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In Keef et al., Assembly Models for Papovaviridae based on Tiling Theory (submitted to J. Phys. Biol.),
2005 [1] we extended an equilibrium assembly model to the ðpseudo�ÞT ¼ 7 viral capsids in the family
of Papovaviridae providing assembly pathways for the most likely or primary intermediates and
computing their concentrations. Here this model is applied to Murine Polyomavirus based on the
association energies provided by the VIPER web page Reddy et al. “Virus particle explorer (VIPER),
a website for virus capsid structures and their computational analyses”, J. Virol., 75, pp. 11943–11947,
2001.
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1. Introduction

Papovaviridae are of particular interest to mathematical

biologists because they do not fit strictly into the theory

of quasi-equivalence [2] because they comprise structures

composed of 72 pentamers instead of a combination of

pentamers and hexamers. For examples see [3–5], and

for an example of packing of pentagons on the sphere see

[6]. It has been shown that the surface structure of the

capsids can be described by tiling theory, using kites and

rhombs to tile the surface instead of quasi-equivalent

triangles [7,8]. Since these tiles also provide information

about intersubunit bonds, and in particular about the local

environment around individual subunits, they are

biologically significant and can be used as building

blocks for assembly models of viral capsids.

Various models for capsid assembly have been

considered, including models based on local rules [9], an

equilibrium model [10], models based on molecular

dynamics [11], a thermodynamical approach [12] and

combinatorial approaches [13]. Our model combines local

information provided by the tiles with the equilibrium

model pioneered by Zlotnick. We have extended the model

to the larger capsids in the family of Papovaviridae, that

need to be represented via a more involved assembly tree

with multiple possible assembly pathways. A short review

of this approach is provided and applied to Murine

Polyomavirus.

2. Equilibrium assembly models

In 1994, Zlotnick provided an assembly model for a small

plant virus formed from twelve pentamers [10]. This

model assumes that all 30 edge to edge contacts between

the pentamers are identical and that the final capsid has

dodecahedral symmetry. Incoming pentamers are added

one at a time and only the most stable intermediate is

considered at each iteration step during assembly. From a

set of rate equations it is possible to predict concentrations

of the assembly intermediates at equilibrium based on the

concentration of the pentameric building blocks.

In our extended model we include the possibility of multiple

incoming subunits with different association energies between

the contacts [1]. We again derive the concentrations of

assembly intermediates along similar lines, but also include the

possibilities for branching in the assembly pathway.

First we redefine the association constant, a ratio of

concentrations of assembly intermediates, to include the

possibility for multiple incoming subunits:

Kn ¼
½n�

½n2 1�
Pa

i¼1½1i�di;xðnÞ
¼ SxðnÞSnK

0
n; ð1Þ

where x(n) corresponds to one of the i ¼ 1; . . .; a possible

different subunits added in iteration step n, i.e. di;xðnÞ ¼ 1

if xðnÞ ¼ i and zero otherwise. Si is defined to be

the geometric degeneracy of subunit x(n), for instance,
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a pentagon has five-fold rotational symmetry, hence in

Zlotnicks model all incoming subunits have Si ¼ 5: Sn is

defined as the ratio of the orders of discrete rotational

symmetries of the intermediate at steps n 2 1 and n,

i.e. of Osym(n 2 1) and Osym(n):

Sn ¼
Osymðn2 1Þ

OsymðnÞ
: ð2Þ

K 0
n is the non-statistical association constant and is a

function of the number aj(n) of contacts formed with

association energy DGo
j ð j ¼ 1; . . .; kÞ:

K 0
n ¼ e2

Pk

j¼1
aj ðnÞDG

o
j

RT ; ð3Þ

where R is the gas constant (1.987 cal deg21 mol21), and

T is the temperature in Kelvin, set to room temperature

(298 K).

Equation (1) can be rearranged to give an equation for

the concentration of the assembly intermediate at iteration

step n in terms of the intermediate at iteration step n 2 1:

½n� ¼ SiSnK
0
n½n2 1�

Xa
i¼1

½1i�
di;xðnÞ ¼ VðnÞ½n2 1�; ð4Þ

where

VðnÞ ¼
Xa
i¼1

Si½1i�
di;xðnÞSne

2

Pk

j¼1
ajðnÞDG

o
j

RT : ð5Þ

In order to determine the concentration [n ] in terms of

the concentration of the basic subunits [1i], equation (4)

needs to be applied recursively. For this, information is

required on the assembly pathway that connects different

assembly intermediates.

For larger viral capsids, assembly does not always follow a

strict path of stable intermediates, and at some steps of an

assembly pathway there maybemultiple choicesofcombining

incoming subunits with the assembly intermediate at the

previous step based on the association energies of the bonds,

which leads to branching of the assembly pathways.

Subsequent steps could involve further branches, and this

information is encoded in the assembly tree. In [1], we show

that it is possible to reduce the factorV(n) to a simple formula,

if n and n2 1 are primary intermediates, i.e. intermediates

located on all paths in the assembly tree. One hence obtains a

recurrence relation for the concentration of the n-th primary

intermediate in terms of the (n 2 s)th primary intermediate as:

½n�¼Vðn2sþ1ÞVðn2sþ2Þ...Vðn21ÞVðnÞ½n2s�

¼
Ys21

i¼1

Vðn2 iÞ

 !
½n2s�; ð6Þ

with V(n) as in equation (5).

