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Angiogenesis, the growth of new blood vessels from existing ones, is an important, yet not fully
understood, process and is involved in diseases such as rheumatoid arthritis, diabetic retinopathy and
solid tumour growth. Central to the process of angiogenesis are endothelial cells (EC), which line all
blood vessels, and are capable of forming new capillaries by migration, proliferation and lumen
formation. We construct a cell-based mathematical model of an experiment (Vernon, R.B. and Sage,
E.H. (1999) “A novel, quantitative model for study of endothelial cell migration and sprout formation
within three-dimensional collagen matrices”, Microvasc. Res. 57, 118–133) carried out to assess the
response of EC to various diffusible angiogenic factors, which is a crucial part of angiogenesis.
The model for cell movement is based on the theory of reinforced random walks and includes both
chemotaxis and chemokinesis. Three-dimensional simulations are run and the results correlate well
with the experimental data. The experiment cannot easily distinguish between chemotactic and
chemokinetic effects of the angiogenic factors. We, therefore, also run two-dimensional simulations of
a hypothetical experiment, with a point source of angiogenic factor. This enables directed (gradient-
driven) EC migration to be investigated independently of undirected (diffusion-driven) migration.
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INTRODUCTION

Most primary solid tumours initiate as avascular clusters

of cells (Folkman, 1974). Such a tumour must obtain the

nutrients it needs by diffusion from a nearby capillary. The

amount of nutrient that can be obtained in this way is

limited and does not allow the tumour to grow beyond a

certain size (typically about 1–2 mm in diameter)

(Folkman, 1971). At this limiting size, the tumour is in a

steady state, with cell proliferation balanced by cell death,

and it may persist in this dormant phase for months or even

years, without causing significant damage to the host

(Carmeliet and Jain, 2000).

In order to grow further and to form metastases in

distant organs, the tumour must obtain a blood supply.

In many cases, this occurs by angiogenesis, the formation

of new blood vessels from the existing vasculature

(Paweletz and Kneirim, 1989). Angiogenesis takes place

physiologically during embryogenesis (Risau, 1997),

during placental growth and in the female reproductive

system (Reynolds et al., 1992). Angiogenesis can also be

induced under pathological conditions, such as wound

healing (Hunt et al., 1984), rheumatoid arthritis (Carmeliet

and Jain, 2000) and solid tumour growth (Folkman, 1971).

In the case of many solid tumours, angiogenesis never

really stops. The tumour vasculature is constantly being

remodelled, regressing in some areas and spreading in

others (Vajkoczy et al., 2002). If metastases form,

angiogenesis will be induced at remote sites and the

rapid malignant growth it permits will, unless the cancer is

successfully treated, ultimately prove fatal.

Central to the process of angiogenesis are the

endothelial cells (EC) which line all blood vessels in the

body. In mature, quiescent capillaries, the EC form a

single layer of flattened cells around the lumen. Cell–cell

connections are tight and cell proliferation is rare (Han

and Liu, 1999). The endothelium is surrounded by the

basement membrane, an extra-cellular layer which serves

as a scaffold on which the EC rest (Paweletz and Kneirim,

1989). Peri-endothelial support cells, such as smooth

muscle cells and pericytes, are also found close to the

capillary.

Tumours are known to secrete various chemicals, which

diffuse into the surrounding tissue, some of which are
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angiogenic growth factors (Folkman and Klagsbrun,

1987). The best characterised angiogenic factor is vascular

endothelial growth factor (VEGF) (Yancopoulos et al.,

2000), which is largely specific for EC (Shweiki et al.,

1992) and has been shown to be a potent chemoattractant

and mitogen (Klagsbrun and D’Amore, 1996; Han and

Liu, 1999). During the dormant phase, the effects of these

chemicals are outweighed by growth inhibitors, some of

which may be present under normal physiological

conditions, some of which may be produced by the

immune system in response to the tumour, and some of

which may be secreted by the tumour itself (Pepper, 1997;

Carmeliet and Jain, 2000). However, at some point in

time, the growth factors secreted by the tumour may

finally overcome the inhibitors, and an angiogenic

response is induced in the host (Hanahan and Folkman,

1996). The switch that triggers this emergence from

dormancy into activity is still the subject for research,

see for example Semenza (2000) and Giordano and

Johnson (2001). Many factors are involved and hypoxia

(oxygen deficiency), which is known to upregulate VEGF

production (Shweiki et al., 1992), is thought to have a

major influence.

On receiving a VEGF stimulus, EC in capillaries near

the tumour begin to loosen contacts with adjacent cells

and secrete proteolytic enzymes, which degrade the

basement membrane (Pepper, 1997). EC subsequently

move through the gap in the basement membrane and

into the extra-cellular matrix (ECM). They continue to

secrete proteolytic enzymes, which also degrade the

ECM (Pepper et al., 1990). This allows them to migrate

towards the tumour (Ausprunk and Folkman, 1977), thus

forming sprouts from the parent capillary (Liotta et al.,

1991). The migration is thought to be controlled by

chemotaxis (directed cell movement up a gradient of a

diffusible substance, typically a growth factor emitted by

the tumour) and haptotaxis (movement along an

adhesive gradient, of fibronectin for example) (Carter,

1965).

In normal endothelia, the turnover for EC is very slow,

typically measured in months or years (Han and Liu,

1999). Nevertheless, a short distance behind the sprout

tips, rapid EC proliferation in response to VEGF is

observed, increasing the rate of sprout formation

(Ausprunk and Folkman, 1977; Denekamp and Hobson,

1982).

Sprouts are seen to branch and loop (anastomose) and

the beginnings of a new vascular network are created,

which gradually extends towards the tumour (Folkman

and Klagsbrun, 1987). This branching and looping may

become much more pronounced in the vicinity of the

tumour, producing what is termed the brush-border effect

(Muthukkaruppan et al., 1982). Sprouts may eventually

penetrate the tumour, providing it with the nutrients it

needs for rapid growth. Once the tumour has established a

blood supply, metastatic tumour cells can more easily

enter the circulation and hence gain access to distant sites

(Schirrmacher, 1985).

The sprouts do not form mature, stable capillaries with a

continuous basement membrane and normal blood supply.

Rather the new vasculature is irregular, leaky and tortuous

(Hashizume et al., 2000) and is constantly being

remodelled as some sprouts regress and some vessels

produce new sprouts (Vajkoczy et al., 2002).

Understanding the response of EC to the many

angiogenic and anti-angiogenic factors is of crucial

importance in understanding the mechanisms by which

solid tumours recruit new blood vessels, and hence in the

search for effective anti-angiogenic therapeutic strategies.

There has been increasing activity in recent years in

constructing mathematical models of the process of

angiogenesis. Much has been learned from this work about

the complex process of angiogenesis, and it is the

continuing aim of research in this field to further develop

our understanding of the biological issues involved and to

highlight potential therapeutic approaches.

The research can be divided broadly into two

categories: continuous models at the cell density level;

and discrete models at the level of the individual cell.

Models of the continuous type are usually derived from

mass conservation equations and chemical kinetics, or

from continuum limit equations of random walks. This

results in a system of partial differential equations (PDEs),

modelling macroscopic quantities such as cell density and

chemical concentrations. Examples include Balding and

McElwain (1985), Chaplain and Stuart (1993), Chaplain

et al. (1995) and Levine et al. (2001)

Discrete models, on the other hand, often contain a

stochastic element and model at the level of the individual

cell. They attempt to capture microscopic properties of the

capillary network, such as sprout branching and looping,

by keeping track of the movements of each individual cell.

