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The dynamic change of human immunodeficiency virus type-1 (HIV-1) particles that cause AIDS
displays considerable variation from patients to patients. It is likely that such variation in HIV-1
pathogenesis is correlated with the genetic architecture of hosts. Traditional genetic analysis of HIV-1
infection is based on various biochemical approaches, but it has been little successful because
HIV-1 dynamics, as a complex trait, is under polygenic control and sensitive to environmental changes.
Here, we present a novel model for integrating mathematical functions for HIV-1 dynamics that have
been well constructed into a multivariate mixture model for genetic mapping. This integrative mapping
model on the foundation of linkage disequilibrium (LD)-based haplotype block analysis provides
unique power to precisely detect human quantitative trait loci (QTL) determining HIV-1 dynamics and
facilitates positional cloning of target QTL. The model allows for a number of hypothesis tests for the
effects of the dynamic QTL on the virion clearance rate, the infected cell life-span and the average viral
generation time in vivo, all of which provide theoretical principles to guide the development of
efficient gene therapy strategies.

Keywords: HIV-1; CD4 lymphocyte; Quantitative trait loci; AIDS

INTRODUCTION

During HIV-1 pathogenesis, an increased viral load is

known to be closely linked with CD4 lymphocyte depletion

and disease progression (Ho et al., 1989; Patterson et al.,

1993), but little is clear about the genetic control of the

kinetics of virus in vivo. The identification of specific genes

underlying viral dynamics from the viral and host genome

as well as genetic interactions between the two different

genomes (Ameisen et al., 2002) provides fundamental

principles to guide the development of gene therapies for

controlling and curbing AIDS. The development of an

effective computational algorithm to search genes for viral

kinetics therefore remains one of the most pressing

challenges facing modern clinics.

The amount of infectious virus (viral load) reserved in

hosts presents a strong dynamic feature and can be viewed as

complex traits that are controlled by polygenes and sensitive

to environmental stimuli (Lynch and Walsh, 1998).

Wei et al. (1995) and Ho et al. (1995) observed pronounced

variation in viral load trajectory among patients after the

administration of an inhibitor of HIV-1 protease, implying

the possible role of genes in regulating the balance of viral

production and clearance. Perelson et al. (1996) constructed

a mathematical function to model the dynamic curves of

HIV-1 for five different patients undergoing antiretroviral

drug therapy. The estimated curve parameters from viral

loads measured at a finite number of time points after

antiviral treatment, such as the rate of loss of virus-producing

cells and the rate for virion clearance, can well capture inter-

patient variation and, therefore, genetic variation.

Genes controlling complex traits, or quantitative trait

loci (QTL), can be detected using a genetic mapping

strategy based on linkage analysis or linkage disequili-

brium (LD) analysis (Lynch and Walsh, 1998). Whereas

traditional linkage analysis uses recombination infor-

mation only in pedigrees, LD analysis can use

recombination information at the population level. Here,

we propose a theoretical model for revealing how specific

genetic determinants in humans affect HIV-1 infection

pathogenesis by population-based LD analysis. We devise

a general algorithm for implementing various mathemati-

cal models constructed for HIV-1 dynamics (Wei et al.,

1995; Ho et al., 1995; Perelson et al., 1996; Nowak and

Bangham, 1996; Wu and Ding, 1999; Nowak and May,

2000) in the genetic mapping framework to detect and
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characterize the QTL responsible for HIV-1 disease

progression. Our model allows for the tests of a number of

hypotheses concerning the genetic control of clinically

important variables in HIV/AIDS research.

THE MATHEMATICAL MODEL OF HIV-1

DYNAMICS

The viral data of Perelson et al. (1996) can be fit by a

mathematical function derived to describe the time-

dependent total concentration, V(t), of plasma virions

(including infectious, VI(t), and non-infectious, VNI(t))

after antiviral treatment, assuming the steady state for a

system. This function is expressed as

VðtÞ ¼ V0e2ct

þ
cV0

c 2 d

c

c 2 d
e2dt 2 e2ct
� �

2 dte2ct
n o

; ð1Þ

where V0 is the concentration of viral particles in plasma at

time 0 (the time of onset of the drug effect), d is the rate of

loss of virus-producing cells and c is the rate constant for

virion clearance. We decompose V(t) into two parts due to

different virus compartments, i.e.

