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A discrete pole-placement-based and multiestimation-based adaptive control scheme in-
volving a relative adaptation dead zone is presented for a plant with known poles and
unknown zeros. The basic usefulness of the proposed multiestimation scheme is related
to the use of a set of models of reduced order associated with the multiestimation scheme
instead of a high-order one. Depending on the frequency spectrum characteristics of the
input and on the estimates evolution, the multiestimation scheme selects on-line the most
appropriate model and its related estimation scheme in order to improve the identifica-
tion and control performances. Robust closed-loop stability is proved even in the pres-
ence of unmodeled dynamics of sufficiently small sizes as it has been confirmed by simu-
lation results. The scheme chooses in real time the estimator/controller associated with a
particular reduced model possessing the best performance according to an identification
performance index by implementing a switching rule between estimators. The switching
rule is subject to a minimum residence time at each identifier/adaptive controller pa-
rameterization for closed-loop stabilization purposes. A conceptually simple higher-level
supervisor, based on heuristic updating rules which estimate on-line the weights of the
switching rule between estimation schemes, is discussed.

1. Introduction

The challenge of control theory nowadays is to develop control system schemes able to
achieve a good performance in terms of speed, accuracy, and stability for increasingly
complex systems, including the presence of large uncertainties in the controlled system.
The dynamics of almost all real systems is nonlinear with multiple equilibrium points so
that sometimes their behavior may change abruptly according to the operation condi-
tions [7, 23]. These operation conditions depend on the magnitude and type of the input
signal applied to the system, particularly on the frequency range at which the input signal
belongs. As a consequence, in many industrial applications, it is not reasonable to assume
that the same plant model remains adequate as time progresses. One of the fields where
the model order used is more relevant related to the dominant frequencies of the applied
input signal is the design of controlled systems such as robots and space structures with
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structural flexibility [21]. In such a type of problems, the selection and placement of sen-
sors and actuators is an important design step since the sensor data may be redundant or
not depending on whether they are placed to measure exactly the same parameter [10].
That selection and placement must be optimized according to, for instance, the key points
in the flexible structure shape to measure the relevant modes. This paper deals with the
problem of controlling a plant with known poles and unknown zeros by using an appro-
priate reduced-order plant model. The main theoretical idea relies on decomposing the
plant transfer function as a sum of several elementary fractions of different orders, in gen-
eral, with unknown numerators. In this way, a set of plant nominal models of reduced or-
der, with unknown numerator polynomials, are considered by selecting combinations of
such fractions to represent different models. An identifier/adaptive controller pair is used
for each of those unknown models of known denominator polynomials. Furthermore,
a switching rule between the various identifier/adaptive controller pairs, based on the
identification quality of each one, is used to choose on-line the most appropriate model
at each time interval depending on the transient behavior and reference input spectrum
characteristics [6, 11, 13, 15, 17, 18, 19, 20, 22]. The identification procedure basically
consists in estimating the numerator polynomial coefficients of the reduced-order mod-
els within the multiestimation scheme. A higher-level supervisor is used with the aim of
selecting on-line the best value of a weighting factor. In many practical applications, it is
crucial to elucidate either the number of dominant modes to be considered for identifi-
cation purposes or the method to be used in the identification process as for instance in
[5] where three different identification methods were proposed, namely:

(i) the so-called empirical transfer function estimation (ETFE),
(ii) a modification of the above method consisting in calculating the average cross

spectrum between the input and output both divided by the input spectrum,
(iii) a truncated Fourier transform based on the estimation method.

The obtained identification performance was found to be very different from one method
to another depending on the input frequency. This feature is an empirical proof of the
importance of the selection of the identification method and, as a result, the high depen-
dence on the identification performance of the model and its order and relative order is
also foreseen. In this paper, we give a method to integrate the on-line model order choice
with the reference input spectrum in adaptive control. The mechanism is to implement
a switching rule between several estimators of different orders prior to the adaptive con-
troller parameterization. The overall process is stated as an automatic task that does not
require any on-line designer operation. The time intervals between consecutive switches
are subject to a minimum residence time that guarantees the closed-loop stability and
acceptable transient behavior. The main idea behind the proposed scheme is that the re-
duction model techniques may be addressed and linked with multiestimation techniques
while taking into account the transient response generated from each particular refer-
ence input used. This is the main novelty in this paper with respect to previous results
concerned with multiestimation (see, e.g., [6, 11, 13, 15, 17, 18, 19, 20, 22]) where the
idea of model reduction was not integrated with that of multiestimation.

The paper is organized as follows. Section 2 deals with the system to be controlled
as well as with the multiestimation and adaptive controller architecture together with
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the basic assumptions needed for stability and convergence purposes. Also, a higher-level
supervisor for the weights of the identification performance indexes is discussed while the
switchings between the estimators within the parallel multiestimation scheme are consid-
ered as a lower-level supervisor. The above higher-level supervisor is designed based on
empirical rules to improve the tracking performance by updating on-line the weights of
the identification performance indexes. In Section 3, the main properties about identi-
fication algorithms, control law, and closed-loop stability are given. In Section 4, some
computer simulations and their corresponding discussion are presented. Section 5 dis-
cusses the identification of the different reduced-order models for nonlinear plants in-
cluding some numerical examples. Finally, conclusions end the paper.

2. Problem statement

2.1. Plant description. Consider the linear and time-invariant discrete SISO plant,

A
(
q−1)yk = B

(
q−1)uk, (2.1)

where uk and yk are the input and output sequences, respectively, q−1 is the one-step
delay operator, and the degrees of polynomials, n= deg(A(q−1)), m= deg(B∗(q)), where
B∗(q)= qnB(q−1), are at least n≥ 1 and m≥ 0 (n >m), respectively.

Assumption 2.1. All the plant poles and their multiplicities are known.

Furthermore, the polynomial A can be written as

A(z)= Ar(z)Ac(z), (2.2)

where Ar(z) =∏n′r
i=1 [z− pi]∂i is a polynomial containing all real n′r distinct poles with

respective multiplicities ∂i (1 ≤ i ≤ n′r), and Ac(z) =∏n′r+n′c/2
i=n′r+1 [z2− (pi + p̄i)z+ pi p̄i]∂i is

a polynomial containing n′c/2 distinct pairs of complex conjugate poles with multiplici-

ties ∂i (n′r < i≤ n′r +n′c/2) accounting for nr = deg(Ar)=
∑n′r

i=1 ∂i; nc = n−nr = deg(Ac)=
2
∑n′r+n′c/2

i=n′r+1 ∂i, with nr and nc/2 being the number of total real poles and pairs of complex
conjugate poles, respectively. If ∂i = 1 for all 1 ≤ i ≤ n′r + n′c/2, then nr = n′r and nc = n′c.
Then, factorize B(z)/A(z) such that there are ∂i parallel filters of orders running from
unity to ∂i with a scalar gain in the numerator for each simple pole pi of multiplicity ∂i
resulting in the decompositions (see Figure 2.1a)

ki,1
z− pi

+
ki,2(

z− pi
)2 + ···+

ki,∂i(
z− pi

)∂i (
i= 1,2, . . . ,n′r

)
. (2.3)

For each pair of complex conjugate poles of multiplicity ∂i, there are ∂i parallel filters in
the decomposition of orders from two to 2∂i with just one different zero in all of them
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Figure 2.1. (a) Decomposition for a real pole of multiplicity ∂i. (b) Decomposition for a pair of com-
plex conjugate poles with multiplicity ∂i.

which results in the decompositions (see Figure 2.1b)

fi,1z+ gi,1
z2− (pi + p̄i

)
z+ pi p̄i

+
fi,2z+ gi,2(

z2− (pi + p̄i
)
z+ pi p̄i

)2 + ···+
fi,∂iz+ gi,∂i(

z2− (pi + p̄i
)
z+ pi p̄i

)∂i(
i= n′r + 1, . . . ,n′r +

n′c
2

)
.

(2.4)

Thus, B(z)/A(z) is equivalent to

B(z)
A(z)

=
n′r∑
i=1

∂i∑
j=1

ki, j(
z− pi

) j +
n′r+n′c/2∑
i=n′r+1

∂i∑
j=1

fi, j z+ gi, j(
z2− (pi + p̄i

)
z+ pi p̄i

) j . (2.5)

In Figure 2.2, the Bi blocks represent the proposed decompositions for each different
real pole or each different pair of complex conjugate poles. In this way, the sum of all the

y′i , for i∈ {1,2, . . . ,n′r +n′c/2}, gives us the plant output y =∑n′r+n′c/2
i=1 y′i .