There are several different types of discrete model: for

example, Stokes and Lauffenburger (1991) used stochastic

differential equations to model the velocities of EC;

Anderson and Chaplain (1998) derived an individual cell-

based model by discretisation of a continuous system. The

model presented here differs from these in that it attempts

to link the continuous and discrete modelling approaches

via the theory of reinforced random walks. This theory

was developed by Davis (1990) and first applied in a

biological context by Othmer and Stevens (1997). The

technique has since been developed by Levine et al.

(2001), Sleeman and Wallis (2002) and Plank and

Sleeman (2003) and we believe it is an ideal framework

for understanding the link between macroscopic and

microscopic models.

Vernon and Sage (1999) carried out an in vitro

experiment to study the response of EC to various

angiogenic growth factors. In this article, we formulate a

three-dimensional mathematical model of the experiment

and run simulations for comparison with the experimental

results. We also construct a simplified two-dimensional

model of a hypothetical experiment, which isolates the

directional response of the EC. The object of this work is

to develop the modelling approach outlined above in close
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conjunction with empirical data. We then aim to model a

realistic in vivo scenario of tumour angiogenesis.

In the second section, the experimental setup is

described in detail. In the third section, we build the

mathematical model, which describes how the EC move

and how the VEGF and collagen concentrations evolve. In

the fourth section, the method of simulation is described.

Finally, in the fifth section, the results are presented,

discussed and compared with the experimental data.

THE EXPERIMENT

The experiment of Vernon and Sage (1999) investigates

“radial invasion of matrix by aggregated cells” (RIMAC)

in the presence of different growth factors. The assay

consists of placing an aggregate of EC at the centre of a

disc of collagen, immersed in medium þ /2 angiogenic

growth factors. After five days, the EC are scored for

radial invasion into the surrounding collagen gel. See Fig. 1

for a diagram of the experimental setup. The growth factors

tested, at varying levels and combinations, include VEGF,

basic fibroblast growth factor (bFGF) and transforming

growth factor-b1 (TGF-b1). Here, we concentrate on

VEGF, the best characterised EC-specific growth factor

(Han and Liu, 1999).

This is an experimental technique for assessing the

response of cells to diffusing proteins in general. The aim

of the experiment is to identify the effects of different

angiogenic substances on EC migration. Clearly a

thorough knowledge of the response of EC to the many

chemicals involved is essential in understanding, and

hopefully preventing, the angiogenic process.

Here we formulate this experiment as a reinforced

random walk type model, which forms the basis for

stochastic simulations of the experiment. The aim is to

develop a modelling approach, which, while being

mathematically tractable, is directly derived from the

underlying biology. We believe this method has great

potential to qualitatively model, among other things, the

process of angiogenesis in vivo. Making comparisons

between the predictions of the model and the results of the

experiment may also help gauge realistic values for

biological parameters, which is always a difficult part of

mathematical modelling.

In the full three-dimensional model, we assume that the

VEGF concentration is in steady state. However, we also

formulate a two-dimensional model in which we relax this

assumption and allow for diffusion and uptake of VEGF.

We then consider the effect of placing a point source of

VEGF on the edge of the disc, in order to investigate the

directional response of the EC to a chemotactic gradient

(see Fig. 2).

THE MODEL

The model is constructed on a cylinder of radius R and

height 2H,

V ¼
n
ðx; y; zÞ [ R3 : x2 þ y 2 # R2; 2H # z # H

o
:

Initially, collagen is distributed uniformly over the

domain, representing the collagen gel. We neglect

collagen diffusion since the rate of diffusion of large

macromolecules such as collagen is very slow. EC are

known to synthesise ECM components during sprout

formation (Clark et al., 1982; Jackson et al., 1992) and so

we include deposition of collagen by EC.

VEGF is applied at a constant concentration on the

boundary, and is then allowed to diffuse throughout the

domain. A term is included modelling uptake and binding

of VEGF by the EC. Upper and lower functions for the

solution to the resulting reaction-diffusion equation for

VEGF are obtained using comparison principles. Simu-

lations are then run with the steady state solutions of both

the upper and the lower functions.

The EC are initially arranged in a spherical aggregate (of

radius ri , H , R) at the centre of the domain. Each cell is

subsequently permitted to move around on a regular finite

grid, obeying the rules of a reinforced random walk (Davis,

1990). VEGF is viewed as a chemotactic and chemokinetic

factor for EC (Klagsbrun and D’Amore, 1996; Han and

Liu, 1999). In other words, VEGF promotes both random

FIGURE 1 Diagram of the experiment. FIGURE 2 Two-dimensional model with a point source of VEGF.
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migration and directed migration up a VEGF concentration

gradient. Collagen is assumed to assist EC adhesion by

haptotaxis (Bowersox and Sorgente, 1982; Anderson and

Chaplain, 1998; Holmes and Sleeman, 2000). The random

walk is therefore set up so that EC are attracted to areas of

higher VEGF and higher collagen concentrations. The

behaviour of the EC is then examined under various

conditions, and the results compared to the experimental

results seen by Vernon and Sage (1999).

Thus the three quantities of interest are the EC

density, p(x, y, z, t), the VEGF concentration, v(x, y, z, t),

and the collagen concentration, c(x, y, z, t) at (x, y, z) and

time t.

The Endothelial Cell Dynamics

For clarity, the equations in this section will be presented in

two dimensions, but readily generalise to the three-

dimensional form used in the simulations. We assume that

the EC move on a regular grid (of step size h) and denote the

EC (probability) density at grid point (n,m) at time t by

pn,m(t).

Othmer and Stevens (1997) used the reinforced random

walk master equation to simulate cell movement on a

regular lattice:

›pn;m

›t
¼ t̂ Hþ

n21;m pn21;m þ t̂ H2
nþ1;m pnþ1;m

þ t̂Vþ
n;m21pn;m21 þ t̂V2

n;mþ1pn;mþ1

2 t̂ Hþ
n;m þ t̂ H2

n;m þ t̂Vþ
n;m þ t̂V2

n;m

� �
pn;m; ð1Þ

where t̂H^
n;m and t̂V^

n;m are the transition rates of EC moving

from (n, m) to (n ^ 1, m) and (n, m ^ 1) respectively‡.

Note that these transition rates may depend on one or more

control substances; in our case, the control substances are

VEGF and collagen.

Othmer and Stevens (1997) made the assumption that the

decision “when to move” is independent of the decision

“where to move”:

t̂ Hþ
n;m þ t̂ H2

n;m þ t̂ Vþ
n;m þ t̂V2

n;m ¼ 4l ð2Þ

for l . 0 constant. Hence the mean waiting time at a grid

point is constant, (1/(4 l)), and the control substances only

affect the direction of movement, not the rate of movement.

They further assumed that the transition probabilities

depend only on the control substances at the nearest

1/2 neighbour grid points, and took

t̂ H^
n;m

¼
4lt wn^1

2
;m

� �
t wn21

2
;m

� �
þt wnþ1

2
;m

� �
þt wn;m21

2

� �
þt wn;mþ1

2

� �; ð3Þ

t̂ V^
n;m

¼
4lt wn;m^1

2

� �
t wn21

2
;m

� �
þt wnþ1

2
;m

� �
þt wn;m21

2

� �
þt wn;mþ1

2

� �; ð4Þ
for some function, t(w), where w¼ðv;cÞ; the vector of

control substances.