VIðtÞ ¼ V0e2ct; ð2Þ

for infectious virions and

VNIðtÞ ¼
cV0

c 2 d

c

c 2 d
e2dt 2 e2ct
� �

2 dte2ct
n o

; ð3Þ

for non-infectious virions. This model is different from the

equation derived by Wei et al., (1995) in which the loss

of infected cells and virion clearance due to the use of

inhibitors of HIV-1 protease cannot be distinguished.

Using the mathematical model for viral dynamics

(Eq. (1)) and non-linear least squares fitting of the data,

Perelson et al. (1996) obtained five distinct curves,

redrawn in Figure 1, each corresponding to a different

patient. These differences in curve shape can be explained

by differences in the three estimated curve parameters

ðV0; c; dÞ; for example, the estimated c values ranged from

2.06 to 3.81 day21, with a coefficient of variation (CV) of

21%, and the estimated d values ranged from 0.26 to 0.68

day, with a CV of 27% (see Table I of Perelson et al.,

1996). These authors further estimated several clinically

important variables which include the average life-spans

(1/c) and average half-lives (ln 2/c) of plasma virions, the

average life-spans (1/d) and average half-lives (ln 2/d) of

FIGURE 1 HIV-1 dynamic curves (plasma concentrations, copies per milliliter) for five patients 102, 103, 104, 105 and 107 measured at 16 time points.
The dot curve represents the mean curve of the five patients (data from Perelson et al. 1996). The variation in viral load among the five patients after drug
treatment decreases substantially with time for the untransformed curves (A), but it is roughly constant over time for the log-transformed curves (B). The
constant variation is a prerequisite for the use of mathematically tractable AR(1) model to approximate the 16-dimensional residual (co)variance matrix
(S) (Wu et al., 2002; Ma et al., 2002).

TABLE I Maximum likelihood estimates of the parameters describing
the three dynamic curves, each corresponding to a QTL, and QTL allele
frequency and marker-QTL linkage disequilibrium with 16 time points.
The numbers in parentheses are the squared roots of the mean square
errors of the estimates

True

Heritability (H 2)

Parameters Genotype value 0.1 0.4

V0 AA 643 650.8562 (33.0547) 646.9148 (11.2865)

Aa 294 367.8426 (76.1271) 301.1568 (8.1070)

aa 77 76.0635 (4.3980) 78.0755 (1.7433)

C AA 2.06 2.5511 (0.5294) 2.6053 (0.5630)

Aa 3.81 3.6322 (0.3327) 3.6124 (0.2975)

aa 3.09 2.9395 (0.2684) 3.2112 (0.1930)

d AA 0.53 0.6475 (0.1300) 0.5377 (0.0121)

Aa 0.26 0.3491 (0.0907) 0.2860 (0.0276)

aa 0.5 0.6157 (0.1192) 0.5191 (0.0198)

r 0.6 0.5821 (0.0180) 0.5943 (0.0061)

s 2[*] 5.06/0.84 4.8202 (0.2399) 0.8298 (0.0139)

p 0.6 0.6027 (0.0037) 0.6015 (0.0028)

q 0.6 0.6036 (0.0048) 0.5940 (0.0068)

D 0.08 0.0799 (0.0019) 0.0821 (0.0028)

* Different residual variances under different heritability levels.
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productively infected cells, the average viral generation

time (defined as the time from the release of a virion until

it infects another cell and causes the release of a new

generation of viral particles and calculated by 1/c þ 1/d),

and the duration of the HIV-1 life cycle (defined as the

time from the release of a virion until the release of its first

progeny virus). As shown in Table II of Perelson et al.

(1996), the five patients examined display remarkable

variation in these clinical variables, with the coefficients

of variation ranging from 8 to 36%. These discrepancies,

in conjunction with other observations (Wei et al., 1995;

Ho et al., 1995; Nowak and Bangham, 1996), suggest that

QTL in humans may contribute substantially to HIV-1

dynamics in vivo.

STATISTICAL MAPPING MODELS

Functional Mapping

Unlike usual stationary traits, viral dynamics is a function-

valued trait, whose genetic mapping presents a difficult

statistical issue. More recently, we have proposed a novel

statistical method for mapping QTL affecting function-

valued traits by incorporating universal biological

principles into the interval mapping framework

(Wu et al., 2002; Ma et al., 2002; Wu et al., 2004a,

2004b). Thus, different from the traditional treatment of

directly estimating gene effects of a QTL at discrete time

points, this method, called functional mapping, estimates

the mathematical parameters for each QTL genotype that

describe the shapes of dynamic curves. We extend this

model to map QTL determining viral load trajectories.