Note that (2.1) may be rewritten [14] as

A(�)(q−1)yk = B(�)(q−1)uk +η(�)
k , (2.6)
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Figure 2.2. Plant decomposition into as many blocks as it has different poles.

where

B(�)(z)
A(�)(z)

=
∑

i∈N (�)
r

∂i∑
j=1

k(�)
i, j(

z− pi
) j +

∑
i∈N (�)

c

∂i∑
j=1

f (�)
i, j z+ g(�)

i, j

(z2− (pi + p̄i
)
z+ pi p̄i

) j (2.7)

and � ∈ Ne = {1,2, . . . ,ne} (ne number of reduced-order models). Each element of Ne

represents a different reduced-order model of the plant, with

(1) N (�)
r ⊆Nr = {1,2, . . . ,n′r}; indexing set of n(�)

r distinct real poles of the �th model;

(2) N (�)
c ⊆ Nc = {n′r + 1, . . . ,n′r +n′c/2}; indexing set of n(�)

c distinct pairs of complex

conjugate poles of the �th model, where either N (�)
r or N (�)

c (but not both) may
be empty;

(3) card(N (�)
r )= n(�)

r ≤ n′r ; that is, the number of distinct real poles of the �th estima-
tion model;

(4) card(N (�)
c ) = n(�)

c ≤ n′c/2; that is, the number of distinct pairs of complex conju-
gate poles of the �th reduced-order model.

η(�)
k is the total contribution of the unmodeled dynamics to the output in the �th

model. By using distinct combinations of elements for N (�)
r and N (�)

c , the number of pos-
sible plant models can be calculated as

1≤ ne ≤
n′∑
�=1

(
n′

�

)
=

n′∑
�=1

n′!
�!(n′ − �)!

= 2n
′ − 1 with n′ = n′r +

n′c
2
. (2.8)

Each reduced plant model could be seen as being a different combination of distinct order
filters B(·) (see Figures 2.1 and 2.2). The main idea becomes apparent since any of those
filters could be removed because its contribution to the output is sufficiently small com-
pared with that of the rest of filters. However, the decision about which filters are suitable
for being deleted from the overall scheme is not always easy, since this depends not only
on the plant parameters but also on the importance of the frequency of the reference
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input. This fact can be highlighted by taking just a single block with a real pole of mul-
tiplicity unity (Fi,1), then we can calculate its frequency-dependent gain from the substi-
tution z = e jωrefTs in the modulus of the filter, where ωref is the frequency of the reference
input and Ts is the sampling period. This makes evident the importance of the input
spectrum which may be taken into account, if available, from a priori knowledge:

gain of Fi,1 =
∣∣ki,1∣∣√

1 + p2
i − 2pi cos

(
wrefTs

) ∈
[∣∣ki,1∣∣

1 + pi
,

∣∣ki,1∣∣
1− pi

]
. (2.9)

The following standard assumptions are made.

Assumptions 2.2. (1) It is assumed that polynomial degrees n and m are known, and that
A(z) and A(�)(z) are monic.

(2) All the unstable plant zeros (if any) are known and are also zeros of the reference
model.

(3) The reference model Hm(z) = Bm(z)/Am(z) is exponentially stable, that is, all the
zeros of Am(z), which is a monic polynomial, satisfy |z| ≤ 1− δ for some δ ∈ (0,1].

(4) There exists a known convex and compact subset D(�) ⊆ D ⊆�2n, for � ∈ Ne, of
the parameter space containing the real nominal plant parameter vectors, so that for all
plant parameterization in D(�) the polynomials A(�) and B(�) are coprime for all � ∈Ne.

(5) Now it is assumed that Ne is split into two subsets; namely, Nes and Neu, where Nes

possesses all the reduced-order models with stable unmodeled dynamics and Neu con-
tains the reduced models with unstable unmodeled dynamics with Ne =Nes∪Neu, where
card(Nes)≥ 1, that is, it is not empty.

(6) There exist real known constants σ (�) ∈ (0,1), α(�)
0 ≥ 0, and α(�)

1 ≥ 0 such that

∣∣η(�)
k

∣∣≤ η̄(�)
k = α(�)

1 ρ̄(�)
k +α(�)

0 , where ρ̄(�)
k = Sup

0≤ j≤k

(
σ (�)k− j∥∥ϕ(�)

j

∥∥)∀� ∈Nes. (2.10)

If the transfer function from uk to η(�)
k is strictly proper, then the last term in ac-

counting for the supreme in the above formula for ρ̄(�)
k could be removed resulting in

ρ̄(�)
k = Sup0≤ j≤k−1(σ (�)k− j‖ϕ(�)

j ‖)≤ σ (�) Sup0≤ j≤k−1(‖ϕ(�)
j ‖).

Moreover, |η(�)
k | ≤ α1ρk +α0, where ρk = Sup0≤ j≤k(σk− j‖ϕj‖) with α1 =Max(α(�)

1 , �∈
Ne), α0=Max(α(�)

0 , �∈Ne), σ=Max(σ (�), � ∈Ne), and ‖ϕj‖=Max(‖ϕ(�)
j ‖, �∈Ne).

The previous assumption may be extended for all � ∈Nus by making σ (�) > 1. Note that
the polynomial B(z) of the plant zeros can be expressed uniquely as B = B+B−, where B+

is monic and B− contains all zeros of B satisfying |z| > 1− δ for some δ ∈ (0,1] (in par-
ticular, B− includes all unstable roots of B). Assumption 2.1 (2.6) implies that the plant is
controllable. It will be then used to project the estimates of A and B in D so as to ensure
the controllability of all the estimation models for all time. Assumption 2.1 (2.9) implies
that the contribution of the unmodeled dynamics to the output in all the estimates grows
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nonlinearly faster than linearly with the supreme of the total regressor. Moreover, that
assumption will then be crucial to prove the closed-loop stability of the adaptive system.

2.2. Parallel multiestimation scheme. A parallel multiestimation scheme is proposed
based on the various uncertain plant models (2.7) for the case when the zeros in plant
(2.1) are unknown. Each estimation scheme possesses a relative adaptation dead zone so
as to freeze the adaptation when the absolute value of identification error is sufficiently
small related to a known upper bound of the absolute value of the contribution of the un-
modeled dynamics. At the same time, each estimator tentatively parameterizes separately
the adaptive controller at all times based on a specific ad hoc diophantine equation based
on each nominal part of the various plant estimation models. The main idea behind this
philosophy is to switch at appropriate sampling instants between the various plant esti-
mation models so as to appropriately reparameterize the pole-placement-based adaptive
controller. Such a strategy will potentially allow the designer to deal with larger or smaller
amounts of unmodeled dynamics. The closed-loop stability is guaranteed if the time in-
terval between consecutive switches exceeds a minimum residence time. To simplify the
exposition, a parallel multiestimation scheme with a set of only ne estimators of unity
relative degree is used based on the plant models (2.7) as follows:

ŷ(�)
k
=−Â′(�)

k yk + B̂(�)
k uk = θ̂(�)T

k ϕ(�)
k ⇐⇒ Â(�)

k

(
q−1)yk = B̂(�)

k

(
q−1)uk + e(�)

k (2.11)

for � = 1,2, . . . ,ne and all k ≥ 0, where Â(�)
k (q−1)= 1 + Â

′(�)
k (q−1) and B̂(�)

k (q−1) are the es-

timates of the polynomials A(�)(q−1) and B(�)(q−1), respectively, and e(�)
k is the �th identi-

fication error for the kth sample which is given by

e(�)
k = yk − ŷ(�)

k = Â(�)
k yk − B̂(�)

k uk = yk − θ̂(�)T

k ϕ(�)
k = θ̃(�)T

k ϕ(�)
k +η(�)

k , (2.12)

where ŷ(�)
k is the �th estimation of the output for the kth sample. θ̂(�)

k and ϕ(�)
k are, re-

spectively, the estimation of the nominal plant parameter vector and associated regressor
defined by

(a) θ̂� = (θ̂(�)T
r , θ̂(�)T

c )T , where θ(�)
r and θ(�)

c are the parameterizations related to real
poles and the pair of complex conjugate poles, respectively;

(b) θ̂(�)
r = (θ̂

′(�)T

N (�)
r (1)

, . . . , θ̂
′(�)T

N (�)
r (n(�)

r )
)T and θ̂(�)

c = (θ̂
′(�)T

N (�)
c (1)

, . . . , θ̂
′(�)T

N (�)
c (n(�)

c )
)T .

Each N (�)
r ( j) for 1≤ j ≤ n(�)

r is one of the elements of Nr depending on the �th model. In

the same way, each N (�)
c ( j) for 1≤ j ≤ n(�)

c is one of the elements of Nc. The elements of

θ̂(�)
r and θ̂(�)

c are defined by

θ̂
′(�)
i =

(
k̂(�)
i,1 , . . . , k̂(�)

i,∂i

)T
if i∈Nr ;

θ̂
′(�)
i =

(
f̂ (�)
i,1 , ĝ(�)

i,1 , . . . , f̂ (�)
i,∂i , ĝ(�)

i,∂i

)T
if i∈Nc.