Under this choice, it can be shown (Othmer and

Stevens, 1997) that the continuum limit, h ! 0; l!1;
such that lh2 ¼ D of the master Eq. (1) is

›p

›t
¼ D7· p7 ln

p

t ðv; cÞ

� �� �
:

This may be written in the more familiar form

›p

›t
¼ D72p 2 7· ð pðx ðvÞ7v þ rðcÞ7cÞÞ;

on making the choice

tðv; cÞ ¼ t1ðvÞt2ð f Þ

¼ exp
1

D

ð
x ðvÞdv

� �
exp

1

D

ð
rðcÞdc

� �
: ð5Þ

x(v) and r( f) are respectively the chemotactic

and haptotactic sensitivities, and so the total flux, J,

of EC consists of a Fickian diffusive component, a

chemotactic component and a haptotactic component:

J ¼ Jdiff þ Jchem þ Jhapt ¼2D7pþx ðvÞp7vþrðcÞp7c:

Notice how the transition probability function, t,

survives the process of taking the continuum limit of

the master equation, thereby providing a natural link

between discrete and continuous models. Sleeman and

Wallis (2002) and Plank and Sleeman (2003) used the

master equation (1) as the basis for simulations of EC

movement in tumour angiogenesis. Here, we wish to

include not only taxis (i.e. gradient-driven) effects, but

also chemokinetic (i.e. random diffusive) effects of the

control substances. In order to achieve this, we relax

the assumption (2) of constant mean waiting times.

In addition to the normalised reinforced random walk

model resulting from Eqs.(3) and (4), Othmer and Stevens

(1997) considered an unnormalised model, in which the

transition rates were chosen as follows.

t̂ H^
n;m ¼ lT wn^1

2
;m

� �
;

t̂V^
n;m ¼ lT wn;m^1

2

� �
;

for some function T(w).

‡The superscripts, H and V, denote jumps in the horizontal and vertical directions respectively.
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The resulting continuum limit of Eq. (1) is

›p

›t
¼ 7·ðTðwÞ7pÞ:

Hence there is no taxis, and the dynamics are driven

purely by the random diffusive flux, J ¼ 2TðwÞ7p: T(w)

may be thought of as the diffusion coefficient, D, which is

no longer a constant, but now depends on the control

substance, w.

We combine the normalised and unnormalised

probabilities, to incorporate both chemotactic and chemo-

kinetic effects, by choosing the transition rates as follows.

t̂ H^
n;m ¼l

4t wn^1
2
;m

� �
t wn21

2
;m

� �
þt wnþ1

2
;m

� �
þt wn;m21

2

� �
þt wn;mþ1

2

� �
0
@

þ
D wn^1

2
;m

� �
D0

21

1
A; ð6Þ

t̂ V^
n;m ¼l

4t wn;m^1
2

� �
t wn21

2
;m

� �
þt wnþ1

2
;m

� �
þt wn;m21

2

� �
þt wn;mþ1

2

� �
0
@

þ
D wn;m^1

2

� �
D0

21

1
A; ð7Þ

for some function D(w) and constant D0.0:
Now, the continuum limit h ! 0; l!1; such that

lh2 ¼ D0 of the master equation (1) is

›p

›t
¼D07· p7 ln

p

t ðv;cÞ

� �� �
þ7·ððDðv;cÞ2D0Þ7pÞ ð8Þ

¼7· Dðv;cÞ7p2D0p
7t ðv;cÞ

t ðv;cÞ

� �
: ð9Þ

Making the same choice for the transition probability

function (5) (with D replaced by D0), we may again write

this in a more familiar form:

›p

›t
¼ 7· ðDðv; cÞ7pÞ2 7· ð pðx ðvÞ7v þ rðcÞ7cÞÞ: ð10Þ

To summarise, the addition of an unnormalised

component in the transition rates results in a variable

diffusion coefficient in the continuum limit PDE (10),

which we are free to choose. This is unsurprising given the

fact that unnormalised transition rates are associated with a

purely diffusive continuum limit, without any taxis terms.

The one disadvantage of this method is the introduction of

the arbitrary parameter, D0 . 0; in the transition rates, to

which the continuum limit PDE is invariant.

Note that the same goal (i.e. the appearance of a

variable diffusion coefficient in the continuum limit) may

also be achieved by using the original, normalised form of

the transition probabilities (3) and (4), but allowing the

waiting time parameter, l, to depend on the control

substance values at the barrier to be crossed:

t̂H^
n;m ¼

4l wn^1
2
;m

� �
t wn^1

2
;m

� �
t wn21

2
;m

� �
þt wnþ1

2
;m

� �
þt wn;m21

2

� �
þt wn;mþ1

2

� � ;

t̂V^
n;m ¼

4l wn;m^1
2

� �
t wn;m^1

2

� �
t wn21

2;m

� �
þt wnþ1

2;m

� �
þt wn;m21

2

� �
þt wn;mþ1

2

� � :

The problem with this approach is that, in the case

where there is more than one control substance and more

than one spatial dimension, there is no well defined

function, t, for which the continuum limit PDE is

equivalent to Eq. (10). We therefore adopt the transition

probabilities (6), (7) and choose D0 to be the minimum

value of D(w) (to ensure that D(w) 2 D0 $ 0){.

Various choices are possible for the sensitivities, x (v)

and r(c). The simplest is to take constant values, xðvÞ ¼

x 0; rðcÞ ¼ r0; leading to classical chemotaxis and

haptotaxis (Keller and Segel, 1971; Murray, 1993).

We make the more realistic assumption that EC sensitivity

is reduced in regions where the concentration of chemo-

attractant is high, reflecting desensitisation of the cell

receptors. Following Balding and McElwain (1985) and

Anderson and Chaplain (1998), we therefore take a

receptor-kinetic law of the form

x ðvÞ ¼
x 0

1 þ g1v
: ð11Þ

In the absence of evidence regarding functional forms,

we assume that the response to collagen (that is,

haptotaxis) occurs by the same mechanism as chemotaxis.

We therefore take tðv; cÞ ¼ t1ðvÞt2ðcÞ where

t1ðvÞ ¼ ð1 þ g1vÞ
x0

g1D0 ; ð12Þ

t2ðcÞ ¼ ð1 þ g2cÞ
r0

g2D0 ; ð13Þ

and x0; r0; g1; g2 are constants.

Since the EC are stimulated to move up VEGF gradients

and up collagen gradients, we take x0; r0 . 0: So that the

desensitisation of cell receptors occurs at biologically

realistic levels of v and c, we choose g1 to be of order

Oðv21Þ and g2 to be Oðc21Þ:
In addition to the directional response of the EC to

VEGF and collagen, we wish to model an increase in

random motility at higher VEGF concentrations. We wish

D(w) to be an increasing function of v, which varies

{The effects of changing D0 will be discussed in the “Results and Discussion” section.
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between positive upper and lower bounds. We therefore

take the rational form

DðvÞ ¼ Dm

v þ u1

v þ u2

: ð14Þ

for constants Dm . 0 and 0 , u1 , u2: Dð0Þ ¼ Dm
u1

u2

and so there will still be some random motility in the

absence of any VEGF. DðvÞ! Dm as v !1 and so the

diffusion coefficient does not increase without bound as

the VEGF concentration grows very large, but saturates to

a limiting value.

Initially, there is an aggregate of EC (of radius ri) centred

on (0,0,0) and no cells elsewhere. We therefore start by

positioning one EC at each grid point in {ðx; y; zÞ [ V :

x2 þ y2 þ z2 # r2
i }: The EC cannot move outside the disc

and so we impose no flux of EC across the boundary ›V.

These conditions may be written (in continuum form) as

pðx; y; z; 0Þ ¼
p0 x2 þ y 2 þ z2 # r2

i

0 x2 þ y 2 þ z2 . r2
i

8<
:

9=
;; ð15Þ

0 ¼ DðvÞ
›p

›n
2 D0

p

t

›t

›n
; on ›V £ ½0; T�; ð16Þ

where ›
›n

is the normal derivative on the boundary ›V.