3. Application to Murine Polyomavirus

In this section this set-up is applied to Papovaviridae, and in

particular to Murine Polyomavirus. ðPseudo�ÞT ¼ 7

capsids in this family are composed of 360 protein subunits

arranged into 72 pentamers with 12 pentamers at the points

of global five-fold symmetry. The locations and orientation

of the pentamers are predicted by tiling theory, and the

locations of the inter-subunit trimer and dimer bonds are

described by kites and rhombs as explained in R. Twarock,

“The architecture of viral capsids based on tiling theory”,

pp. 91–93, same volume.

We assume that all pentamers assemble first in

solution and then come together to form the final capsid.

When assembled there are two possible configurations

for pentamers (called vertex stars in tiling theory), one

at the global five-fold axes of symmetry, and one for

pentamers elsewhere. These are shown in figure 1,

together with the inter-subunit bonds. The building

blocks are created by cutting all inter-subunit bonds

perpendicularly.

We assume that in solution all pentamers are identical

and choose one of the two vertex stars on contact with the

assembling capsid.

For our model we need the association energies of each

of these edges, and we define them as follows:

. We denote the association constant corresponding to a

single C-terminal arm in a trimer (represented by a kite

in the tiling model as shown in figure 1) between

the two different types of pentamer as a. Corres-

pondingly, all five edges of the pentagonal building

blocks at the five-fold axes have an association

constant of 2a.

. b labels the C-terminal arm in a trimer between the

secondary pentamers (those not located on five-fold

axes). This is indicated by the bond between the purple

and green subunits in the figure.

. c labels the association constants related to quasi-dimer

bonds. They are located around the three-fold axes of

the tiling and are shown as rhombs with red and blue

decorations in the figure.

. d labels the association constants corresponding to strict

dimer bonds along the global two-fold axes of the tiling.

They correspond to the rhombs with yellow decorations in

the figure.

For most viruses, all association energies within

the trimer are the same and in these cases we set a ¼ b:
In [1] the case of SV40 has been discussed in detail.

Here Murine Polyomavirus is considered.

Figure 1. The building blocks for assembly of vertex-star models.
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The association energies for the bonds can be found

on the VIPER website [14]: a ¼ 2100 kcal mol21;
b ¼ 2104 kcal mol21; c ¼ 2207 kcal mol21; and d ¼

2218 kcal mol21: Based on these values, one obtains the

pathway of primary assembly intermediates for MPV.

Table 1 shows where in the assembly pathway primary

nodes occur, and indicates information on the symmetries,

new bonds formed and concentrations for each.

The concentrations are based on the critical concentration

where the concentration of subunits in solution is equal

to that of the complete capsid. It shows that the

concentration of intermediates is very small as with the

Zlotnick case.
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Table 1. Primary assembly intermediates for murine polyomavirus
along with symmetries, incoming bonds and concentrations at

equilibrium based on a pseudo critical concentration of
1.072 £ 102385 mol.

n Osym(n) Bonds formed [n ]

1 5 – 1.072 £ 102385

2 2 d 5.597 £ 102609

3 1 b þ c 7.600 £ 102765

4 1 2c 1.811 £ 102845

5 1 4a 2.326 £ 102936

9 1 6a þ 2b þ 3c þ d 1.879 £ 1021265

10 2 2a þ b þ d 3.652 £ 1021267

11 1 b þ d 5.798 £ 1021415

12 1 2a þ b þ c 1.927 £ 1021424

13 1 2c 4.592 £ 1021505

14 1 2a þ 2b 4.349 £ 1021590

15 1 b þ c þ d 2.302 £ 1021586

16 1 c þ d 6.415 £ 1021659

18 1 2b þ 4c 2.630 £ 1021668

38 1 36a þ 15b þ 15c þ 8d 1.246 £ 1022012

39 3 2a þ b þ d 1.615 £ 1022014

40 1 2a þ b 4.588 £ 1022099

41 1 b þ c þ d 2.429 £ 1022095

42 1 6a 1.528 £ 1022039

43 1 2a þ b þ c 5.079 £ 1022049

44 1 c þ d 1.415 £ 1022121

50 2 12a þ 7b þ 5c þ 2d 1.654 £ 1021934

51 1 c þ d 9.216 £ 1022007

62 2 20a þ 10b þ 11c þ 5d 7.820 £ 1021535

63 1 b þ 2c 7.081 £ 1021539

64 1 2a þ 2b þ d 5.229 £ 1021464

65 1 6a 3.290 £ 1021408

66 1 b þ c þ d 1.741 £ 1021404

67 1 2a þ b þ 2c 3.860 £ 1021262

68 1 2a þ 2b þ d 2.851 £ 1021187

69 1 2a þ 2b þ c 1.801 £ 1021120

70 1 b þ 2c þ d 6.356 £ 102965

71 5 2b þ 2c þ d 8.527 £ 102734

72 60 10a 1.071 £ 102385
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