(2.13)
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Figure 2.3. Multiestimation scheme.

The associated regressor is given by ϕ(�)
k = (ϕ(�)T

r,k ,ϕ(�)T

c,k )T for 1 ≤ � ≤ ne and k ≥ 0,

where ϕ(�)
r,k = (ϕ

′T
N (�)

r (1),k
, . . . ,ϕ

′T
N (�)

r (n(�)
r ),k

)T and ϕ(�)
c,k = (ϕ

′T
N (�)

c (1),k
, . . . ,ϕ

′T
N (�)

c (n(�)
c ),k

)T , where ϕ′i,k =
(yi,1,k, . . . , yi,∂i,k)T if i∈Nr and ϕ′i,k = (yi,1,k, yi,1,k−1, . . . , yi,∂i,k, yi,∂i,k−1)T if i∈Nc. Figure 2.1
shows how the elements of ϕ′i,k are calculated. It is usual to know a compact subset of
the parameter space D ⊆ �2n where the nominal real plant parameter vector belongs.
This knowledge allows the designer the use of projections of the estimates within such
a domain. If the estimation algorithm starts running with a nominal estimated vector
being far from the real plant parameter vector, then the transient will have large de-
viations from the desired output resulting in an unsuitable performance. In this work
we have chosen a parallel multiestimation scheme to improve the transient response of
the adaptive system. The architecture of the multiestimation scheme is represented in
Figure 2.3.

There exist ne estimation algorithms running in parallel (i.e., at each sampling time

tk every algorithm gives the estimated parameter vector θ̂(�)
k and the estimated plant out-

put ŷ(�)
k , � ∈ Ne, based on past plant input and output measurements). Algorithms are

different from each other in what is concerned with the estimated parameter vector ini-
tialization and/or the kind of the estimation algorithm and integrates the so-called mul-
tiestimation scheme. There also exist ne adaptive controller parameterizations (with only
one being in operation at each time) such that the �th adaptive controller is parameter-
ized at every sampling instant by the �th estimation algorithm. Thus, every pair identi-
fication algorithm-adaptive controller is indexed with only one integer � ∈ Ne. Denote
by ck the integer in Ne that defines the controller (parameterized by its respective identi-
fication algorithm) which is active (i.e., connected to the plant for control purposes) at

the current time. A switching rule based on the identification errors e(�)
k = yk − ŷ(�)

k =
ϕT
k θ̃

(�)
k + η(�)

k (� ∈ Ne) of the ne estimation algorithms chooses at each sampling time
tk = kTs the individual estimation scheme which parameterizes the controller at time
tk which is in fact connected in feedback to the plant.

Remarks 2.3. (1) At each time, only one parameterization of adaptive controller obtained
from one of the estimates of the parallel multiestimation scheme is in operation generat-
ing the control input.
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(2) All the estimation algorithms are always running in parallel to calculate all the
estimated plant outputs. Also, each respective adaptive controller is updated for all times
although only the �th controller is generating the plant input.

2.3. Estimation algorithm. The proposed parameter-adaptive algorithm with relative
adaptation dead zone is

θ̂(�)
k+1 = θ̂(�)

k +
s(�)
k P(�)

k ϕ(�)
k e(�)

k

1 +ϕ(�)T

k P(�)
k ϕ(�)

k

;

P(�)
k+1 = P(�)

k −
s(�)
k P(�)

k ϕ(�)
k ϕ(�)T

k P(�)
k

1 +ϕ(�)T

k P(�)
k ϕ(�)

k

, P(i)
0 = P(i)T

0 > 0;

(2.14a)

s(�)
k =




0 if
∣∣e(�)

k

∣∣≤ µ(�)η̄(�)
k ,

1−µ(�)

∣∣∣∣∣ η̄
(�)
k

e(�)
k

∣∣∣∣∣ otherwise,
(2.14b)

for some real design parameters µ(�) > 1, all � ∈ Ne, and all integers k ≥ 0. The relative
dead zone (2.14b) freezes the parametrical and covariance matrix adaptation in (2.14a) if
the identification error is sufficiently small related to the available upper-bound function
of the contribution of the unmodeled dynamics. This is the basic mechanism which sup-
plies attractive properties of the estimates and allows the stabilization of the closed-loop
system in the presence of unmodeled dynamics satisfying Assumptions 2.2 (2.9). Those
features are discussed in Section 3.

2.4. Basic adaptive controller. The transfer function of the reference model is Hm(z)=
B−(z)B′m(z)A(�)

0 (z)/Am(z)A(�)
0 (z), where B′m(z) contains the free-design reference model

zeros, B−(z) is formed by the unstable (assumed known) plant zeros, and A(�)
0 (z) are

closed-loop stable pole-zero cancelations which are introduced when necessary to guar-
antee that the synthesized controller is causal. All the controllers are based on pole-
placement (see, e.g., [2]), whose basic scheme is displayed in Figure 2.4. Then, we will

consider for each controller the polynomials R(�)
k , S(�)

k , and T(�) (T(�) depends only on the

reference model zeros polynomial which is of constant coefficients), where T(�) = B′mA
(�)
0

and R(�)
k (monic), S(�)

k are the unique solutions with degrees fulfilling

deg(R(�)
k )= 2n− i, deg

(
S(�)
k

)= i− 1, deg(AmA
(�)
0 )= 2n (2.15)

of the polynomial diophantine equation

Â(�)
k R(�)

k + B̂(�)
k S(�)

k = AmA
(�)
0 ⇐⇒Â(�)

k R(�)
1k +B−S(�)

k =AmA
(�)
0 (2.16)

with R(i)
k = B̂(�)+

k R(�)
1k ; since B−(z) is known and Rk, R1k, B+, and B̂(�)+

k are monic, deg(Â(�)
k )

= i and deg(B̂(�)
k ) = i− 1, for all � ∈ Ne at every sampling instant if the relative degree

of the �th estimation model is unity. Assumption 2.2(4) is extended in a natural way
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Figure 2.4. Basic adaptive controller.

to the multiestimation scheme by using a posteriori projection of the estimates when
necessary as follows.

Assumption 2.4. It is assumed that θ̂(�)
k ∈D(�), then (Â(�)

k , B̂(�)
k ) is a coprime pair over D(�)

for all k ≥ 0 and � ∈Ne; that is, all the estimation schemes are controllable for all time.

The above assumption would then be useful provided that each pair estimation
scheme-adaptive controller parameterization is associated with a different plant opera-
tion point. This is often the case, for instance, of some chemical engineering processes.
Now it is necessary to elucidate how to choose the current adaptive controller (or, in
other words, which active controller at each sampling instant) from the family of par-
allel controller parameterizations such that the adaptation transients are acceptable in
practice while the closed-loop scheme is maintained globally stable. Thus, the basic pole-
placement adaptive controller (see Figure 2.4) is reparameterized by one of the estimators
of the multiestimation scheme during appropriate time intervals of lengths not less than
a minimum residence time. A level switching law (supervisor) calculates the switching
times subject to a residence time between the various estimators which is used as a mech-
anism to reparameterize on-line the basic adaptive controller in operation to generate the
control input. The operation mode of such a supervisor is discussed in the sequel.

2.5. Switching rule in the parallel multiestimation scheme (first-level supervision).
The objective of the supervisor mechanism is to evaluate the performance of the pos-
sible controllers connected to the plant with the aim of choosing the current controller
from the set of parallel controllers. The subsequent supervision scheme selects on-line
the consecutive switching times between the various estimators in order to reparameter-
ize on-line the basic adaptive controller via the performance index

J (�)
k =

k∑
i=k−M

λk−i
[
α
(
yi− ŷ(�)

i

)2
+ (1−α)

(
Sup
0<j≤i

(
σ (�)i− j

∥∥∥ϕ(�)
j

∥∥∥)
)]

