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Developing the general statements of the proposed global change theory, outlined in
Part 1 of the publication, Kolmogorov’s probability space is used to study properties of
information measures (unconditional, joint and conditional entropies, information diver-
gence, mutual information, etc.). Sets of elementary events, the specified algebra of their
sub-sets and probability measures for the algebra are composite parts of the space. The
information measures are analyzed using the mathematical expectance operator and
the adequacy between an additive function of sets and their equivalents in the form of
the measures. As a result, explanations are given to multispectral satellite imagery
visualization procedures using Markov’s chains of random variables represented by pixels
of the imagery. The proposed formalism of the information measures application enables
to describe the natural targets complexity by syntactically governing probabilities.
Asserted as that of signal/noise ratios finding for anomalies of natural processes, the
predictability problem is solved by analyses of temporal data sets of related measure-
ments for key regions and their background within contextually coherent structures of
natural targets and between particular boundaries of the structures.
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General statements of research programmes, con-
cerning global change issues, were outlined in
Part 1 of the publication. The statements were
considered as composite parts of possible discrete
dynamics application to study global change by
the induced representations about information
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sub-spaces taking stringent terms of sets, mea-
sures and metrics (SMM) into account. Order
and chaos categories in dynamic systems were
described to develop conceptual models of global
analysis, interpretation and modelling using the
major framework concerning the SMM categories.
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Correct and incorrect problems were mathe-
matically set up to find ways of their solutions
existence, uniqueness and stability relative to dis-
turbances of initial data, given by data of remote
sensing measurements.

Below we present our approach to employ in-
formation measures and entropy metrics for de-
scribing the complexity of natural targets and
structures construction to find ordering procedures
while processing multispectral satellite imagery of
the targets/structures. This will be needed to come
to analysis of temporal data sets of the imagery
that should approach us to understanding the
predictability problems of global change.

KOLMOGOROV’S PROBABILITY SPACE

We shall operate in our considerations with the
chaos and order characteristics of the conception
of Kolmogorov’s probability space. This space is
defined when the following three categories are
accepted known (9, F, ), Q is a set of elemen-
tary events with their composite elements w,
which are only considered in the classical prob-
ability theory;, F is a special algebra, called as
o-algebra of the € sub-sets, that is associated
with the o-algebra of the A4, events; the latter are
defined provided both their conjunction (sum)
Uxdy and cross-section (product) NipAy exist in
the infinite sequence of the events; p is a prob-
ability measure on the F algebra.

Random variables X with their particular mean-
ings x on a finite set X can be then defined as a
result of the following transformation X:Q— X,
so that X '(x) € F for all x € X. The probability
of such an event in terms of these random vari-

ables is the p-measure of a corresponding sub-set
A of the Q set, i.e.

P{X € 4} = p({w: X(w) € 4}).
We shall suppose hereafter that the major prob-

ability space (2, F, ) is “sufficiently rich” in the
sense that for any pair of infinite sets X and ),

any random variable X with its meanings on the
X and any distribution P on X x Y (this notation
means the Cartesian product of the infinite sets),
the striction of which on the X is coincident with
the given Py distribution, the Y random variable
exists such as Pyy= P. This supposition is sure to
be valid if Q is the unit interval (0, 1), F is a fam-
ily of its Borel’s sub-sets in the Euclidean space
and p is the Lebesgue measure (Kolmogorov and
Fomin, 1976).

Let us identify sets of all probability distribu-
tions on the finite set X as sub-sets of the
n=|X|-measure Euclidean space that consists in
all vectors with components P,>0 such as
Sk Pr=1. Linear combinations and convexity
are then understood in accordance with the sup-
position. For instance, the convexity of a real
function f(P) from the probability distribution
on X means that

flaPr+ (1 —a)Py) <af(Pr) + (1 —a)f(P2)

for any distributions Py, P, and a € (0, 1).