The continuum equations given in this subsection are

included to demonstrate the technique of relating the

reinforced random walk master equation to a continuum

limit PDE, and are not solved numerically in the

simulations. Instead we use the master equation (1), with

transition probabilities given by Eqs. (6), (7), (12)–(14),

to simulate EC movement on a regular grid (see “Method

of Simulation” section).

The VEGF and Collagen Dynamics

VEGF binds to receptors on the endothelial cell surface and

this stimulates the EC to produce a proteolytic enzyme

(or protease), capable of degrading extra-cellular proteins

(Pepper, 1997). Here, we are not concerned with

proteolysis, but we do incorporate uptake of VEGF by

EC, which we assume occurs at constant rate, a $ 0:
We include a natural, Fickian diffusion term (with diffusion

coefficient, Dv) to arrive at the governing equation for

VEGF:

›v

›t
¼ Dv7

2v 2 apv; on V £ ½0; T�: ð17Þ

In the experiment (Vernon and Sage, 1999), there is

initially no VEGF in the domain, except on the boundary

where it is at a uniform level, v0 . 0: This gives the initial

condition

vðx; y; z; 0Þ ¼
0 inside V

v0 on ›V

( )
: ð18Þ

Furthermore, since the disc is suspended in a relatively

large container of medium, the VEGF concentration on

the boundary can be assumed to remain at this constant

level throughout. We therefore have the Dirichlet

boundary condition,

v ðx; y; z; tÞ ¼ v0; on ›V £ ½0; T�: ð19Þ

In the experiment, the disc was initially covered with

a collagen gel of uniform concentration. In addition to

this initial level, we model the EC as laying down

collagen (Paweletz and Kneirim, 1989; Jackson et al.,

1992), according to the logistic growth equation used

by Levine et al. (2001):

›c

›t
¼ bpcðC 2 cÞ; on V £ ½0; T�; ð20Þ

where b,C $ 0 are constants.

Thus the collagen concentration will increase in the

presence of EC (when p . 0), but cannot rise above a

fixed maximum concentration, C. Collagen is a large

macromolecule and so its diffusion will take place very

slowly. We therefore neglect collagen diffusion.

The collagen is initially of uniform concentration,

c0 [ ð0;CÞ; giving the initial condition

cðx; y; z; 0Þ ¼ c0; on V: ð21Þ

Non-dimensionalisation

We non-dimensionalise by setting

p 0 ¼ p
p0
; v0 ¼ v

V
; c 0 ¼ c

C
; x 0 ¼ x

R
; y 0 ¼ y

R
; z0 ¼ z

R

t 0 ¼ t
T
; Dm

0 ¼ DmT
R 2 ; D0

0 ¼ D0T
R 2 ; Dv

0 ¼ DvT
R 2 ; a0 ¼ Tp0a; b0 ¼ Tp0Cb

g1
0 ¼ Vg1; g2

0 ¼ Cg2; v0
0 ¼ v0

V
; c0

0 ¼ c0

C
; u1

0 ¼ u1

V
; u2

0 ¼ u2

V

H 0 ¼ H
R
; q1 ¼ x0

g1D0
; q2 ¼ r0

g2D0
; ri

0 ¼ ri

R
:

The governing Eqs. (1), (17) and (20), on dropping the

dashes, become

›pn;m

›t
¼t̂ Hþ

n21;mpn21;mþt̂ H2
nþ1;mpnþ1;mþt̂Vþ

n;m21pn;m21

þt̂V2
n;mþ1pn;mþ12ðt̂ Hþ

n;m þt̂H2
n;m þt̂Vþ

n;m þt̂V2
n;m Þpn;m; ð22Þ

›v

›t
¼Dv7

2v2apv; ð23Þ

›c

›t
¼bpcð12cÞ; ð24Þ

on V¼{ðx;y;zÞ[R3:x2þy2#1;2H# z#H}; t[½0;1�:
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The transition rates (6), (7), (12)–(14) are given by

t̂ H^
n;m ¼l

4t ðwn^1
2
;mÞ

t ðwn21
2
;mÞ þ t ðwnþ1

2
;mÞ þ t ðwn;m21

2
Þ þ t ðwn;mþ1

2
Þ

 

þ
Dðwn^1

2
;mÞ

D0

2 1

�
;

ð25Þ

t̂ V^
n;m ¼l

4t ðwn;m^1
2
Þ

t ðwn21
2
;mÞ þ t ðwnþ1

2
;mÞ þ t ðwn;m21

2
Þ þ t ðwn;mþ1

2
Þ

 

þ
Dðwn;m^1

2
Þ

D0

2 1

�
; ð26Þ

where

t ðv; cÞ ¼ ð1 þ g1vÞq1ð1 þ g2cÞq2 ; ð27Þ

DðvÞ ¼ Dm

v þ u1

v þ u2

; ð28Þ

l ¼
D0

h2
: ð29Þ

The initial conditions (15), (18), (21) and boundary

conditions (16), (19) become

On V : pðx; y; z; 0Þ ¼

1 x2 þ y2 þ z2 # r2
i

0 x2 þ y2 þ z2 . r2
i

8<
:

9=
;;

On ›V £ ½0; 1� :
DðvÞ

D0p

›p

›n
¼

1

t

›t

›n
; ð30Þ

On V : vðx; y; z; 0Þ ¼

0 inside V

v0 on ›V

8<
:

9=
;;

On ›V £ ½0; 1� : vðx; y; z; tÞ ¼ v0; ð31Þ

On V : cðx; y; z; 0Þ ¼ c0: ð32Þ

In the three-dimensional simulations, we do not wish to

solve the full reaction-diffusion equation for VEGF (23).

We therefore construct lower and upper functions (v1 and

v2 respectively) for the solution to this equation using

comparison principles (see appendix A for details). The

solution, v, of Eq. (23) thus satisfies

v1ðx; y; z; tÞ # vðx; y; z; tÞ # v2ðx; y; z; tÞ on V £ ½0; 1�:

In the case of the lower function, v1, the solution rapidly

evolves to a steady state, v1,s. For the upper function, v2,

evolution to the steady state, v2,s (which is spatially

homogeneous), takes place more slowly. Nevertheless,

v2,s is still an upper function for v and so we will use the

steady states v1,s and v2,s in the simulations. The effects of

using the time-dependent upper solution, which is

intermediate between these two extremes and is likely to

approximate the actual VEGF profile more closely, will

also be discussed. The steady state solutions are given by:

v1;sðx; y; zÞ ¼ v0

cosh
ffiffiffiffi
a

Dv

q
z

� �

cosh
ffiffiffiffi
a

Dv

q
H

� �
0
BB@

þ
X1
n¼1

AnI0

ffiffiffiffiffi
ln

p
r

� �
cos ð2n 2 1Þ

pz

2H

� �1CA; ð33Þ

v2;sðx; y; zÞ ¼ v0; ð34Þ

where

ln ¼
a

Dv

þ
p2ð2n 2 1Þ2

4H 2
;

I0 is the modified Bessel function of the first kind

and zeroeth order, and the An are Fourier coefficients.

One set of simulations is run with v ¼ v1;s and one set

with v ¼ v2;s:
We subsequently run two-dimensional simulations, on

�V ¼ ðx; yÞ [ R2 : x2 þ y2 # 1
� �

with the full VEGF

dynamics (23). However, in order to isolate the directional

response of the EC, we modify the initial and boundary

conditions for VEGF to represent a point source at ðx; yÞ ¼

ð21; 0Þ; as opposed to a uniform source on ›V̄.

