD4 or CD2 (together 64% of all invasive T-cells),

whilst CD3, CD8, CD11b and CD26 are absent. Another

T-cell fraction, which is substantially less frequent is the

CD2+/CD4+ (15%) and the CD2+/CD3+/CD42 T-cell type

(5%). Only the latter- one would reflect the “normal” cell

surface expression pattern of a CD4 T-cell. This

demonstrates the predominant presence of T-cells,

which, as a rule, lack receptor patterns at the cell surface,

which would be obligatory for the T-cell activation
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cascade. Hence, it is very unlikely that T-cells invading

the muscle tissue in sarcoid myopathy undergo T-cell

activation via the known battery of co-stimulatory

receptors.

Alternatively we would like to suggest, that the

heterogeneous “unusual” combinatorial receptor pheno-

types of the T-cell surface are involved in differential

adhesive functions and migratory mechanisms. This view

is supported by the fact, that CD26, besides its role as a

co-stimulatory signal in T-cell activation, also exerts

adhesive functions by binding to collagen (Dang et al.,

1990). Adhesive functions have also been assigned to

CD2, CD8, CD4 and CD11b (Barclay et al., 1993; Pigott

and Power, 1993). We therefore suggest, that all

phenotypes detected in muscle tissue in our present

study (Table II) are implicated in cell surface “decision-

processes” that either fix the T-cell at a certain position

in the tissue or promote T-cell migration. The T-cell

may acquire this function by differentially combining

receptors in a manner illustrated by the data presented in

Table II.

The neural classifier used in the present study enables

us to analyze CD26+ and CD262 T-cell phenotypes at a

large scale. The disease-associated phenotypic data

presented here and the NCDS as a high-throughput

approach could provide important links for mathematical

modeling T-cell invasion at an integrated molecular and

cellular level.
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