Suppose there is a QTL with two alleles A and a for HIV

dynamics. These two alleles form three QTL genotypes,

AA, Aa and aa. If the three curves, each corresponding to

one of these three genotypes, are different from each

other, then we can say that this QTL determines HIV

dynamics. Thus, by estimating the mathematical para-

meters of curves (e.g. V0; c; dÞ; the effect of the QTL on

dynamic changes can be estimated and tested.

Haplotype Block Mapping based on LD

Traditional LD analysis (or association studies) uses one

marker (e.g. single nucleotide polymorphism or SNP)

separately to predict one QTL in a non-random association

with the marker. However, this method is limited for two

reasons. First, separate use of individual SNPs is

statistically less efficient and less powerful to detect a

QTL than simultaneous use of multiple SNPs because the

former fails to make use of association information among

SNPs. Second, the number of individual SNPs, when they

are used independently, should be large enough to identify

the presence of QTL throughout the whole genome. For

example, according to Kruglyak (1999) (the number of

SNPs required for whole-genome association studies is

$500,000, which is expensive to genotype in practice.

Several recent empirical studies suggest that SNPs are

not evenly distributed over the genome in terms of the

extent of LD and that the structure of haplotype (a linear

arrangement of non-alleles at linked loci) on a

chromosome can be broken into a series of discrete

haplotype blocks (Daly et al., 2001; Patil et al., 2001;

Gabriel et al., 2002; Dawson et al., 2002; Phillips et al.,

2002). In each haplotype block, consecutive sites are in

complete (or nearly complete) LD with each other and

there is limited haplotype diversity due to little (coldspot)

inter-site recombination. Adjacent blocks are separated by

sites that show evidence of historical recombination

(hotspot). It has generally been assumed that the presence

of haplotype blocks provides evidence for fine-scale

variation in recombination rates, with blocks correspond-

ing to regions of reduced recombination, separated by

recombination hotspots. Based on a study of the whole

chromosome 21 (Patil et al., 2001), 35,989 observed

SNPs can be classified into different blocks with very low

haplotype diversity and 80% of the variation in this

chromosome can be described by only three SNPs per

block.

Given the block-like pattern of LD distribution in the

genome, it should be more efficient to locate allelic

variants for a complex human disease trait based on

haplotype blocks than individual SNPs to within a

stretch of DNA that is amenable to positional cloning

techniques. Because of the reported low haplotype

diversity within blocks there is a possibility that very

few haplotype-tagging SNPs (htSNPs) can be identified

to detect common variants involved in human diseases.

Suppose there are m SNPs genotyped from a

chromosome, which are divided into n haplotype

blocks. For block k (k ¼ 1, . . ., n) comprised of nk

SNPs, we assume nht(k) representative SNPs or htSNPs

to uniquely identify the common haplotypes in this

block. Our theoretical work has suggested that nht(k)

htSNPs accounting for 90% of the haplotype diversity

do not significantly reduce the power to detect a QTL in

the block. Therefore, our QTL mapping model here will

be constructed on the basis of haplotype blocks

composed of nht(k) htSNPs for block k. If htSNPs in a

block are detected to display strong association

with a QTL, it is likely that this QTL is located

within the same block based on the haplotype blocking

theory.

Recently, a number of candidate genes, e.g. the MHC

gene complex and the chemokine receptors genes, have

been identified to regulate human immune function

(Roger, 1998; Michael, 1999). Potential haplotype blocks

in association with unknown linked loci predisposed to

AIDS progression can be genotyped from these candidate

regions. Denote the allele frequencies of nht(k) htSNPs in

block k by p1(k),. . .,pnht(k), among which linkage

disequilibria at different levels (digenic, trigenic, quad-

ragenic and so on) occur (Lou et al., 2003). There is no

LD between SNPs from different blocks. All these htSNPs

in strong associations within haplotype blocks are
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employed to predict a QTL that affects HIV dynamics in

human populations.