It is possible to use topological terms for prob-
ability distributions on X assuming that they are
related to a metrical topology characterized by
Euclidean distance. In particular, the convergence
P, — P implies that P,(x) — P(x) for any x € X.

We can introduce after these notations and
definitions information measures having in mind
their relevance to the well-known probability
theory, from one side, and remote sensing data
applications, from the other side. Of particular
interest here for us are the forthcoming
measures: unconditional, joint and conditional
entropies, information divergence, mutual infor-
mation, etc.

INFORMATION MEASURES

The scalar quantity of the amount of information
in any set of measurements is defined through
the mathematical expectance operator E in the
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following way:

H06) = 5 (log 5 75 ) = Bl-log P(X)) = H(P)
:—ZPx)logP(x).

xeX

This is the alternative representation of the entropy
of a random variable X or a probability distribu-
tion Py= P. The entropy is the measure of an
a priori uncertainty that is contained in the vari-
able X before its measuring or observing; the
main property of the measure of the amount of
information is

0 < H(P) < log|&].

Understanding of the entropy as the measure
of uncertainty about a process under study is
meant that a “more homogeneous” distribution
would possess of larger entropy values. If two
distributions P and Q are given on X, then saying
about the above “homogeneity”, we imply that
P> Q provided that for any two non-decreasing
orderings p1>p2> " 2Py G12G22 1 24y
(n=X)) of probabilities from these distributions,
the following inequality is valid for any k,
1<k<n:

k k
Zl’i < qu',
i=1 i=1

so that from the condition P>, the other
inequality entails:

H(P) > H(Q).

The information divergence, that is connected
with statistical hypotheses testing, is the measure
of differing between distributions P and Q and is
also given by the E operator:

D(P,Q):E(l P(x) ;p _(ix))

The conditional entropy is the measure of
additional amount of information that contains
in the random variable Y, if X has already been
known, and is expressed through the joint entropy
of pair of the variables and the unconditional
entropy:

H(Y|X)=H(X,Y)— H(X).
Due to the definition
PXY(X,y)
Pyiy(x = s
X\Y( | ») Py(x)

for any Py(x)> 0, the conditional entropy can be
also written as:

H(Y|X)=> Px(x)H(Y|X=x),
xeX
where
HY|X=x) ZPY|X y|x)log Py x(y|x),

yedy

i.e. properties of the information categories en-
able to express the conditional entropy H(Y | X)
as the mathematical expectance of the entropy of
the conditional distribution Y under the condi-
tion X=x.

Mutual information of the X and Y variables
IXANY)=H(Y)-H(Y|X)=HX)-HX|Y)
serves as the measure of a stochastic dependence
between these variables. We use the other letter
for the measure notation (I instead of H in all
other cases) just to follow traditional principles
to do that. In particular, the formula

IXANX)=HX)
expresses the amount of information that is
contained in X relative to its own.
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Other information measures of the type
H(X|Y,Z =z)
=Y P{(Y=y|Z=z}H(X|Y =y,Z=12),
yey
IXAY|Z)
=Y P{Z=z{(XNY|Z=2),...,

z€Z

are often studied in various theoretical ap-
proaches (Csiszar and Korner, 1981).

It can be found that all the listed and any
other information measures have the following
general properties:

(1) are non-negative;
(2) are additive, i.e.
H(X,Y)=H(X)+H(Y|X),
HX, Y| X)=HX|Z)+HY|X,Z),...;

(3) satisfy the “chain rules” for sequences of ran-
dom variables:

k
H(X1,... . Xe) = > HXi | Xu,. ., Xi),
i=1

k
IXy,. . Xk AY) =D IXGAY | Xy X)),

i=1

(4) H(P) is the concave function of P and
D(P, Q) is the convex function of the pair

(P,0Q), ie. if

P(x) = aPi(x) + (1 — a)Pr(x)

and
0(x) = aQi(x) + (1 — @) Qa(x)
foranyxe Xand 0 <a <1,
then
aH(Py) + (1 — a)H(P,) < H(P)
and

aD(P1,01) + (1 — a)D(P2, Q2) > D(P, Q).