(2.17)

for all � ∈Ne, where ŷ(�)
k is the �th predicted input given by

ŷ(�)
k =

(
1− Â(�)

k

(
q−1))yk + B̂(�)

k

(
q−1)uk, (2.18)
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where 0 < α ≤ 1, σ (�) was defined in Assumptions 2.2 (2.9), and M is an integer num-
ber large enough to give sense to the performance evaluation. Note that (2.17) has two
additive terms. The first one is a measure of the long-term accuracy of each identifica-
tion algorithm, where the forgetting factor λ∈ (0,1] establishes the effective memory of
the index in rapidly changing environments. The second one is introduced in order to
make the system choose a reduced-order model with its unmodeled part being stable
since σ (·) < 1 in that case, while in a reduced-order model with its unmodeled part be-
ing unstable σ (·) should be bigger than the unity. When k is sufficiently large the second
term will diverge for the model with unstable dynamics in its unmodeled part and then
the system will choose only between the other ones. Now, the switching rule for the ba-
sic adaptive controller reparameterization is obtained from the performance index (2.17)
as follows. Let the switching sampling times sequence, which may be finite or infinite
countable, be denoted by TS = {t(1), t(2), . . . , t(π)}, where π is the number of switchings
with (t(i+1)− t(i)) ≥ τr = NrT (a known minimum residence time) for all t(i), t(i+1) ∈ TS.
Thus, the ck-estimation scheme with ck ∈Ne, which parameterizes for all k ≥ 0 the basic
adaptive controller at any switching time in TS, is updated as follows. Assume that the
last switching time for the controller reparameterization was t(π). Thus, for each current
k-sampling time, define the auxiliary integer variable as in Algorithm 2.1.

c̄k = Arg[i : J (i)
k =Min(J

( j)
k ); i, j ∈Ne], all integers k ≥ 1

If kT ≥ t(π) + τr , then
ck ← c̄k (it is an indexing sequence of the current active controller

parameterization from one of the estimation algorithms)
else

ck ← ck−1

end if
If ck �= ck−1, then

modify t(π+1)← kT and TS← {TS, t(π+1)}
end if.

Algorithm 2.1

A minimum residence time that ensures the achievement of closed-loop stability al-
ways exists for any time-varying linear system consisting of a set of stable linear time-
varying configurations [1, 3, 4, 8, 11, 19, 20]. Switches between those configurations at
intervals exceeding such a time ensure the global stability. These ideas will be discussed
in the next section related to the closed-loop stability supplied by the proposed adaptive
controller based on a multiestimation scheme if the residence time is known. If it is un-
known, since it always exists under weak assumptions, then it is estimated by successive
on-line increments via closed-loop performance tests until an available upper bound is
obtained in finite time so that stability is still ensured.

2.6. High-level supervision (second-level supervisor). A higher-level supervisor to the
above one supervising the switching of parameterization for the active controller of po-
tential optional use is now proposed. This new supervisor selects on-line the value of
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the α weighting factor, which is now time-varying as a result. The high-level supervision
index is the following:

J ′k =
k∑

i=k−M′

[
γ
(
yi− ymi

)2
+
(
1− γ

)
u2
i

]
, (2.19)

where ymk is the uniformly bounded reference output sequence and uk is the control signal
(see Figure 2.4) for some prescribed weight γ ∈ (0,1] such that if k = jM′ for any non-
negative integer j, then αk+i = αk ∈ [αmin,αmax]⊂ (0,1], i= 1,2, . . . ,M′ − 1, according to
the following simple empirical rules: if αk is increasing (decreasing) and the value of the
performance index J ′k is decreasing, then continue with the same action on αk, otherwise
change the updating action to decrease (increase) αk.

The conceptual idea is to continue with the same current correcting action if the track-
ing performance is improving and to change it otherwise. The current value of αk is ob-
tained by adding or subtracting a quantity ∆αk = ∆αk−M′ /m f to αk−M′ if k = jM′. The
integer j should be bigger than unity since we need to wait two periods of M′ to make
the first comparison. The value m f is a scaling factor, or modulation factor, which al-
lows to increase/reduce the variation rate and which can optionally be reupdated on-line.
Projection is used when the updated value lies outside [αmin,αmax]⊂ (0,1]. The objective
of the choice M′ �=M is to avoid both supervisions operating at the same speed which
could lead to conflictive decisions. The experience from worked examples dictates that
one of the horizons should be chosen of order double the size of the other. More for-
mally, Algorithm 2.2 can be stated as follows.

For k← 1, set α← α0, ∆α← ∆α0, mf ←mf0
If k = jM′, then

if J ′k > J ′k−M′ , then ∆α←−∆α/m f
else ∆α← ∆α/m f end if
α← projection [αmin,αmax]← (α+∆α)
αk ← α

else
αk ← αk−1

end if.

Algorithm 2.2

Note that if M′ ≥M, then the higher-level supervisor (α-supervision) operates at the
same or a slower rate than the first-level supervisor (switching between estimator and
controller parameterization pairs to decide the current active adaptive controller). Oth-
erwise, the α-supervision operates at a faster rate. The adjustment between both rates
depends highly on the application and designer’s a priori knowledge. Note that if in
the initialization scheme of the above algorithm αmax = αmin, then the multiestimation
scheme corresponds to the particular case of an (high-level) unsupervised multiestima-
tion scheme with constant values. From Assumption 2.4, each polynomial diophantine
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equation of the form (2.16) for all � ∈ Ne has a unique solution for all k ≥ 0 under the
degree constraints (2.15). The control law is

Rkuk = Tuck − Sk yk, (2.20)

where (Rk,Sk,T)= (R(ck)
k ,S(ck)

k ,T(ck))∈ {(R(�)
k ,S(�)

k ,T(�)); 1≤ � ≤ ne}, that is, at each time,

the tupla (Rk,Sk,T) is defined at each sampling time by (R(�)
k ,S(�)

k ,T(�)) for some � =
1,2, . . . ,ne and then the control input is generated by the corresponding �th adaptive con-

troller parameterization as uk = u(ck)
k with ck ∈Ne, for all k ≥ 0.

3. Properties of the estimation and closed-loop stability

3.1. Boundedness and convergence results of the parallel multiestimation scheme. In
this work, all the recursive identification algorithms associated with the multiestimation
scheme will be of standard least-squares type. For the multiestimation scheme, the fol-
lowing result proved in Appendix A follows.

Theorem 3.1. The combined estimated parameter vector from the multiestimation scheme

θ̂k = θ̂(ck)
k leading to the output estimate ŷk = ŷ(ck)

k has the following properties for each � ∈
Ne irrespective of the control law:

(1) limk→∞ s
(�)
k (e(�)2

k −η(�)2

k )/(1 +ϕ(�)T

k P(�)
k ϕ(�)

k )(1 + (1− s(�)
k )ϕ(�)T

k P(�)
k ϕ(�)

k )= 0;

(2) limk→∞ s
(�)
k ϕ(�)T

k P(�)
k ϕ(�)

k (e(�)2

k (1 − s(�)
k ) − η(�)2

k )/(1 + ϕ(�)T

k P(�)
k ϕ(�)

k )(1 + (1 −
s(�)
k )ϕ(�)T

k P(�)
k ϕ(�)

k )= 0;

(3)
∑∞

k=0 s
(�)
k e(�)2

k /(1 +ϕ(�)T

k P(�)
k ϕ(�)

k ) <∞; limk→∞ s
(�)
k e(�)2

k /(1 +ϕ(�)T

k P(�)
k ϕ(�)

k )= 0;

(4) If φ(�)
k = s(�)

k /(1 +ϕ(�)T

k P(�)
k ϕ(�)

k ), then φ(�)
k e(�)2

k → 0 and φ(�)
k → 0 as k→∞. If, in addi-

tion, ‖ϕ(�)
k ‖ is bounded for all k ≥ 0, then s(�)

k e(�)2

k → 0 and s(�)
k → 0 as k→∞.

(5) ‖θ̃(�)
k ‖ <∞; ‖θ̂(�)

k ‖ <∞. Moreover, θ̂(�)
k → θ̂(�)∞ (finite) and θ̃(�)

k → θ̃(�)∞ (finite) as k→∞.

Note that every controller parameter vector is bounded for all k ≥ 0 and has a finite
limit as k →∞ for all � ∈ Ne from the boundedness of all the estimates of the parallel
multiestimation scheme. Note that Theorem 3.1 holds irrespective of the control law and
on the switching rate between the various adaptation algorithms within the parallel mul-
tiestimation scheme.

3.2. Closed-loop stability. Now, let Âk = Â(ck)
k , B̂k = B̂(ck)

k , Rk = R(ck)
k , Sk = S(ck)

k , and T =
T(ck) the plant estimation and controller polynomials, ck ∈Ne being the current estima-
tor/controller pair in operation. In order to prove the closed-loop stability, the following
auxiliary (3n− 1)th linear time-varying extended system is used for subsequent analysis:

xk+1 =Gkxk + ϑ
(
ek + vk

)
, (3.1)

where vk = T(q−1)uck is a uniformly bounded forcing signal and

xTk =
[
yk yk−1 ··· yk−n+1 uk ···uk−2n+1

]
(3.2a)
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is the state vector, while Gk = G(ck)
k , which is built with Âk = Â(ck)

k , B̂k = B̂(ck)
k , Rk = R(ck)

k ,

and Sk = S(ck)
k as follows:

Gk =G(ck)
k

=




−â1k −â2k ··· −âi,k0 ··· 0 b̂0k b̂1k ··· b̂i−1,k0 ··· 0
1 0 0 0 0 0

0 1 0
...