Let us consider the simplest situation in which there is

only one htSNP with alleles M (in a probability of p) and m

(in a probability of 1 2 p) used to associate with such a

hypothetical QTL within a haplotype block. Thus, the

marker and QTL form four haplotypes whose frequencies

are expressed as

p11 ¼ pq þ D for MA

p10 ¼ pð1 2 qÞ2 D for Ma

p01 ¼ ð1 2 pÞq 2 D for mA

p00 ¼ ð1 2 pÞð1 2 qÞ þ D for ma

ð4Þ

where q and 1 2 q are the allele frequencies of QTL

alleles A and a, respectively, and D is the coefficient of LD

between the marker and QTL (Lynch and Walsh, 1998).

Large D values imply tighter non-random associations

between the two loci (Lynch and Walsh, 1998). By testing

and estimating D, thus, we can make inference about the

relationship between the QTL and marker and, ultimately,

characterize the QTL for complex human diseases.

Statistical Algorithms

The principle of QTL mapping is found on a finite mixture

model, in which each observation in a human sample of

size n is assumed to have arisen from one of all possible

components, each component being modeled by a density

from the parametric family f (Wu and Casella, 2005).

This mixture model is used to construct the likelihood

function for simulated human samples with 16-dimen-

sional measurements, yi ¼ ½yið1Þ; . . .; yið16Þ�; for individ-

ual i, and with segregating marker information, M,

expressed as

LðVjy;MÞ ¼
Yn

i¼1

X2

j¼0

4j f jðyiÞ

" #
ð5Þ

where V is the vector for unknown parameters to be

estimated, which includes the mixture proportion (i.e. QTL

genotype frequency), 4j, of the jth QTL genotype ( j ¼ 0

for aa, 1 for Aa and 2 for AA), and the mean vector,

hj ¼ ½hjð1Þ; . . .; hjð16Þ�; and residual (co)variance matrix,

S, contained in the multivariate normal distribution,

f jðyiÞ ¼
1

ð2PÞ8 Sj j
1=2

exp 2
1

2
ðyi 2 hjÞS

21ðyi 2 hjÞ
T

	 

:

ð6Þ

The parameters that characterize mixture

proportions belong to population genetic parameters,

whereas those that characterize the men vector and

residual (co)variance matrix belong to quantitative genetic

parameters.

Our interest of QTL mapping is to predict unknown

QTL genotype based on three known marker genotypes,

MM, Mm and mm, with respective observations n2, n1 and

n0 (n2 þ n1 þ n0 ¼ n). We rewrite the likelihood function

(Wei et al., 1995) in terms of known marker genotypes

to have

LðVjy;MÞ ¼
Yn2

i¼1

X2

j¼0

4jj2 f jðyiÞ

" #

for marker genotype MM;

£
Yn1

i¼1

X2

j¼0

4jj1 f jðyiÞ

" #

for marker genotype Mm;

£
Yn0

i¼1

X2

j¼0

4jj0f jðyiÞ

" #

for marker genotype mm;

where 4jj2; 4jj1 and 4jj0 are the conditional probabilities

of QTL genotype j, conditional upon the three marker

genotypes, respectively, which are different from QTL

genotype frequencies, 4j, in the entire sampled population

(Eq. (5)) if the marker and QTL are not independent as

assumed for our model. These conditional probabilities

can be derived on the basis of Bayes’ theorem from joint

marker-QTL genotype frequencies, expressed as simple

functions of haplotype frequencies, p11, p10, p01, and p00,

under Hardy-Weinberg equilibrium as follows:

Since the marker genotype for any individual i is

known a priori, conditional probabilities, 4jj2; 4jj1 and

4jj0; can be generally expressed as 4jji: We have derived

a closed form solution for estimating haplotype

frequencies within the EM algorithm (Dempster et al.,

1977). Based on the invariance property of the maximum

likelihood method, the maximum likelihood

estimates (MLEs) of haplotype frequencies can be used

to obtain the MLEs of the marker-( p) and QTL-allele

frequencies (q) and marker-QTL linkage disequilibrium

(D) by solving a system of equations in Eq. (4). The EM

algorithm used to provide the MLEs of haplotype

frequencies is described below.