Owing to their additive properties, these infor-
mation measures can be considered as formal
identities for the random variables. The adequacy
has been proven (Csiszar and Korner, 1981) to
exist between these identities to be valid for an
optional additive function f and their equivalents
in the form of the information measures. Denot-
ing the sign of such adequacy by <, we can
represent the proven facts as

H(X) < f(A),
HX|Y) < f(A\B),

H(X,Y) < f(AUB),
IXAY) < f(4N B),

where U and N mean the conjunction and pro-
duct of the 4 and B sets, respectively. In general,
the theorem was proven in the cited reference
that any pair of the information measures would
be adequate to an expression of the following
type f((A4 N B)\C) with the sign “backslash” denot-
ing the sets disjunction, where 4, B, C are infi-
nite conjunctions of sets (supposed that 4 and B
are not empty, C may be empty). And vice versa:
any expression of the same type is adequate to
the related information measure.

As a result of the facts, the following quantity
(A\B)U(B\A)=ANAB, called as the symmetrical
difference between sets 4 and B (Kolmogorov
and Fomin, 1976), can be used in the studies.
This quantity is a metrics of sub-sets 4 and B on
the initial  set of Kolmogorov’s space. The
function f((4\B) U (B\4)) does not have any direct
analog in the theory of information. However, it
is the metrics for the quantity

d(X,Y)=H(X|Y)+H(Y|X)

on the random variables space. The said can be
convinced by realizing that the metrics properties
are correspondent to those given by initial ax-
ioms of metrical spaces:

d(X,Y)>0, dX,X)=0,
d(X,Y)=d(Y,X),
d(X,Y)+ d(Y,Z) > d(X, Z).
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It is not difficult to find that the information
measures are continuous relative to the entropy
metrics:

[H(X1) — H(X2)| < d(X1, Xa),
|H(X1|Y1) — H(X2 | Y2)| < d(X1,X2) +d(Y1, Y2),
(X1 A Y1) — I(X2 A Y2)| < d(Xy, Y1) +d(X2, Ya).

However, the information divergence D(P, Q) can-
not serve as the measure that satisfies the Euclidean
distance requirements on the probability distribu-
tion space since it is not symmetrical. Even the
“symmetrized” divergence J(P,Q)=D(P,Q)+
D(Q, P) is not the distance once such probability
distributions Py, P,, P3 can be found, for which
simultaneously the following inequalities are valid:

D(Py, Py) + D(P,, P3) < D(Py, P3),
D(P3, Py) + D(Py, P1) < D(Ps, P1).

Following the listed results, we can study prop-
erties of the information sub-spaces as imbedded
into the main probability space that comprises
random variables. This would require additional
explanations to consider the sub-spaces relative
to the distribution space because of the above
concavity of the entropy and the convexity of the
information divergence in the space. In fact, an
opportunity is emerged in the first case to invent
a unified description of different data sets repre-
sentation for selected classes of natural targets
using their transformed images, given by remote
sensing measurements. The description is based
on the SMM categories giving rise to imagery
visualization procedures, which are usually implied
while saying about the thematical interpretation
of the images in a particular subject area. These
procedures enable to find an analog to the sub-
jective analysis of single satellite pictures by eyes
of an experienced interpretor when an analyzed
picture is displayed on the computer screen or as
a hard copy. The rigorous definition of such visual-
ization that also includes multispectral analysis,
practically not accessible for the subjective inter-
pretation, would originate from the SMM consid-
erations in the metrical information sub-spaces.