We therefore use the conditions

vðx;y;z;0Þ¼
0 inside �V

v0 expð2Kððxþ1Þ2þy2ÞÞ on › �V

( )
;

ð35Þ

vðx;y;z;tÞ¼v0exp 2Kððxþ1Þ2þy2Þ
� �

on› �V£½0;1�: ð36Þ

METHOD OF SIMULATION

The time span [0,1] is divided into time steps of length k.

The EC move on a regular grid of step size h. The control

substances are calculated on a half-step grid, such that

between any two adjacent cell grid points, there is exactly

one control substance grid point.

The method of simulation of cell movement is based on

that of Sleeman and Wallis (2002) as follows. At each time

step, the movement of each EC is simulated in turn,

according the master equation (22). The probabilities of

that particular cell staying still, moving one step to the left,

right, up and down are calculated according to Eqs. (25)

and (26). These probabilities depend on the nearest 1
2

neighbour levels of VEGF and collagen via the transition

probability function (27) and the diffusion coefficient (28).

The real interval [0,1] is divided into five sub-intervals

(one for staying still, one for moving left and so on)
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each of length equal to the relevant probability. A random

number r [ ½0; 1Þ is then generated and, depending on the

sub-interval in which this number falls, the cell stays still

or moves in the appropriate direction (unless the direction

it wants to move in is blocked by another cell, in which

case it stays still):

Move left if r[ 0;t̂H2
n;m k

h �
:

Move right if r[ t̂H2
n;m k; t̂H2

n;m kþ t̂ Hþ
n;m k

h �
:

Move down if r[ t̂H2
n;m kþ t̂Hþ

n;m k; t̂H2
n;m kþ t̂ Hþ

n;m kþ t̂ V2
n;m k

h �
:

Move up if r[ t̂H2
n;m kþ t̂Hþ

n;m kþ t̂ V2
n;m k;t̂ H2

n;m k
h
þ t̂Hþ

n;m kþ t̂V2
n;m kþ t̂Vþ

n;m

�
:

Stay still if r[ t̂H2
n;m kþ t̂Hþ

n;m kþ t̂ V2
n;m kþ t̂Vþ

n;m ;1
h �

:

The method of simulation has, for clarity, been described

in two dimensions, but the three-dimensional simulations

are carried out in the same way, defining a third set of

transition rates, for movement in the z-direction, analo-

gously to Eqs. (25) and (26). Note that if a cell ever reaches

a mesh point adjacent to the boundary of the domain, it

plays no further part in the simulation.

In the two-dimensional simulations, the VEGF values

are updated at each time step according to Eq. (23), using a

Crank-Nicholson numerical method.

The equation for collagen (24) may be solved to give

cðx; y; z; t þ kÞ

¼ 1 þ
1

cðx; y; z; tÞ
2 1

� �
exp 2b

ðtþk

t

pðx; y; z; sÞ ds

� � !21

;

which is used to update the collagen values at each time

step.

Note that the control substances are computed on an

embedded lattice that is twice as fine as the lattice for cell

movement. When updating values at a control substance

node that is also on the cell movement lattice, p(x,y,z,t) is

taken to be 1 if the point (x,y,z) is occupied at time t and 0

if it is empty. At nodes that are not on the cell movement

lattice, p(x,y,z,t) is taken to be an average of the values at

the adjacent points on the cell movement lattice.

At the end of the simulation, the cells are scored for

radial invasion in the same way as in the Vernon and Sage

(1999) experiment. That is, the disc is divided into 64

equal segments and the maximum radial invasion distance

(regardless of the distance travelled in the z-direction) in

each segment is noted. The average of these 64 values is

then used as the radial invasion number.

The parameter values used in the simulations are, unless

otherwise stated, as shown in Table I (see appendix B for a

discussion of these values).

RESULTS AND DISCUSSION

Simulations of the system (22), (24)–(32) were run in

three dimensions, firstly with VEGF concentration given

by Eq. (34), and secondly by Eq. (33). Various boundary

values for the VEGF concentration, v0, were used.

Figure 3 shows a graph of radial invasion (as defined in

the “Method of Simulation” section) against v0, the VEGF

concentration on the edge of the disc, using the upper

solution (34). As one would expect, increasing the VEGF

level increases the invasive capacity of the cells;

moreover, the graph exhibits good agreement with the

experimental results shown in Fig. 4. Since the VEGF

concentration (34) is spatially uniform, there is no

chemotaxis (gradient-driven migration) and the stimulus

is entirely chemokinetic (diffusion-driven migration).

Figure 5 shows a plan view of the EC (i.e. their positions

in the xy-plane) at t ¼ 0:0; t ¼ 0:2; t ¼ 0:4; t ¼ 0:6;
t ¼ 0:8 and t ¼ 1:0 in a simulation using the upper

solution for VEGF (34) and v0 ¼ 1: As expected, the cells

gradually invade the surrounding matrix over time.

Comparing the final positions of the EC in Fig. 5 with

TABLE I Parameter values used in the simulations

Dimensional values

Length of time of experiment T ¼ 120 h
Radius of disc R ¼ 1.4 mm
Half-height of disc R ¼ 0.7 mm
Radius of EC aggregate ri ¼ 0.134 mm
Maximum EC diffusion

coefficient
Dm ¼ 3.6 £ 1024 mm2/h

EC diffusion coefficient
parameters

u1 ¼ 2.5 £ 1024 mg/ml

u2 ¼ 2.5 £ 1023 mg/ml
VEGF diffusion coefficient Dv ¼ 3.6 £ 1023 mm2/h
Chemotactic coefficient x0 ¼ 5.67 mm2h 21mlmg 21

Haptotactic coefficient r0 ¼ 7.88 £ 1027 mm2h 21mlmg 21

EC density in initial aggregate r0 ¼ 4444 mm21

Boundary VEGF concentration V ¼ v0=5 £ 1023mlm/g
Initial collagen concentration c0 ¼ 600 mg/ml
Maximum collagen concentration C ¼ 2400 mg/ml
VEGF uptake rate a ¼ 8.66 £ 1025 mm2/h
Collagen production coefficient b ¼ 1.72 £ 1029 mm2/h 21mlmg21

Saturating parameter for VEGF g ¼ 2000 ml/mg
Saturating parameter for collagen g2 ¼ 8.34 £ 1024 ml/mg
Grid size h ¼ 1.50 £ 1022 mm
Time step size k ¼ 0.12 h

Dimensionless values
Half-height of disc H ¼ 0.5
Maximum EC diffusion

coefficient
Dm ¼ 0.0220

EC diffusion coefficient
parameters

u1 ¼ 0.05

u2 ¼ 0.5
VEGF diffusion coefficient Dv ¼ 0.220
Exponent in VEGF transition

probability function
q1 ¼ (x0/r1Dp) ¼ 78.8

Exponent in collagen transition
probability function

q2 ¼ (r0/r2Dp) ¼ 26.3

Boundary VEGF concentration v0 ¼ 1
Initial collagen concentration c0 ¼ 0.25
VEGF uptake coefficient a ¼ 46.2
Collagen production coefficient b ¼ 46.2
Radius of EC aggregate ri ¼ 9.59 £ 1022

Saturation parameter for VEGF g1 ¼ 10
Saturation parameter for collagen g2 ¼ 2
Grid size h ¼ 1.08 £ 1022

Time step size k ¼ 1 £ 1023
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experimental results (Fig. 10(a)) shows that they are

qualitatively similar: the cells form outward trails from

the initial aggregate in response to chemokinetic effects of

VEGF. Figure 6 shows the positions of the same cells in

the xz-plane, illustrating the migration in the vertical (z)

direction. Note that several cells have reached the upper

and lower boundaries of the disc ðz ¼ ^0:5Þ; from where

they can move no further.