Marker QTL

Conditional

Genotype Freq. Obs. AA Aa aa probability

MM p 2 n2 p2
11 2 p11p10 p2

10 4jj2

Mm 2p(12p) n1 2 p11 p01 2 p11p00þp10p01 2 p10p00 4jj1

mm (12p)2 n0 p2
01 2 p01p00 p2

00 4jj0
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In the E step, the posterior probability for individual i to

carry QTL genotype j is calculated using

Pjji ¼
4jji f jðyiÞP2
j¼04jji f jðyiÞ

; ð7Þ

by providing initiate values for the population genetic

parameters contained in 4jji and quantitative genetic

parameters contained in f jðyiÞ:
In the M step, the calculated posterior probability is

used to solve the haplotype frequencies expressed as

p̂11 ¼
1

2n

Xn2

i¼1

ð2Pi2 þPi1Þ þ
Xn1

i¼1

ðPi2 þ cPi1Þ

" #
; ð8Þ

p̂10 ¼
1

2n

Xn2

i¼1

ð2Pi0 þPi1Þ þ
Xn1

i¼1

ðPi0 þ ð1 2 cÞPi1Þ

" #
;

ð9Þ

p̂01 ¼
1

2n

Xn0

i¼1

ð2Pi2 þPi1Þ þ
Xn1

i¼1

ðPi2 þ ð1 2 cÞPi1Þ

" #
;

ð10Þ

p̂00 ¼
1

2n

Xn0

i¼1

ð2Pi0 þPi1Þ þ
Xn1

i¼1

ðPi0 þ cPi1Þ

" #
; ð11Þ

where c ¼ p11p00/( p11p00 þ p10p01). Rather than estimat-

ing all the elements in hj and S, our functional mapping

proposed here estimates the curve parameters that model

the time-specific mean vector specified by Eq. (1) for HIV

dynamics and the parameters that model the (co)variance

matrix S using a statistical approach, i.e. the first-order

autoregressive [AR(1)] structure (Wu et al., 2002; Ma

et al., 2002). The AR(1) model has two underlying

assumptions, (i) the variance (s 2) is constant over time,

and (ii) the covariance decays exponentially in a

proportion of r with time interval. Thus, the unknown

vector (V) contains marker allele frequency ( p), QTL

allele frequency (q), marker-QTL disequilibrium (D),

dynamic parameters ðVoj; cj; djÞ and (co)variance matrix-

structuring parameters (r, s 2).

The EM solution for quantitative genetic parameters

can be difficult because the log-likelihood equations

derived from the likelihood function incorporated with

HIV dynamics and the AR(1) model have no unique

solution. Without derivatives, the simplex method (Nelder

and Mead, 1965) can be embedded within the EM

algorithm to provide the estimates of ðVoj; cj; djÞ and

ðr;s2Þ: Zhao et al. (2004) showed that the simplex

method can provide faster computation for the curve

parameters and (co)variance-structuring parameters for

functional mapping than the EM algorithm. In this

estimation, a complete loop is composed of Eqs. (7)–(11)

and the simplex algorithm.

In order to make the variance stationarity assumption

more realistic, a transformation approach of the effect

phenotypes y can be used. As an example, we consider a

log transformation in which we transform both y and

Eq. (1) to maintain the functional relationship between

HIV loads and time (Wu et al., 2004a). Carroll and

Ruppert (1984) investigated a similar approach, though

they allow the transformation used to be estimated by the

data. In contrast, we suggest the data analyst consider a

number of transformations until one is found that

appropriately accounts for the particular features of the

data being analyzed.

Haplotype-based Functional Mapping

Although the description of our model was based on a

single SNP, the underpinning principle can be used for a

haplotype-based analysis. As demonstrated for the human

MHC by Ahmad et al. (2003), the patterns of LD may be

haplotype-specific. Haplotype-specific LD patterns can be

incorporated into our functional mapping model through

deriving a multilocus LD mapping model. The idea for

incorporating multilocus LD is described as follows.

Assume that there are nht htSNPs in a haplotype block.