IMAGERY VISUALIZATION

Of particular importance for an objective inter-
pretation of natural targets variability on their
space imagery are Markov’s chains as an effec-
tive tool to identify “a recipe” of pixels ordering
within a spatial structure. The above mutual in-
formation is the quantity that is the most profit-
able for an analysis of alterations on sets of pixels
to be considered as sequences of these random
variables. In accordance with its definition, a finite
or infinite sequence of variables Xi, X,... with
final sets of their values is called Markov’s chain
(Pougachev, 1979) if for any i the variable X,
is conditionally independent on (Xi,...,X,_))
relative to X, The latter notation is common-
used in the information theory: if information
measures are dependent on a set of random vari-
ables and these variables can be represented by
the only symbol, the set is written as an argument
without any parentheses. The parentheses are
used to emphasize mutual information between
the variables. Random variables X, X5, ... would
generate a conditional Markov’s chain relative to
the variable Y if for any i the variable X, is
conditionally independent on (Xj...X;_;) pro-
vided (X; Y). Both types of the chains serve to
find elements of ordering on the images.

Since according to the definition of mutual
information (XAY)=0 if variables X and Y are
independent, and (X AY |Z)=0 if X and Y are
conditionally independent variables relative to Z,
then it can be stated that elements (pixels) of a
multispectral image represented by X, Xo,...
would make up Markov’s chain there and only
there where

I(X],..., Xi_1 /\X,’+1|Xi) =0
for any i. The similar form of ascertaining the

conditional Markov’s chain relative to Y looks as
I(X],.. . X /\XH-lIXia Y) =0

Assuming random variables X;_, X;, X;, 1 as
three levels of delineating pixels of one spectral
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band for an image while identifying rules of deci-
sion making as to the separability of the pixels
and variable(s) Y in the above sense as related to
the second band of the image, the search of pixels
of its structure, for which the last “chain rule” is
valid, would represent the essence of the visuali-
zation procedure for the two-band image. Finding
of contextually coherent structures (Kozoderov,
1997) of natural targets and accounting for the
related measures of the targets complexity de-
scription would be the result of these rules appli-
cation. Considering random variables Xi,..., X,
X1, Y as characteristics of a particular spectral
band, the number of which is i+ 2, this search of
the ordering measures using the chain rules
would serve to elucidate the optimal selection of
the number of bands and the efficiency of the
relevant instruments called imaging spectrometers
(Mission to Planet Earth, 1996). Both these aspects
of the information measures applicability are
needed to be realized in constructing new versions
of special computer languages.

NATURAL TARGETS COMPLEXITY

The most pattern recognition and scene analysis
techniques that would present the scientific basis
for multispectral imagery processing are divided
into two groups: one of them is tackled from the
decision making position (Tou and Gonzalez,
1978) and the second is considered within the
syntax approach (Fu, 1977). Natural objects
(specific targets) are characterized by sets of num-
bers in the first case. These numbers are digital
equivalents of results of remote sensing measure-
ments. Pattern recognition as a procedure of attrib-
uting of each pixel on an image to some classes
is carried out in this case by sub-dividing the
entire space of characteristic features on selected
areas to be delineated by sets of such rather stan-
dard procedures. Classes are to be defined in
accordance with the probability distribution
functions for sets of pixels on the scene under
processing. It is required in the second case (the

structural description of each pattern) that the
recognition procedure would enable not only to
take an object to a particular class, but to de-
scribe those peculiarities of the object, which
would exclude its taking to any other class.

Developing the known metrical pattern recogni-
tion theory (Grenander, 1976; 1978), we can extend
the definition of pixels in the techniques of the
first case to elements x € X in the second case.
The recognition of the images in the second case
is based on an analogy between “the structural
patterns” (hierarchical or in a tree form) and the
syntax of a computer language. The recognition
in this case is in a syntax analysis of “a grammati-
cal sentence” that describes a concrete scene under
analysis. This scene is reflected by sets of various
objects to be quantitatively described by the infor-
mation measures. Such elements that can be called
as generators are natural to be used for con-
structing configurations. It means that inducing a
group of transformations on the set X, a set of
objects to be recognized is divided on classes of
their equivalency. The configurations are deter-
mined by the composition and structure of their
generators and by the combinatorial theory of
the configurations construction on particular
imagery of natural objects to be analyzed by the
proposed treatments.