...
. . .

...
...

...
. . .

...
0 0 ··· 1 0 0 0 ··· 0
−s0k −s1k −s2k ··· −si−1,k0 ··· 0 −r1k −r2k ··· −rik0 ··· 0

0 0 0 ··· 0 0 1 0 ··· 0 0
...

...
...

. . .
...

...
...

...
. . .

...
...

0 0 0 ··· 0 ··· 0 0 0 ··· 1 ··· 0




(3.2b)

for the current active � = ck ∈Ne at the kth sampling instant, is the matrix of the dynam-
ics associated with the current estimator-controller pair in operation, and ϑT =
[1 0 ··· 0]. The subsequent technical assumption and result are given to be later
used to prove the scheme’s closed-loop stability.

Assumption 3.2. Assume that for any integers k0 ≥ 0 and k ≥ k0 + 1,
∑k

j=k0+1‖G(�)
j −

G(�)
j−1‖2 ≤ β(�)

0 +β(�)
1 (k− k0) for some positive real constants β(�)

0 and β(�)
1 and all � ∈Ne.

Lemma 3.3. (i) If Assumption 3.2 holds, then
∏k

j=k0+1‖G(�)
j ‖ ≤ K (�)ρk−k0

0 , where K (�) ≥ 1

and ρ0 is the convergence abscissa of all G(�)
k provided that β(�)

1 are sufficiently small for all
� ∈Ne.

(ii) If, in addition, the residence time τr=NrT is sufficiently large, then
∏k

j=k0+1‖G(ck)
j ‖≤

Kρk−k0 for some K ≥ 1 and ρ ∈ (ρ0,1), where N ′e is a subset of Ne with one of its elements
deleted.

Proof of Lemma 3.3. For the proof of (i), see [12]. To prove (ii), define the set of indexes
ITS(k0 + 1,k)= Arg(k ∈ Z : tk ∈ [(k0 + 1)T ,kT]∩TS) that characterize the sampling in-
stants where switchings between estimation schemes take place within the time interval
[(k0 + 1)T ,kT]. Now, for the given ρ0, choose ρ > ρ0 such that (ρ0/ρ)NrK (�) ≤ 1 for all
� ∈N ′e . Note that such a choice is always possible for sufficiently large residence time τr .
Thus, the result follows from (i) by choosing K = K (�) for the unique estimator/controller
parameterization pair � ∈ (Ne−N ′e ) since

k∏
j=k0+1


 ∏
�∈ITS(k0+1,k)

K (�)
(
ρ0

ρ

)k−k0


ρk−k0 ≤ Kρk−k0 . (3.3)

The proof has been completed. �

Note in the proof of Lemma 3.3 that ρ > ρ0 is chosen so that (ρ0/ρ)τr /TK (�) ≤ 1 for all
� ∈N ′e , then Lemma 3.3(ii) holds for K = 1. From the structure of the matrices (3.2b) for
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� ∈Ne, Assumption 3.2 means that the estimates parameter vector varies asymptotically
slowly from one sample to another, a condition which is satisfied trivially by the pro-
posed estimation algorithm because the estimated vector converges to a finite limit. This
fact leads to the subsequent robust main closed-loop stability result which is proved in
Appendix B.

Theorem 3.4 (closed-loop stability in the case when at least one of the reduced-order
models possesses associated stable unmodeled dynamics). The extended system (3.1)–
(3.2) and the closed-loop adaptive system involving the parallel multiestimation scheme
(2.12) with the pole-placement-based adaptive control law (2.20) are both globally stable

provided that Assumptions 2.1, 2.2, 2.4, and 3.2 hold with the constant α′1=Max�∈Nes(α
(�)
1 +

‖θ̃(�)∞ ‖) ≥ 0 being sufficiently small satisfying α′1 ≤ (1− ρ− ϑ)/K for any real prefixed con-
stant ϑ∈ (0,1− ρ) and that the residence time for each current estimation scheme in oper-
ation is sufficiently large satisfying Nr ≥ (lnK + ϑ′)/(lnρ− lnρ0) for any prefixed real con-
stant ϑ′ > 0. If the transfer function describing the unmodeled dynamics is strictly proper

then the above constraints may be relaxed to α(�)
1 ≤ (1− ρ− ϑ)/kσ for all � ∈Ne.

A particular case of Theorem 3.4, which does not require a specific proof given in detail
in [8], is concerned with the case when all the reduced-order models have associated
stable unmodeled dynamics and it is established below.

Corollary 3.5 (closed-loop stability in the case when all the reduced-order models pos-
sess associated stable unmodeled dynamics). Theorem 3.4 holds for the case when Ne =Nes

and Neu =∅ (i.e., all the estimators have associated stable unmodeled dynamics).

Note that the above result ensures robust closed-loop stability for certain small
amounts of unmodeled dynamics in the plant. Note that in the current approach, the
estimators are related to reduced-order models while in the previous ones in the litera-
ture the estimators were arbitrary nonnecessary linked to particular reduced-order mod-
els. Note also that it is required that only one of the reduced-order models have stable
unmodeled dynamics (Theorem 3.4) contrary to previous assumptions in the light of
Corollary 3.5, that is, by assuming that all the reduced-order models possess stable un-
modeled dynamics. The unmodeled dynamics must grow nonlinearly faster than linearly

with their associated regressors at sufficiently small rates (i.e., the maximum of the α(�)
1 is

small) provided that the time interval between two consecutive estimation switchings is
sufficiently large (≥ τr) if Assumption 3.2 holds (i.e., the increments of the estimated pa-
rameters grow nonlinearly faster than linearly with time at sufficiently small rate). Note
that the precise knowledge of the minimum residence time τr is not necessary since it
may be increased on-line from an initial estimation until an upper bound is reached com-
patible with the closed-loop stability. This property may be tested on-line for particular
worked examples.

4. Simulation results

4.1. Simulation 1 (multiestimation scheme without high-level supervision and unsta-
ble unmodeled dynamics). In this section, some exhaustive numerical experimentation
has been worked for the unstable controller plant of transfer function
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H(z)= 2z4− 2.125z3 + 0.1687z2 + 0.2575z− 0.08169
z5− 1.85z4 + 0.73z3− 0.005z2 + 0.07z− 0.04063

. (4.1)

Using the proposed decomposition in (2.5), the plant transfer function may be rewrit-
ten as

H(z)= 0.25
z− 0.5

+
0.125

(z− 0.5)2
+

0.75z+ 0.375
z2 + 0.4z+ 0.13

+
0.5

z− 1.25
. (4.2)

For the multiestimation scheme three reduced-order models of the plant are proposed.
The first one considers the pole of multiplicity two in 0.5 and the pair of complex con-
jugate poles. The second reduced-order model does not consider the complex conjugate
pair and the third one removes the two real poles in 0.5. The estimated reduced-order
plant models could be represented as follows:

Ĥ(1)(z)= k̂(1)
1,1

z− 0.5
+

k̂(1)
1,2

(z− 0.5)2
+

f̂ (1)
2,1 z+ ĝ(1)

2,1

z2 + 0.4z+ 0.13
,

Ĥ(2)(z)= k̂(2)
1,1

z− 0.5
+

k̂(2)
1,2

(z− 0.5)2
+

k̂(2)
3,1

z− 1.25
,

Ĥ(3)(z)= f̂ (3)
2,1 z+ ĝ(3)

2,1

z2 + 0.4z+ 0.13
+

k̂(3)
3,1

z− 1.25
.

(4.3)

Note that in the first reduced-order model the unmodeled part is unstable. The stable
reference model transfer function is Hm(z) = 0.3375(z2 − 0.5z)/(z3 − 1.1z2 + 0.2875z−
0.01875). The sampling period is fixed to Ts = 0.1 second. A parallel multiestimation
scheme with three estimation/adaptive controller parameterization pairs has been used
with the precompensator and feedback compensator including an integrator. The per-
formance tests of the tracking and control efficiency of the adaptive scheme have been
performed by using high-level supervision (i.e., on-line updating of the α-weights) or
not (prefixed α-weight while only using switchings between estimators) and different
reference inputs as unity steps, square waves, and sinusoids. The used residence time
is an upper bound of the real one and it is found by numerical testing by varying it
gradually as the estimation algorithm evolves with time with small increments from
smaller to larger tentative values. In this context, no extra computation is needed but
one only uses the knowledge that a minimum residence time exists (see Lemma 3.3 and
Theorem 3.4). The adaptation relative dead-zone algorithm is applied with µ = µ(�) =
1.005 for � = 1,2,3 and the other parameters are chosen as σ (1) = 1.3, σ (2) = σ (3) = 0.95,
α(1)

1 = 2, α(2)
1 = 0.025, α(3)

1 = 0.075, α(1)
0 = 2, α(2)

0 = 0.025, and α(3)
0 = 0.075. The initial pa-

rameters of the performance indexes are chosen as λ= α= 0.95. The residence time is 10
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samples. The initial conditions for the three estimation algorithms are θ̂(1)
0 = (1,1,1,1)T ,

θ̂(2)
0 = (1,1,1)T , θ̂(3)

0 = (1,1,1)T and the three P(�)
0 are Diag(1015) of appropriate orders.