These htSNPs form 2nht haplotypes each of which has a

particular frequency in a population. However, because of

the influences of various evolutionary forces and different

recombination, some haplotypes may disappear (Jenisch

et al., 1999; Ahmad et al., 2003; Mueller and Andreoli,

2004) so that there are actually m existing haplotypes in

the population ðm , 2nht Þ: We have constructed a

multilocus LD analysis for QTL mapping in a natural

population (Lou et al., 2003). This analysis relies on the

formulation of LD of different orders and can be directly

used to map QTL for HIV dynamics based on haplotype

blocks. The only difference between single SNP- and

haplotype-based mapping strategies is in the form of

conditional probabilities. There are three groups of

conditional probabilities, expressed as 4jj2; 4jj1 and

4jj0; for the one SNP model, whereas there are such nine

conditional probabilities, expressed as 4jj22; 4jj21; 4jj20;
4jj12; 4jj11; 4jj10; 4jj02; 4jj01 and 4jj00; for the two-SNP

model. One can similarly derive the conditional

probabilities for an arbitrary number of SNPs.

Although conditional probabilities are treated differ-

ently, modeling of the mean vector and residual

(co)variance matrix is the same between the single SNP

and multilocus LD mapping strategies. However, as shown

below, the estimation precision of curve parameters and

(co)variance-structuring parameters may be increased

when multilocus LD mapping is used.

RESULTS

We perform simulation studies to investigate the statistical

properties of our method. To reflect real HIV dynamic

curves, we hypothesize curve parameters from the

published literature. For example, Perelson et al. (1996)

estimated curve parameters for five HIV-infected patients.
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We used curve parameters estimated for these individuals,

among which there are remarked differences in curve

shapes (Fig. 1), to simulate viral load data at different time

points for a given number of patients. The simulation

conditions include:

(i) There is a segregating QTL with allele A and a in the

simulated population that determines HIV dynamics;

(ii) The population is assumed to be at Hardy-Weinberg

equilibrium, with allele frequencies of q for allele A

and of 1 2 q for allele a;

(iii) The residual errors among different time points

follow a multivariate normal distribution MVN(0, S),

where S can be fit by the AR(1) model.

Under different levels of genetic control (defined by the

heritability, H 2, a proportion of genetic variance to total

phenotypic variance), we simulated viral load data for 200

patients at 16 time points following the time schedule of

Perelson et al. (1996) (every 2 h until the sixth hour, every

6 h until day 2, and every day until day 7) by taking the

summations of genotypic values predicted by the

theoretical curves (Eq. (1)) and residual errors obeying a

multivariate normal distribution. This QTL is hidden in

the simulated data set, which can be detected using known

SNP markers in association with the QTL. The simulated

data are analyzed by our model.

The results from our model suggest that the QTL

responsible for HIV-1 dynamics can be detected using a

SNP associated with the QTL, but the detection power is

increased markedly from H 2 ¼ 0.1 (47%) to 0.4 (100%).

The curve parameters ðV0; c; dÞ for each QTL genotype

can be estimated with reasonably high accuracy, having

the estimated values more consistent with the hypothe-

sized values under a heritability of H 2 ¼ 0.4 than 0.1

(Fig. 2). The QTL effects as reflected by the differences in

curve parameters can be estimated more precisely for a

QTL displaying a greater proportion of the observed

variation than that displaying a smaller proportion

(Table I). The population genetic parameters of the QTL

(including the allele frequencies of QTL variants and their

LD with the marker) can be estimated with high precision

using our closed form solution approach, not depending on

the levels of heritability (Table I). According to our study,

it seems that a sample of 200 can provide reasonable

estimates of all parameters for a modest heritability of

dynamic curve (e.g. H 2 ¼ 0:1) although increased sample

sizes and higher heritabilities can improve the estimation

precision.

Our model provides an elegant means for testing the

genetic control of clinically significant variables, such as

the rate of loss of virus-producing cells (d) and the rate for

virion clearance (c). In the simulation example derived

from the experiment of Perelson et al. (1996) we found

that the QTL for overall HIV-1 dynamic curves might

exert significant effects on the rate of virus-producing

cells and the rate for virion clearance. The power to detect

the effect of the QTL is much lower on rate c (18%) than

rate d (100%). The differences in these two rates among

different QTL genotypes suggest that the QTL controlling

overall HIV-1 dynamics affect the infected cells’ and

plasma virions’ life-spans (and also average half-lives). A

significance test is performed for the effect of the QTL on

1/c þ 1/d, suggesting that the QTL triggers an impact on

the average viral generation time in vivo.

As described by Eq. (1), the total concentration of

virions in plasma contains two components due to

infectious (Eq. (2)) and non-infectious virions (Eq. (3)).