If it is possible to assume a structural combi-
nation of the generators into configurations, then
these combined objects being characterized by
the composition of bonds between the elements
and by their own structures are initial to study
new classes of the metrical images. The direct
problem of studying processes of the images for-
mation through mathematical operations of com-
bination, identification and deformation is
usually called the imagery synthesis whilst the
inverse problem of selecting particular configura-
tions on the images is called the imagery analysis
(Grenander, 1978).

Denoting by R a system of rules or restrictions
that are to define what configurations are regular,
we can write the following symbolic expression
for a computer language representation on a set
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of such regular configuration Q(R):
L(R) =

where G is the generators set, S is the transfor-
mation set of the generators, ¥ is the type of the
bonds for the taken sets of generators, p is the
ratio of consistency between the possible bonds
in their structural connections. These bonds and
connections may serve in the first approximation
as a measure of the structure complexity. More
comprehensive definition of the complexity in the
matrix form will be given below. The regularity
of these configurations on particular imagery is
supposed in the studies as their consisting in spe-
cific structural connections not purely random
for the elements; otherwise, no opportunity could
be found in traditional supervising procedures of
pattern recognition techniques and all attempts
to create “an artificial intelligence” by finding
regular rules of the element connections would
be ambiguous.

There is the theorem (Grenander, 1976) that
the tree type bonds ¥ and the equality for the
ratio of consistency p induce the above Markov’s
properties of the probability measures on sets of
their regular configurations. These sets are under-
stood in the sense of the existence of a topology
7 on Kolmogorov’s initial space (on the Q set)
when any system of sub-sets F should satisfy the
following requirements (Kolmogorov and Fomin,
1976):

(G,S.%,p),

(1) the set 2 and the empty set ¢ belong to T;

(ii) the sum U,F, of any finite or infinite set
and the cross-section Mj;_; Fy of any finite
numbers of such sets from 7 belong to the
topology.

Three known axioms of separability are valid for
such topological spaces T=(f2,7) (Sadovnichii,
1979):

(1) neighbourhood O(x) of a point x, not contain-
ing another point y, and neighbourhood
O(y) of the point y, not containing the point
x, exist for any two points of the T space;

(2) any two points x and y of the T space have
disjoint neighbourhoods O(x) and O(y) (the
known Hausdorff’s axiom);

(3) any point and any closed set, not containing
the point, have disjoint neighbourhoods.

The above regularity of the configurative proba-
bility space is accepted by us as satisfying the
axioms (1) and (3). Having these rules in mind,
the syntactically governing probabilities can be
defined as

1>p >0, for any £ € N,

j{:lﬁ =1

rGRg

where r is altered from 1 to p, N is the number
of elements of the syntactical variables.

Now it is possible to introduce the complexity
matrix for the grammatical rules of the descrip-
tion of the bonds for the regular configurations:

M= {mgi,j=12,...,v},
where my; = 3, cr. p1(r); Re, is the set of the per-
mutation rules for the variable £ with the i-index;
ni(r), ny(r), . . ., n,(r) are numbers of the appearance
of the first, second, . . ., vth syntactical variables, the
total number of which is v for a testing grammatics.

Recalling that the entropy is a measure of any
ordering, we can use it to write the following ex-
pression for the syntactically governing probabili-

ties p, in the attempts to order the grammatic
rules:

- Zprlogpr, i=1,2,...,v

rGRgi

The entropy of a style of imagery description
can then be introduced as:

- > P(B

Beg;

H;=H)) = ) log P;(B),

where probabilities P; are to be known for any
possible chain J &€ Q(R) for sets of outputs while
fitting the style of the imagery description in the
tree form. B denotes that using the proposed
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conception of generators, bonds and sets of regular
configurations for the information measures, the
rules of forming the description style of the taken
computer language are to be selected only from the
induced syntactically governing probabilities.