Figure 7 shows how the collagen profile develops;

the concentration is plotted for 2H # z # H along the

radial line 21 # x # 1; y ¼ 0:§ Since collagen diffu-

sion is neglected in the model, the collagen level can

only rise above its initial value where an EC is present.

Unsurprisingly, it is in the centre of the domain, where

the main body of cells is concentrated, that the

collagen levels increase most rapidly. As time

progresses, collagen is also laid down in areas away

from the centre by invading cells. Although the profiles

are rather erratic, it is clear that, at a given point in

time, the general trend is for the collagen levels to

decrease as one moves away from the centre. Thus,

broadly speaking, haptotaxis will have the effect of

holding the cells back.

It is possible that a number of cells are able to escape

from the initial aggregate and subsequently move some

distance into the matrix. As time passes, however, it

becomes increasingly difficult to break away from the main

cluster of cells due to the strong inward pull of haptotaxis.

Figure 8 show a simulation with v0 ¼ 0:2 (i.e. VEGF at

one fifth of the standard concentration). Compared with

Fig. 5, the radial distances travelled by the EC into the

matrix are significantly less. This reduced invasive

capacity is due to the reduced diffusion coefficient of

the EC (28). Vernon and Sage (1999) observed similar

results at half the standard VEGF concentration: Fig. 10(b)

shows fewer invading cells and smaller invasion distances

than Fig. 10(a).

Figure 9 shows a simulation with no VEGF. Very few

EC manage to break away from the initial aggregate and

these do not move very far into the matrix. Again, the

corresponding result of Vernon and Sage (1999),

Fig. 10(c), shows good agreement, with very few cells

moving very small distances.

Figure 11 shows the results of a simulation using the

lower solution for VEGF (33). The VEGF profile Fig. 11(c)

is no longer spatially uniform, but decreases as one moves

towards the centre of the disc. There is therefore now a

chemotactic stimulus for the EC to move up the VEGF

concentration gradient, towards the boundary of the disc,

in addition to the chemokinetic effects. Somewhat

surprisingly, the radial invasion distances are significantly

less than in the spatially uniform case (see Fig. 5).

However, the vertical migration distances are greater, with

a large number of EC accumulating on the upper and lower

surfaces of the disc. The reason for this is that the radius of

the cylindrical domain, R, is greater than its height, H, and

so the distance between the initial aggregate and the upper

and lower boundaries is less than the distance to the outer

boundary. The VEGF gradient is steeper nearer to the

boundary, ›V, and so the EC are exposed to a greater

chemotactic gradient in the z direction than in the x and y

directions. Hence in this case chemotaxis favours vertical,

as opposed to radial, migration.

It is difficult to compare this to the experimental results

of Vernon and Sage (1999) because they only examined

radial migration. In addition, it is likely that the collagen

matrix has a degree of anisotropy that introduces a bias

(which is not accounted for in the mathematical model) for

the cells to move predominantly in the equatorial plane

(z ¼ 0)k.

§Because of its dependence on the positions of the EC, which move stochastically, the collagen profile will not be exactly radially symmetrical, but the
radial line plotted should be representative.

kPhase-contrast microscopy shows that some of the collagen fibrils surrounding the EC aggregate in the RIMAC assay become radially aligned as a
result of cellular traction. This is most likely a consequence of the supportive nylon mesh ring, which occupies the equatorial plane of the collagen matrix
(Vernon, 2003). The radially aligned fibrils would offer less resistance to radial migration than to migration in the vertical direction (Dickinson et al.,
1994).

FIGURE 3 Average radial invasion against v0, the VEGF concentration
on the edge of this disc, using the upper solution for VEGF (34).

FIGURE 4 Experimental results of Vernon and Sage (1999): graph of
radial invasion against boundary concentration of VEGF.
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The two sets of simulations correspond to two extreme

cases of the VEGF profile. The lower solution effectively

corresponds to the case where VEGF uptake occurs

throughout the matrix, whereas in reality uptake would

only occur where EC are present. The upper solution

corresponds to no uptake, and the VEGF profile is

spatially uniform. To gain some insight into the possible

intermediate behaviour, we also ran simulations with the

full time-dependent upper solution (see appendix A). The

results are shown in Fig. 12; the evolution of the VEGF

profile may be seen in Fig. 13. Radial migration is less

pronounced than with the steady state upper solution

(Fig. 5), but more pronounced than with the lower solution

(Fig. 11(a)). Conversely, vertical migration is greater

than with the steady state upper solution (Fig. 6), but less

than with the lower solution (Fig. 11(b)). This is

unsurprising since, in the simulation using the time-

dependent solution, there are both chemotactic and

chemokinetic stimuli: chemotaxis is the dominant effect

at the beginning of the simulation, when the VEGF

concentration is low, but the concentration gradients are

large; chemokinesis dominates towards the end of the

simulation, when the gradients have been largely

destroyed by diffusion, but the concentration has

risen almost to v0. In contrast, the lower solution is

dominated primarily by chemotaxis, whilst the steady-

state upper solution provides only a chemokinetic

stimulus.

Recall from “The Model” section that we introduced a

parameter, D0, to which the continuum limit Eq. (10) is

FIGURE 5 EC migration in the xy-plane in a simulation with the upper solution for VEGF (34) and v0 ¼ 1.

M.J. PLANK et al.260



invariant, but which does affect the transition probabil-

ities (25), (26), (29). In the simulations, we took D0 to be

the minimum value of D(v), thus ensuring that

ðDðvÞ=D0Þ2 1 $ 0 and so the transition probabilities

are always non-negative. This is the natural value to use,

since the continuum limit Eq. (8) decomposes into a taxis

term, with constant diffusion coefficient, D0, and a

random diffusive term, whose diffusion coefficient is the

excess of D(v) above D0. Nevertheless, other choices,

D0 , minv$0DðvÞ are possible and it appears that

reducing D0 tends to reduce EC migration. This is a

consequence of the finite grid size, h, and the dependence

on D0 vanishes in the limit h ! 0:
We now turn to the two-dimensional simulations of the

system (22)–(30), (32), (35), (36). These include the full

VEGF dynamics (23), with a point source of VEGF on the

edge of the disc at ðx; yÞ ¼ ð21; 0Þ: The VEGF diffuses

into the disc and establishes a chemotactic gradient,

stimulating the EC to move towards (21,0). The effects of

chemokinesis are still present, and so diffusive motion will

be greater at higher VEGF concentrations. However, the

introduction of a point source of VEGF should make the

directional response of the EC, via chemotaxis, more

apparent.

Figure 14 shows the results of a simulation with

v0 ¼ 1#. The migration is clearly biased to the left as the

EC move up the VEGF concentration gradient shown in

Fig. 14(b); there is very little migration to the right.

As in the three-dimensional simulations, the collagen

concentration is highest in the area corresponding to the

initial EC aggregate. Thus haptotaxis will tend to hold the

EC back (in contrast to chemotaxis, driving them towards

the edge of this disc) and will therefore help to maintain

the integrity of the central mass, which is still clearly

visible at the end of the simulation. Note also that “cords”

of raised collagen concentration appear to grow out of the

central mass. These cords presumably mark the path of

one or more EC, as they leave a trail of increased collagen

in their wake. It is possible that, once established by

leading cells, these cords act as preferred paths for

following EC, because of the cells’ affinity for collagen.

This is a similar scenario to the slime-following

myxobacteria model of Othmer and Stevens (1997).