In the first simulation a unity step signal is used as reference input. Figure 4.1a shows the
reference and plant outputs. Figure 4.1b shows the active controller at each time interval.
The scheme is arbitrarily initialized in the third controller, but it chooses the one with the
best performance. In this case, the second one gives the best response. We can see as well
how there is a difference between the desired output and the real one due to the fact that
the estimation is stopped when the identification error is sufficiently small.

In Figures 4.1c and 4.1d, we can observe the unmodeled part contributions and the
upper bound used in the dead zone for the second and third controllers. Note that the
true value is always smaller.

Figure 4.1e shows the estimated output for each estimator. Note that the second es-
timator gives the closer estimated output to the real one. Finally, Figure 4.1f shows the
estimated parameters for the selected controller, which turns out to be the second one.

In the next simulation, the reference input is changed. Now a sinusoidal signal with
Tref (period) = 200 samples is used. Figure 4.2a shows the plant output and the refer-
ence one. We can see in Figure 4.2b that in this case the scheme chooses the third con-
troller parameterization after a small number of switches between estimators/adaptive
controller pairs. Figures 4.2c and 4.2d show the contribution of the unmodeled parts and
the upper bounds used in the designed dead zone for the second and third estimators.
Finally, Figure 4.2e shows the estimated output for each estimator with the real plant
output.

Figure 4.2e shows how the estimated output of the second estimator is closer than the
estimated output of the third one. However, the scheme chooses the last one. This hap-
pens because the performance index depends not only on the identification error but
also on the additional term which has been added in order to make the system choose
a reduced-order model with a stable unmodeled part. The importance of this term is
given by the value of the weighting factor αk. In this case, we can improve the scheme
response giving more importance to the identification error in the supervisory index.
This is made by increasing the value of αk. In the following simulation, this parameter
is fixed to 0.995. Simulation (Figures 4.2f and 4.2g) now shows how the scheme chooses
the second estimator/controller pair which had the best identification performance in the
previous simulation. In this case, the obtained output is much better than in the previous
case. The last simulation shows the importance of finding an appropriate value for the
weighting factor αk. We can introduce a supervision which updates on-line its value in
order to find the best one.

4.2. Simulation 2 (multiestimation scheme without high-level supervision and stable
unmodeled dynamics). In this simulation the following stable plant is used:

H(z)= 0.25
z− 0.5

+
0.125

(z− 0.5)2
+

0.75z+ 0.375
z2 + 0.4z+ 0.13

+
0.5

z+ 0.8

= 1.5z4 + 0.225z3− 0.385z2− 0.4525z+ 0.09125
z5 + 0.2z4− 0.5z3− 0.046z2 + 0.0085z+ 0.026

.

(4.4)
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Figure 4.1. (a) Reference and plant outputs when the high-level unsupervised multiestimation
scheme is used for a unity step input signal. (b) Active controller. (c) Contribution of the unmod-
eled part in the second model and the applied upper bound. (d) Contribution of the unmodeled
part in the third model and the applied upper bound. (e) Estimated outputs and plant output. (f)
Estimated parameters for the second estimator.
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Figure 4.2. (a) Plant and reference outputs with αk = 0.95. (b) Active controller. (c) Contribution
of the unmodeled part in the second model and the applied upper bounds. (d) Contribution of the
unmodeled part in the third model and the applied upper bounds. (e) Estimated outputs over the last
500 simulation samples. (f) Plant and reference outputs with αk = 0.995. (g) Active controller.
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Since there is no unstable pole in the plant, all the proposed reduced-order models have
associated stable unmodeled dynamics and instead of Theorem 3.4, Corollary 3.5 is ap-
plied. The reduced-order models could be written in the following way:

Ĥ(1)(z)= k̂(1)
1,1

z− 0.5
+

k̂(1)
1,2

(z− 0.5)2
+

f̂ (1)
2,1 z+ ĝ(1)

2,1

z2 + 0.4z+ 0.13
,

Ĥ(2)(z)= k̂(2)
1,1

z− 0.5
+

k̂(2)
1,2

(z− 0.5)2
+

k̂(2)
3,1

z+ 0.8
,

Ĥ(3)(z)= f̂ (3)
2,1 z+ ĝ(3)

2,1

z2 + 0.4z+ 0.13
+

k̂(3)
3,1

z+ 0.8
.

(4.5)

For the dead zone, the estimation algorithm uses the following parameters: σ (1) = σ (2) =
σ (3) = σ = 0.95, α(1)

1 = 0.1, α(2)
1 = 0.3, α(3)

1 = 2, α(1)
0 = 0.03, α(2)

0 = 0.06, and α(3)
0 = 0.3, and

it is initialized as θ̂(1)
0 = (1,1,1,1)T ; θ̂(2)

0 = (1,1,1)T ; θ̂(3)
0 = (1,1,1)T and the three P(�)

0

are Diag(1015) of appropriate orders. The initial parameters of the performance indexes
are fixed to λ = α = 0.95. The residence time is 20 samples. The same reference transfer
function as in the previous simulation is proposed. In this simulation, a sinusoidal signal
with 200 samples period is used as reference input. Figure 4.3a shows the plant output
and the reference one. The evolution of the active controller at each sampling time is
shown as well in Figure 4.3b.

Figure 4.3c shows the evolution of the unmodeled dynamics for the first reduced-order
model with the proposed upper bound for the design of the dead zone. The same figures
for the second and third reduced-order models are omitted since they are similar to the
ones shown.

We can observe the evolution of the estimates for each reduced-order model in Fig-
ures 4.3d, 4.3e, and 4.3f. Figure 4.3g shows the estimated outputs for the three different
estimators. The real output is plotted as well in that figure.

4.3. Simulation 3 (multiestimation scheme with high-level supervision). In this simu-
lation the high-level supervision is applied in order to find the most appropriate value for
the α-weighting factor. In the first simulation, we saw how the value of this parameter was
relevant in the performance of the scheme. Two different values for this factor were used
for the same simulation and we obtained an important difference between both cases,
because with the inappropriate value the system did not choose the best reduced-order
model. Now we will see how the supervision solves this problem. The same plant and ref-
erence inputs as in the first simulation are used, maintaining all the parameters with the
same values. In the supervision of α, it is initialized in 0.95, while ∆α0 = 0.2, mfk = 1.1
for all k ≥ 0 and αk ∈ [0.75,1]. The value is updated every 20 samples. Figure 4.4a shows
the plant output and the reference one. The evolution of the active controller is shown
as well in Figure 4.4b. In this case, starting from an arbitrary value α0, we have achieved
a good performance by updating this value every 20 samples (see Figure 4.4c). Once the
system has found an appropriate value for the weighting factor, the system can select the
best reduced-order model resulting in better response compared to the case of the fixed
value of αk to 0.95 (Figure 4.2a).
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Figure 4.3. (a) Reference and plant outputs. (b) Active controller. (c) Contribution of the unmodeled
part in the first model and the applied upper bounds. (d) Evolution of the estimates in model 1. (e)
Evolution of the estimates in model 2. (f) Evolution of the estimates in model 3. (g) Estimated outputs
for each estimator.
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5. Identification