Returning to the above information measures
relation

H(X,Y) = H(X)+ H(Y |X)

and considering X as a random variable for a
resulting grammatics and Y as that for the style
of its description, one can obtain

Hi=h;+ Z PrZ”j(”)Hj

re Rfi j=1
or in the matrix form
H=[I-M] 'h,

where the matrix H of ordering of the style
description is expressed through the matrix h of
ordering of the syntax of imagery by the inverse
matrix that is equal to the difference between the
unit matrix I and the complexity matrix M. This
gives a rule for testing a special language of the
structural imagery description (Kozoderov, 1997).
To sum up the results, we can say about the
applications of the related languages for testing
them while describing the contextually coherent
structures mentioned above. It is worthwhile to
evolve the techniques for computer work stations
to proceed from these improvements to the final
stage of the multispectral satellite imagery analysis.
This stage is concerned the signal/noise ratios ex-
traction from temporal sets of the consequent
images with the structures, predescribed in accor-
dance with the given complexity procedures.
Analyzing temporal sets of satellite imagery, given
by multispectral radiometers of different spatial
resolutions, and describing the imagery structures
by the proposed techniques, we are able to pro-
ceed from the regional structures description for
selected natural targets to their global changes.

Let us add a few words about the complexity
category.

Discussing the incorrect problems of data sets
interpretation in Part 1 of the paper, we used the
complexity functionals in the regularization tech-
niques. These functionals were applied for finding
the models, which satisfying to the general forma-
lism of solutions of the inverse problems would
be of “the minimal complexity”. The last term was
utilized there to select those specific models from
sets of similar other models, which would be
comparable with accuracies of data of the obser-
vations that were to be fitted to theoretical results
of modelling. More complicated models in this
sense could be less consistent with the relevant set
of observations than these models of the minimal
complexity.

Saying about rules and restrictions in the
structural conjunction of the proposed “standard
blocks” (generators) here, we have introduced the
structural complexity of configurations, which
are regular in the sense of how one set of these
“details” could be imbedded into the other of the
higher level construction. We can use, if necessary,
the definition of “the quantitative complexity” of
a configuration, just simply counting the number
of generators in the configuration. By the general
expression of the complexity in the matrix form
above, we determined grammatic rules of the
complexity description by using the syntax and
style of the language in the analysis of the struc-
tures on multispectral satellite images for selected
classes of natural targets. The term “complexity
of terrestrial ecosystems” in the International
Global Change and Terrestrial Ecosystems
(GCTE) project (Kozoderov, 1995) is in fact
identical to the biological diversity. Our inten-
tions are to describe changes in terrestrial ecosys-
tems by the overall natural systems complexity
matrix while using regular observations of the
systems. Biodiversity changes would inevitably
result in the observable changes on remote sens-
ing images. Thus, we do have an opportunity to
filter out all seasonal harmonics of vegetation
growth on the images and deal with “signals” of
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their possible change by the proposed below
application of discrete dynamics techniques.

PREDICTABILITY OF GLOBAL CHANGE

The scientific basis for solving the predictability
problems is given by the cross-correlation tech-
niques to find asynchronous -correlations of
anomalies of the fields under study (outgoing
long-wave radiation, the biomass amount of vege-
tation, etc.). These correlations are represented in
the following form of the signal/noise ratio for
two autoregression Markov’s processes of the
first order (Marchuk et al., 1990):

_ Ryy(7)
o) = SD(;X}:(T)) ‘
Here
Rur(r) = —2— S (X6 = X)(Year = T2)/Sir
k=1

are cross-correlations of the anomalies (devia-
tions from the quadric standard) of the studied
quantities for n observations and different shifts
with time 7, SD(Cyy) is the standard deviation
of observation covariances for two intervals on
time,

Cxy = Rxy(7)Sxy

is the sampling estimate of the cross-covariance
for the two discrete processes X and Y,

| L1
Syy = <— (Xx — X1)
”_1; =13
_ 1 n _ 1 n
Xr=-"X, Yr=-> Y
s nia

The index T characterizes the averaging procedure
for the two data sets.