The QTL detected from Eq. (1) governs the curves of the

total viral load dynamics, which does not necessarily

affect the dynamics of infectious and non-infectious

virions, respectively. But the effects of the detected QTL

FIGURE 2 Estimated HIV dynamics curves (broken) for each of the three QTL genotypes, AA, Aa and aa, in comparison with the given curves (solid)
used to simulate individual curves. The discrepancy between the estimated and given curves indicates the bias of our model to estimate the genetic
control over viral load trajectories in human hosts. (A) Three curves under the heritability of H 2 ¼ 0:1 can be distinguished in 47 of 100 simulation
replicates. (B) Three curves under the heritability of H 2 ¼ 0:4 can be distinguished in all simulation replicates. The log-likelihood ratio test
statistics were estimated to infer the role of a QTL in shaping viral load trajectories. The dots denote the time points at which patients were measured in
Perelson et al. (1996).
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on these two compartments can be tested by formulating

the null hypothesis that the three QTL genotypes have an

identical infectious or non-infectious viral curve, i.e.

VI;AAðtÞ ¼ VI;AaðtÞ ¼ VI;aaðtÞ or VNI;AAðtÞ ¼ VNI;AaðtÞ ¼

VNI;aaðtÞ: Our test results suggest that the QTL detected

from Eq. (1) also affect significantly the curves of

infectious (Eq. (2)) and non-infectious viral dynamics

(Eq. (3)).

We have also derived a more complex haplotype model

in which multiple markers are used to infer an associated

QTL. This extended haplotype-based QTL mapping can

significantly improve our estimation precision (results not

shown). An additional simulation was performed to

investigate the advantages of this more complex model. As

compared to the one-marker/one-QTL model, the

simultaneous use of two markers can provide more

precise estimates of all parameters, especially when

individual markers and QTL display lower linkage

disequilibria. There is a similar finding for the haplotype

model composed of three or more SNPs.

DISCUSSION

We have derived a general genetic model for mapping

QTL controlling HIV-1 dynamics in humans constructed

from the biochemical and biophysical principles. The

framework embraces two advanced mapping strategies—

LD analysis based on the structure of haplotype blocks

with power for fine scale mapping of QTL (Daly et al.,

2001; Patil et al., 2001; Dawson et al., 2002; Gabriel

et al., 2002; Phillips et al., 2002) and functional mapping

capable of detecting biologically meaningful QTL

(Wu et al., 2002; Ma et al., 2002; Wu et al., 2004a,

2004b). Our model allows for the incorporation of any

biochemical and physiological properties related to HIV-1

infection pathogenesis. Its power is demonstrated by its

ability to reliably estimate the QTL responsible for

exponential curves of viral load and for the most important

clinical variables. Its integration into haplotype block

model framework facilitates the choice of the most

informative SNPs (htSNPs) to genome-wide detect the

human disease genes and positional cloning of target

genes.

The derivation of our current model needs an

assumption, i.e. there is only one QTL that affects HIV

dynamics. This assumption is likely to be oversimplified

given the possible polygenic control of this dynamics. It is

essential to derive a multi-QTL model that integrates

functional mapping and haplotype-based LD mapping in

the gene identification framework for HIV load trajec-

tories. Suppose there are two QTL that affect HIV

dynamics. These two QTL form nine genotypes,

designated by j1j2 ð j1; j2 ¼ 2; 1; 0Þ; each corresponding

to a curve. Thus, under the two-QTL model, we will need

to estimate nine groups of curve parameters

ðVoj j2 ; cj1j2 ; dj1j2 Þ; but the residual (co)variance matrix

can be modeled in the same way. The advantage of

the multi-QTL model is to allow for hypothesis tests of

important genetic phenomena (Wu et al., 2004b), such as

QTL epistasis of different kinds and QTL linkage

disequilibrium, in the control of HIV dynamics.

The model can be extended to include the pleiotropic

effect of QTL on both the magnitude and shape of HIV-1

dynamic curves and the physical structure, body mass and

behaviors of patients (Ameisen et al., 2002). It can be

further extended to model the effect of QTL interactions

on HIV pathogenesis derived from the viral and human

genomes. Perhaps the most appealing and powerful

feature of our model is that its deployment in an

HIV/AIDS research project can shed great light on the

genetic control of HIV-1 infection pathogenesis and the

development of efficient gene therapy for AIDS preven-

tion and treatment. The software for the model presented

in this paper is available upon request.
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