5.1. Introduction. In this section, a method for obtaining a plant-simplified model based
on the input dominant frequencies is proposed. The idea is to integrate the on-line model
order choice with the reference input spectrum by means of a switching rule between sev-
eral plant recursive identifiers of different orders which run in parallel within a multies-
timation scheme. The overall process is stated as an automatic task that does not require
any on-line designer operation except the choice of the free-design parameters of the
identifiers including their initializations. It is well known that initializations are crucial
for the convergence rate in ARMA models or for the need to invert the transfer function at
frequencies where it is very small in Wiener and Hammerstein systems [8]. The time in-
tervals between consecutive switches are subject to a minimum residence time that guar-
antees an acceptable transient behavior [1, 3, 4, 6, 8, 16, 20]. The objective of this section is
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to identify online a reduced-order estimated model for a real plant under different opera-
tion points, which depend on the frequency of the input signal applied to the system. The
procedure to achieve this objective consists of designing a multiestimation scheme com-
posed of a set of estimators running in parallel. Such estimation algorithms run in parallel
and each of them estimates the parameters of each proposed nominal plant model. Each
of these nominal models represents one of the possible operation points of the real plant.
They can be of different orders and all of them are underparameterized. In this way, a
reduced-order estimated model for the current operation point of the plant could be ob-
tained linked with the properties of one external input at each current time interval. The
various different nominal models are built as parallel connections of distinct-order filters
related to the set of modes of the plant, which are supposed to be known. However, the
numerators of those filters are unknown so that they have to be recursively estimated. In
summary, all of the considered nominal models contain some of the modes, but poten-
tially not all, of the real plant and they are estimated separately within a multiestimation
scheme. A supervisor incorporating a suitable switching law selects on-line the “best” es-
timation model that optimizes an appropriate cost function which depends on the error
signal between the real output signal and the issued output from each estimated model.
Since all the estimation algorithms included in the multiestimation scheme can provide
an underparameterized estimation model of the plant, each plant identifier is potentially
subject to the presence of unmodeled dynamics associated with the modes which are not
included in its corresponding nominal model. Then, a suitable adaptation dead zone can
be added in each estimation algorithm to improve the identification process. However,
the estimation efficiency depends on the size of the unmodeled dynamics along time for
each of the parallel identifiers, as will be illustrated by means of some simulation results.

5.2. Theoretical setting up

5.2.1. Main ideas and plant assumptions. The behavior of a discrete-time nonlinear plant
around any operation point can be described by means of the time-invariant difference
equation (2.6), subject to the parameterization (2.7). This is another specific interpreta-
tion of a practical situation where the multiestimation technique may be of usefulness
in an identification context. Thus, note that (2.6) can describe the behavior around any
operation point of the system resulting from the discretization via a sampling and hold
device of a continuous-time plant. The following assumption, which is more appropriate
in identification context, replaces Assumption 2.1.

Assumptions 5.1. (i) The plant modes are stable (since the system is assumed to operate
in open loop) and known.

(ii) The nominal transfer function associated with each operation point does not nec-
essarily include all the modes of the plant.

Assumptions 5.1(i) imply that the roots of the polynomials A(�), and then its coef-
ficients, associated with each operation point are known. However, the parameters of
the polynomials B(�) will be not perfectly known or even unknown and then an estima-
tion algorithm will have to be used for identification purposes. Assumptions 5.1(ii) are
introduced in order to obtain a reduced-order nominal model of the plant depending
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on the environment which justifies the use of different order models depending on the
current operating point. Such an assumption is not necessary to set the mathematical
properties of the estimation while it is convenient in an application setting up context.
Therefore, the behavior of the plant at each operation point can be nominally modeled
as a parallel connection of strictly proper filters, with poles belonging to a subset of the
modes of the plant, of unknown numerator factors.

5.2.2. Plant description at different operation points. In view of Assumptions 5.1 the nom-
inal model associated with the behavior of the plant at the �th operation point can be
described by means of the transfer function (2.7) (see Figure 2.1). The main idea consists
of eliminating some of the modes of the plant to obtain a reduced-order model of the
plant in the current operation point. The main motivation is that a full description of
all modes of the plant might not be necessary for describing the behavior of the plant
for each current input during some time intervals. For instance, the excitation of some
of the plant modes can be very small with respect to other ones for certain frequency
ranges. Then, such modes were not considered in (2.7) for describing the plant behav-
ior subject to inputs of frequency spectrum included in the aforementioned range. In
this way, a reduced-order nominal model of the plant could be obtained including the
relevant modes. In the whole estimation scheme, a number ne of plant nominal models
will be considered, one for each possible plant operating condition. Each of them does
not contain at least one of the plant modes. Such unincluded modes constitute the un-
modeled dynamics associated with the corresponding nominal model. The subsequent
assumption is considered about the unmodeled dynamics.

Assumption 5.2. The contribution to the plant output of the unmodeled dynamics asso-
ciated with each nominal model can be expressed as a sum of a bounded term plus a term
related to the input by a strictly proper exponentially transfer function.

The transfer function mentioned in Assumption 5.2 is the result of the sum of different
order filters related with the plant modes which are not included in each plant nominal
model, that is, the modes not included in each formula of the form (2.7). Such filters are
stable in view of Assumption 3.2(i). Therefore, Assumption 5.2 is met by the description
of the plant behavior at any operation point given by (2.6). Such an assumption ensures
the existence of an upper bound for the contribution of the unmodeled dynamics to the
plant output [1, 8, 15].

5.3. Multiestimation scheme

5.3.1. Motivation and description of the identification process. A multiestimation tech-
nique is used to obtain an estimation model of the plant including a set of different nom-
inal models, each one associated with each possible plant operation point. Each estimator
works separately and in parallel while estimating the parameters of its associated nominal
model. The main idea is to know which of the estimated models is the best approach to
the behavior of the plant at each instant according to identification quality dictated by an
identification error performance index. Obviously, the model which better represents the
plant behavior normally changes through time since it depends on the operation con-
dition of the plant. It becomes apparent that there exists a need to make a comparison



A. Bilbao-Guillerna et al. 55

among the identification performances associated with all estimated models issued by
the multiestimation scheme at certain time instants to know which is the most approxi-
mated to the plant in the current instant. For such a purpose, the identification perfor-
mance index (2.16), which compares the true plant output yk with the estimated one by
the corresponding estimated model Ĥ(�)(z), is particularized with the weight α fixed to

unity. Obviously, the estimated model with the smallest value for the index J (�)
k is the best

approximation to the true plant behavior for the current time interval. Note that the es-
timation can be performed because the real output does not diverge since the true plant
is stable.

5.3.2. Estimation algorithms. Two different estimation algorithms are proposed to iden-
tify the unknown parameters f j,i, gj,i, and kj,i of the nominal models which conform the
multiestimation scheme. One of the algorithms does not incorporate any tools to treat
with the unmodeled dynamics associated with each nominal model. However, the other
one includes a relative adaptation dead zone in order to improve the identification pro-
cess under the presence of unmodeled dynamics. Such a dead zone makes the adaptation
process slower and stops it when the identification error is close to the uncertainty re-
lated to the unmodeled dynamics. The uncertainty from the unmodeled dynamics can be
measured by a known upper-bounded function of its contribution to the output [9]. The
motivation for considering two algorithm types is to compare the identification perfor-
mance reached with both alternatives and to show how such a performance depends on
the magnitude of the unmodeled dynamics.

Algorithm 5.3 (without dead zone). A standard least-squares algorithm is considered for

adapting the parameters k̂(�)
j,i , f̂ (�)

j,i , and ĝ(�)
j,i for j ∈ {1,2, . . . ,n′r +n′c/2}, i ∈ {1,2, . . . ,∂j},

and � ∈Ne as follows:

θ̂(�)
k+1 = θ̂(�)

k +
P(�)
k ϕ(�)

k e(�)
k

1 +ϕ(�)T

k P(�)
k ϕ(�)

k

,

P(�)
k+1 = P(�)

k −
P(�)
k ϕ(�)

k ϕ(�)T

k P(�)
k

1 +ϕ(�)T

k P(�)
k ϕ(�)

k

, P(�)
0 = P(�)T

0 > 0,

(5.1)

where θ̂(�)
k and ϕ(�)

k were defined in Section 2.2, and e(�)
k = yk − ŷ(�)

k = yk − θ̂(�)T

k ϕ(�)
k is

the identification error corresponding to the �th estimation model at the k sample time
instant.

Algorithm 5.4 (with dead zone). This algorithm is of least-squares type as well, but it
incorporates a relative adaptation dead zone. The estimates are given by (2.12).

A comparison between the identification performances which can be gotten from
those algorithms is discussed through simulations below.

5.4. Simulations. This section illustrates the performance of the multiestimation scheme
for identifying the parameters of the transfer function associated with the current opera-
tion point of a nonlinear plant. The improvement in the identification by the addition of
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a relative adaptation dead zone in each algorithm which composes the multi-estimation
scheme when the influence of the unmodeled dynamics is relevant will be numerically
shown. A discrete stable nonlinear plant with three known modes is considered; namely,
p1 = 0.5, p2 = 0.25, and p3 = −0.75. Therefore, the behavior of the plant at a certain
operating point can be described by

H(z)= k1,1

z− 0.5
+

k2,1

z− 0.25
+

k3,1

z+ 0.75
, (5.2)

where k1,1, k2,1, and k3,1 are unknown and they have to be estimated. The sampling time
is Ts = 0.1s. At least one of the simple filters of the whole plant model (2.5) is suppressed
in order to describe the various reduced-order estimated models of the plant for each
possible operating point. In this way, six possible reduced-order nominal models can be
obtained. In particular, a subset composed by only the three estimation models of second
order is considered in the multiestimation scheme. Each one misses information about
one of the simple plant modes. The three estimation models of two poles used for the
scheme’s implementation are

Ĥ(1)(z)= k̂(1)
1,1

z− 0.5
+

k̂(1)
2,1

z− 0.25
, Ĥ(2)(z)= k̂(2)

1,1

z− 0.5
+

k̂(2)
3,1

z+ 0.75
,

Ĥ(3)(z)= k̂(3)
2,1

z− 0.25
+

k̂(3)
3,1

z+ 0.75
.