The analytical solution for the problem with
two Markov’s random processes is known as (see

. 12
1Z(Yk - I7T)2> ;

the cited reference)

5 12
SD(Cxy) = oF (n(l —exp[—(Ax + AY)])) ’

where

Cov(Cxy(71), Cxy(m))
- ‘]\%;ki (vxx(k)yyy(k + 71 +72)

=—00

+ vxy(k + 11)yvx(k — 7))

is the covariance of the processes under two
shifts 7, and 75, Nyy is the effective number of
pairs of the processes under the shifts,

Yxx(T) = of(X) exp(=Ax 7),
Yry(T) = of(Y) exp(—=Ay 7);

oZ(X) and oZ(Y) are dispersions of the analyzed
fields for different periods of time.

The statistical confidence of the mutual corre-
lation coefficients from the formulae on the 95%
of the confidence level is given by

ny(()) > 2SD(ny)/UF.

The predictability of the process X(f) via Y(¢),
both are represented in the discrete form with
time ¢, is then determined by the expression

_ axy(T)
Pyy(7) = arr(0)

= Ryy(7) (NXy(l —exp[—(Ax + /\Y)]))l/z
RYY(T) Nyy(l — exp(_z)\y))

The statistical significance of the anomalies of
the fields under study is defined here by the num-
ber of independent samples that is equal to

Nyy

M= S R R (R

In the final run, the predictability problem is
reduced to finding the cross-correlations between
“particular points” of multispectral remote
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sensing imagery and their background. Selection
of these points and analysis of the structures,
that comprise the points, is the subject of the
above visualization techniques. The next stage of
imagery processing is to retrieve state parameters
of natural objects, classified in accordance with
routine pattern recognition and scene analysis
techniques using relevant imagery transformation
procedures (Curran et al., 1990). The final stage
is in the temporal data sets analysis that would
enable to understand the predictability problem
in the way presented here. All these stages of
information and mathematical applications for
data sets of satellite imagery interpretation are
an example of advances in the multidisciplinary
description of natural processes.

CONCLUSION

The information and mathematical aspects of
global change, presented in the publication, are
demonstrated by the unified approach how to
compare sets of data in information sub-spaces
and to understand predictive capabilities in solv-
ing the problem. In spite of the formal informa-
tion theory does not enable to solve all problems
of satellite imagery interpretation, we have elabo-
rated techniques to describe the complexity problem
of natural structures using the mathematical
formalism of tackling with sets of data, informa-
tion measures and entropy metrics. We employ
the known axiomatics of Kolmogorov’s probabil-
ity space to emphasize the discrepancy of our
approach with tendencies of pure numerical appli-
cations in current international scientific pro-
grammes of global change. Our studies are designed
to remove deficiencies given by the common-used
information theory, which are due to the assump-
tion that a structure under study is finite. Our
improvements of the classical theory gets possible
owing to the proven possibilities to unify differ-
ent data of observations in terms of sets, mea-
sures and metrics. The opportunity to account
for scientifically the comparability, ordering and

calculation measures enables us to extend existing
knowledge about the natural structures descrip-
tion. Adherent to updated views on order, chaos
and similar other categories in natural dynamic
systems, we have shown how these categories are
represented in metrical spaces for our purpose to
find a regularity on structures of natural targets
represented in information sub-spaces by these
targets imagery. Our main intention in future is
to elucidate the problem of “genesis” of informa-
tion and situations using the unified description
of natural processes by the proposed way. Thus,
we are approaching the understanding of global
change based on major achievements in informa-
tion and mathematical sciences.
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