Removing the VEGF source removes both the

directional and the random diffusive stimuli and,

unsurprisingly, there is very little migration (results not

shown). Conversely, increasing the boundary concen-

tration of VEGF (v0 ¼ 2; Fig. 15) increases the migration

#Note that, because we are effectively considering a two-dimensional cross-section through the full model, there are far fewer EC in the simulation.

FIGURE 6 EC migration in the xz-plane in a simulation with the upper solution for VEGF (34) and v0 ¼ 1.
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stimuli, resulting in greater invasion distances towards the

point (21,0).

Removing the collagen (Fig. 16), however, removes

haptotaxis and, in agreement with the hypothesis that

haptotaxis helps to preserve the central mass, this results

in its complete disintegration. This hypothesis is also

borne out by the experimental results in Fig. 10(d), in

which the collagen matrix is at a greatly reduced

concentration. After just 2 days, the distances travelled

are clearly larger than in Fig. 10(a), with some loss of

FIGURE 7 Evolution of the collagen profile in a simulation with the upper solution for VEGF (37) and v0 ¼ 1.

M.J. PLANK et al.262



cell–cell adhesion. This may be partly due to the fact that

it is more difficult for EC to penetrate denser collagen

gels, and so reducing the matrix density facilitates

invasion. Nevertheless, it was observed that the low

collagen concentration used in Fig. 10(d) disrupted sprout

branching and network formation.

Clearly, the role of ECM components, such as collagen,

in angiogenesis is highly complex and far from fully

understood. To assume that haptotaxis acts by stimulating

EC to migrate up a collagen concentration gradient is a

massive simplification. For example, there may be

concentration-dependent effects of ECM components on

EC random motility; this could be included in our model

in a similar way to the chemokinetic effects of VEGF.

Also, during angiogenesis in vivo, degradation of the

ECM by EC-derived proteolytic enzymes is an important

step, facilitating matrix invasion (Pepper, 2001). This has

been included in several models, both continuous (Levine

et al., 2001) and discrete (Anderson and Chaplain, 1998).

The model has demonstrated good qualitative agree-

ment with in vitro experimental results. We believe the

reinforced random walk framework is ideal for studying

cell migration and understanding the link between

continuum (cell density) and discrete (individual cell-

based) models. However, the correct functional form for

the transition probability function, t, which provides a link

between the reinforced random walk master equation and

its continuum limit, is not always clear and modelling

FIGURE 8 Positions of the EC after a simulation with the upper
solution for VEGF (34) and v0 ¼ 0.2.

FIGURE 9 Positions of the EC after a simulation with the upper
solution for VEGF (34) and v0 ¼ 0.

FIGURE 10 Experimental results of Vernon and Sage (1999): (a) VEGF concentration 5.0 ng/ml; collagen concentration 0.6 mg/ml; culture time 5
days. (b) Reduced VEGF concentration of 2.5 ng/ml; culture time 5 days. (c) No VEGF; culture time 5 days. (d) Very low collagen concentration; culture
time 2 days.
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chemotactic and chemokinetic effects in a biologically

accurate way is an ongoing problem.

In this model, EC proliferation has been ignored

but, during tumour angiogenesis, is a prerequisite for

vascularisation (although initial sprouting can occur by

EC migration alone) (Sholley et al., 1984). In the

experiment, no proliferation was observed at low VEGF

concentration; significant proliferation was observed at

FIGURE 11 A simulation with the lower solution for VEGF (33) and v0 ¼ 1: (a) positions of the EC in the xy-plane. (b) positions of the EC in the
xz-plane. (c) a graph of VEGF concentration against r and z.

FIGURE 12 A simulation with the full time-dependent upper solution for VEGF and v0 ¼ 1: (a) positions of the EC in the xy-plane. (b) positions of
the EC in the xz-plane.
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high VEGF concentration, although this was not crucial

for matrix invasion. Including proliferation into this model

would enlarge the invading EC population, but the

mechanism one should use for proliferation in an

individual cell-based model is not obvious. The simplest

way would be to assume, for each cell, a constant

probability of mitotic division per unit time (Sleeman and

Wallis, 2002). A more realistic way would be to use an

increasing function of VEGF concentration for the

proliferation probability, since VEGF is known to be a

mitogen for EC (Klagsbrun and D’Amore, 1996).

However, it is unlikely that the complex cell signalling

FIGURE 13 Evolution of the time-dependent upper solution for VEGF with v0 ¼ 1.
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processes involved can be fully captured by such

simple mechanisms. More experimental data on the

effects of angiogenic factors on EC proliferation rates

is required before a comprehensive mathematical

description can be incorporated into models of

angiogenesis.

In the experiment carried out by Vernon and Sage

(1999), the disc was immersed in medium, allowing

growth factors to enter the collagen matrix from all sides.

The symmetry of the setup thus made it difficult to

distinguish between a chemokinetic response, in which

EC movement would be purely random, and a chemotactic

response, in which EC movement would be directed up a

concentration gradient. It is likely that a combination of

these two effects was at work, but the experiment can shed

no light on their relative contributions to the overall

migratory response. For this reason, we constructed a two-

dimensional model of a hypothetical experiment, with a

point source of VEGF on the edge of the disc. This

enabled us to isolate and investigate the directional

response of the EC to a diffusible angiogenic factor, which

is a crucial component of tumour angiogenesis. It would

be most interesting and enlightening to compare the

predictions of this model to data from an in vitro

experiment of this nature. This would allow the

mathematical model to be refined, in close conjunction

with empirical data, helping to determine accurate

functional forms for the transition probability function,

FIGURE 14 A simulation with a point source of VEGF at (21,0) and v0 ¼ 1: (a) positions of the EC. (b) VEGF concentration. (c) Collagen
concentration.
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t, and the EC diffusion coefficient. The relative

importance of chemokinesis and chemotaxis in EC

migration could thereby be elucidated.
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APPENDIX

Upper and Lower Solutions to the Reaction-diffusion

Equation for VEGF

We use comparison principles to construct upper and

lower functions for the solution to the PDE (23) for

VEGF, subject to the initial and boundary conditions (31).

The theorem we use may be stated as follows (Jones and

Sleeman, 2003).

Suppose w1;w2 : V £ ½0; T�! R (for V # RN and

0 , T # 1) are bounded continuous functions such

that

›w1

›t
272w12 f ðw1Þ #

›w2

›t
272w22 f ðw2Þ; on V£½0;T�;

w1ðx;0Þ # w2ðx;0Þ; on V;

w1ðx;tÞ # w2ðx;tÞ; on ›V£½0;T�;

where f is a continuously differentiable function.

Then either w1 ; w2 on V £ [0,T ] or w1 , w2 on V £

½0; T�:

By Eq. (23), we have

vt 2 Dv7
2v þ apv ¼ 0; on V £ ½0; 1�;

vðx; y; z; 0Þ ¼
0 inside V

v0 on ›V

( )
;

vðx; y; z; tÞ ¼ v0 on ›V £ ½0; 1�:

Now let v̂ be such that

v̂t 2 Dv7
2v̂ þ av̂ ¼ 0; on V £ ½0; 1�; ð37Þ

v̂ðx; y; z; 0Þ ¼
0 inside V

v0 on ›V

( )
; ð38Þ

v̂ðx; y; z; tÞ ¼ v0 on ›V £ ½0; 1�; ð39Þ

for some constant, a $ 0:
By the above result, if a # ap ða $ apÞ on V £ [0,1]

then v̂ $ v (v̂ # v) on V £ [0,1]. We now proceed to

solve Eqs. (37)–(39). By radial symmetry and symmetry

about z ¼ 0, we need only consider

v̂t 2 Dv

�
1

r
ðrv̂rÞr þ v̂zz

�
þ av̂ ¼ 0;

on ½0; 1� £ ½0;H� £ ½0; 1�;
ð40Þ

v̂ðr;z;0Þ ¼
0 0# r , 1; 0# z ,H

v0 otherwise

( )
; ð41Þ

v̂ð1;z; tÞ ¼ v̂ðr;H; tÞ ¼ v0; ð42Þ

v̂rð0;z; tÞ ¼ v̂zðr;0; tÞ ¼ 0: ð43Þ

Let v̂ðr; z; tÞ ¼ v0ðuðr; z; tÞ þ gðr; zÞÞ where

Dv

1

r
ðrgrÞr þ gzz

� �
2 ag ¼ 0;

gð1; zÞ ¼ gðr;HÞ ¼ 1;

grð0; zÞ ¼ gzðr; 0Þ ¼ 0:

By separation of variables, we obtain

gðr; zÞ ¼

cosh
ffiffiffiffi
a

Dv

q
z

� �

cosh
ffiffiffiffi
a

Dv

q
H

� �þ
X1
n¼1

AnI0

ffiffiffiffiffiffiffi
lnr

p� �

£ cos ð2n 2 1Þ
pz

2H

� �
; ð44Þ
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where

An ¼
16aH 2ð21Þnþ1

I0ð
ffiffiffiffiffi
ln

p
Þp ð2n 2 1Þ ð2n 2 1Þ2p2Dv þ 4aH 2

� � ;

ln ¼
a

Dv

þ
p2ð2n 2 1Þ2

4H 2
;

and Ik is the modified Bessel function of the first kind

and kth order.

Then by Eqs. (40)–(43),

ut 2 Dv

1

r
ðrurÞr þ uzz

� �
þ au ¼ 0;

uð1; z; tÞ ¼ uðr;H; tÞ ¼ 0;

urð0; z; tÞ ¼ uzðr; 0; tÞ ¼ 0:

We again use separation of variables to obtain

uðr; z; tÞ ¼
X1
n¼1

X1
m¼1

Bm;nJ0ðvmrÞcos ð2n 2 1Þ
pz

2H

� �

£ exp 2Dvðln þ v2
mÞt

� �
; ð45Þ

where

Bm;n ¼
8pð2n 2 1ÞDvð21Þn

J1ðvmÞvm ð2n 2 1Þ2p2Dv þ 4aH 2
� �

2
2AnvmI0ð

ffiffiffiffiffi
ln

p
Þ

J1ðvmÞðln þ v2
mÞ

;

Jk is the Bessel function of the first kind and kth order,

and J0ðvmÞ ¼ 0 ðm ¼ 1; 2; 3; . . .Þ: This completes the

solution of Eq. (40).

The dimensionless quantity, p(x,y,z,t), is equal to 1 if an

EC is present at (x,y,z) at time t, and is equal to 0

otherwise. Hence a ¼ 0 and a ¼ a are lower and upper

bounds for ap on V £ [0,1] and substituting these values

into Eqs. (44) and (45) gives an upper and a lower function

respectively for the solution to Eq. (23).

Physically, the solution with a ¼ 0 corresponds to the

case where there is no VEGF uptake, and so the evolution

of VEGF is governed only by diffusion. The solution with

a ¼ a corresponds to the case where EC are present

throughout the matrix, resulting in a spatially uniform rate

of VEGF uptake.

Clearly, the steady state of the solution, v̂s(r,z) ¼ v0

g(r,z), is unique and is globally stable since

Dvðln þ v2
mÞ . 0 ;m; n $ 1:

The slowest decaying exponential in the time-

dependent part of the solution (45) is e 2st where

s ¼ a þ Dv

p2

4H 2
þ w2

1

� �
:

For the lower function (a ¼ a), s ¼ 49:644 and so the

solution evolves to the steady state (33) very rapidly. For the

upper function (a ¼ 0), s ¼ 3.444 and so evolution to

the steady state (34) takes place more slowly, on a timescale

that is comparable with the length of the experiment.

Discussion of Parameter Values

Diffusion coefficients: Sherratt and Murray (1990)

used values in the range 2.48 £ 1025 mm2/

h–1.26 £ 1024 mm2/h for the EC diffusion coefficient.

Here we choose Dm,u1,u2 so that the diffusion

coefficient is D ¼ 3.6 £ 1025 mm2/h for v ¼ 0, and that

D ! 3.6 £ 1024 mm2/h as v ! 1. Levine et al. (2001)

took the diffusion coefficient for VEGF to be

Dv ¼ 3.6 £ 1023 mm2/h.

Time and length scales:The length of the experiment

conducted by Vernon and Sage (1999) was T ¼ 5

days ¼ 120 h. The radius of the disc aperture

(small assay) was R ¼ 1.4 mm and its height was

2H ¼ 1.4 mm.

Grid size: EC are assumed to be incompressible cubes

of side-length 0.015 mm, taken as an average value from

Alberts et al. (1994). We therefore used a grid step size of

0.015 mm.

Size of EC aggregate: The aggregate used by Vernon

and Sage (1999) consisted of between 1000 and 5000

cells, arranged in a sphere of radius ri. Taking an average

value of 3000 cells and assuming the cells are packed at

maximum density, we have
4pr3

i

3
¼ 3000ð0:015 mmÞ3 and

so ri ¼ 0.134 mm.

VEGF and collagen concentrations:The standard

level of VEGF applied by Vernon and Sage (1999) was

v0 ¼ 5 £ 1023mg/ml. The initial collagen concentration

was given as c0 ¼ 600mg/ml. We assume that the

collagen concentration cannot increase by a factor of

more than 4, and hence take the maximum collagen level

as C ¼ 2400mg/ml.

Reaction rates:The reaction rates, a and b, are difficult

to specify accurately. We therefore take estimates based

on reaction times as follows. If EC density is constant, the

spatially uniform solution of the governing VEGF

equation (17) can be written vðtÞ ¼ v0e2apt: Hence

a ¼ (ln 2/p0Th) where Th is the half-life of VEGF at EC

density, p ¼ p0. Half-lives for such reactions tend to be

measured in hours (Levine et al., 2001) and we assume

this reaction is quite fast relative to the length of the

experiment. We therefore estimate the half-life to be

Th ¼ 1.8 h, which gives a ¼ 8.66 £ 1025 mm2/h.

Similarly, for p constant, the solution to the governing

collagen Eq. (20) can be written cðtÞ ¼ ðC=
ðC=c0 2 1Þe2bCpt þ 1Þ. Clearly this tends to the maximum

value, C ¼ 4c0, for large t, but let us make the reasonable

assumption that, at EC density, p ¼ p0, the collagen

concentration will triple over the course of the experiment,

that is c(T) ¼ 3c0. This requires 3c0 ¼ ðC=ðC=c0 2 1Þ

e2bCp0T þ 1Þ and hence b ¼ (ln 9/Cp0T) ¼ 1.72 £

1029 mm2/h ml/mg.
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Chemotactic coefficient: Anderson and Chaplain

(1998) used a chemotactic coefficient of 9.36 £ 108

mm2/h/M. Here the unit of chemical concentration, M, is a

molar, or mole per litre. Levine et al. (2001) give the

molecular weight of VEGF as 1.65 £ 105 Da, so 1M

is equivalent to 1.65 £ 108 mg/ml. Converting the

above figure of Anderson and Chaplain (1998) into

these units gives a chemotactic coefficient of x0 ¼

5.67 mm2/h ml/mg.

Haptotactic coefficient: The value of the haptotactic

coefficient, r0, is unknown. We assume that VEGF is a

stronger attractant than collagen, and therefore choose r0

such that the haptotactic exponent, q2, is one third of the

chemotactic exponent, q1, in Eq. (27).
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