(5.3)

The gains of each simple partial fraction of each reduced-order model are estimated by
using any of the estimation Algorithms 5.3 or 5.4. Two simulations are developed for
each operating point parameterization of the true plant. The first one uses Algorithm 5.3
for all the estimators which compose the multiestimation scheme and the second one
uses Algorithm 5.4, that is, a relative adaptation dead zone is included in each estimator.

All the estimation algorithms are initialized with k̂(�)
j,1 = 1 and P(�)

0 = 1015I2, with j,� ∈
{1,2,3}, where I2 denotes the second-order identity matrix. The selection of the best
reduced-order estimated model by the supervisor is performed after each ten samples,
that is, at the sampling instants k = lNr for all integers l > 0 with Nr = 10. The forgetting

factor which appears in the identification quality index J (�)
k of (2.17), for each reduced-

order model, is λ = 0.995 and the weighting factor α is fixed to unity. The parameters
of the relative adaptation dead zone included in Algorithm 5.4 are µ(�) = 1.1 and σ (�) =
0.995, for all � ∈ {1,2,3}, α(1)

0 = α(1)
1 = 0.2, α(2)

0 = 0.75, α(2)
1 = 1, and α(3)

0 = α(3)
1 = 2.

5.4.1. Simulation 1: comparison of the identification results with or without dead zone in
the estimators. The input applied to the plant is uk = sin(πk/100) + 0.25sin(πk/25). The
behavior of the plant subject to this input is given by (5.2) with the unknown values

k(i)
j,1 = 2 for i ∈ {1,2,3}. The three estimation models are included in the multiestima-

tion scheme in order to obtain a reduced-order estimation model for the plant at this
operation point. Therefore, each estimation model estimates two parameters. Figure 5.1a
shows the estimation model chosen by the supervisor during the simulation when
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Figure 5.1. (a) Active reduced-order estimation model. (b) Identification of the parameter k(1)
1,1 . (c)

Identification of the parameter k(1)
2,1 . (d) Amplitude Bode diagram of the three nominal estimation

models.

Algorithm 5.3 is used in all estimators (dashed line) and when Algorithm 5.4, that is,
Algorithm 5.3 with dead zone, is used in all estimators (dotted line). In any case the
supervisor finally chooses the estimation model Ĥ(1)(z) which turns out to be the best
reduced-order estimation model for the true plant at this operation point. The true val-
ues k1,1 and k2,1 (solid lines) together with the evolution of the time-varying parameters

k̂(1)
1,1 and k̂(1)

2,1 corresponding to the estimation model H(1)(z) are displayed, respectively, in
Figures 5.1b and 5.1c when Algorithm 5.3 is used (dashed line) and when Algorithm 5.4
is used (dotted line).

The reason for the final choice of the estimation model Ĥ(1)(z) by the supervisor is
based in the frequency spectrum of the applied input. The input signal is the sum of
two sinusoidal signals of frequencies 0.314 rad/s and 1.256 rad/s. The amplitude Bode
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diagram is displayed in Figure 5.1d for each of the reduced-order estimation nominal

models with k̂(i)
j,1 = 1, for all j, i∈ {1,2,3} and all integers k ≥ 0. Such a figure highlights

the gain for the reduced-order models Ĥ(�)(z) within the relevant frequencies which char-
acterizes the applied input. Consequently, it is finally chosen by the switching rule of the
supervisor as the best identification model since it gives the largest gain for the applied
input. Figures 5.1b and 5.1c display the evolution of the parameters of the estimation
model H(1)(z), which is finally chosen by the supervisor at each time interval. These esti-
mates converge to constant values which do not coincide exactly with the corresponding
true values of (5.2). The reason is that the estimation model is of a reduced-order type.
Moreover, the parametrical error magnitude depends on the type of the identification al-
gorithm. Figures 5.1b and 5.1c show that the identification is better if a relative adaptation
dead zone is included in the estimation algorithms which compose the multiestimation
scheme. That is, the identification is improved if the estimation algorithms include such a
tool to deal with the unmodeled dynamics associated with the simple partial fraction not
included in the estimation model selected by the supervisor. However, the inclusion of
the relative adaptation dead zone only improves the identification of the reduced-order
estimated model if the unmodeled dynamics contribution is higher than a certain thresh-
old compared to the contribution to the output of the nominal part of the reduced-order
model. Such a feature will be highlighted in the subsequent numerical example.

5.4.2. Example 2: influence of the unmodeled dynamics in the identification performance.
Figure 5.2 displays the results for the plant at an operation point (5.2) with the unknown
parameters ki,2 = 2 for i ∈ {1,2} and k3,1 = 0.1 to be identified, under the same input
signal of the previous numerical example.

In this case, the contribution of the unmodeled dynamics, which comes from the sup-
pressed simple partial fraction in the activated estimation model by the supervisor (i.e.,
from k3,1/(z + 0.75) during all the simulation), is small enough and the identification is
worse if the dead zone is included in the estimation algorithms. These simulations illus-
trate that the identification performances of the multiestimation scheme, without dead
zone or with dead zone in the estimators, depend on the magnitude of the unmodeled
dynamics for the relevant input frequency spectrum. If the related contribution to the
output is small enough, then the inclusion of a relative adaptation dead zone does not
improve, in general, the identification performance under an arbitrary reference input
signal. However, if the input frequency spectrum is close to the unmodeled dynamics fre-
quency range, then the inclusion of a relative adaptation dead zone in each estimation
algorithm is going to improve the identification performance. Then, an input whose fre-
quency spectrum is far from the frequencies associated with the unmodeled dynamics
will be suitable to obtain a good identification of the system parameters. The following
figures show the recursive identification updating of the parameters of the reduced-order
estimation model chosen by the supervisor at the end of the simulations, that is, the es-
timation model Ĥ(1)(z), as a function of the parameter k3,1 related to the unmodeled
dynamics associated with such an estimation model. Note that the convergence of the es-
timates to the true values would be possible if the gain of the suppressed plant mode were
zero and the estimation algorithm without dead zone were used in the multiestimation
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Figure 5.2. (a) Active reduced-order estimation model. (b) Identification of the parameter k(1)
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scheme. The use of the multiestimation scheme is justified from the point of view that
the gains of the plant modes are a priori unknown and then it is worthwhile that dif-
ferent estimation models are being updated simultaneously and a supervisor is selecting
the estimation model which is the best approximation to the operation point of the true
plant at each certain time interval.

5.4.3. Identification using a class of a swept-frequency cosine generator (chirp) wave input.
In this section, the frequency of the signal input is periodically changed between two
prefixed values in order to show how the most appropriate reduced-order model depends
through time on the time-varying input frequency. During the first 2000 samples, the
input signal may be described as follows:

uk = cos
(
2π(1 + 0.299k)10−3k

)
if 0≤ k ≤ 1000,

uk = u2000−k if 1000 < k ≤ 2000.
(5.4)

It means that the frequency varies from 0.01 Hz until 3 Hz during the first 1000 samples
and then it decreases until its initial value. Then, the input signal is repeated with the
same pattern four times until the 8000th sample, maintaining the last frequency fixed
in the following samples. The same transfer function (5.2) is used with ki,1 = 2 for i ∈
{1,2,3}. Figure 5.3a shows the evolution of the estimator with the best estimation index.
The simulation shows the results using the algorithm with and without the relative dead
zone in the identification. We can see that the system does not select any estimator as
the best one all the time while the frequency is being changed. This fact shows that there
is, in general, no appropriate reduced-order model for the whole range of frequencies
and the usefulness of each one is related to a determinate range in the frequency spectra.
This proves the necessity of including the whole set of reduced-order models with the
aim of covering the largest possible range in the frequency spectra. The estimated values
are shown in Figures 5.3b, 5.3c, and 5.3d as well. Figure 5.3d, where the multiestimation
scheme is used, shows the estimated value of the k1,1 gain according to the best estimator
at that moment. That’s why there are some discontinuities in the figure when the system
switches to another estimator. However, each estimator does not take into account all the
unknown gains; it only estimates a subgroup of them so that the last estimated value is
maintained until another estimator, which includes the estimation of that gain, is found
to have the best performance index. Figures 5.3b and 5.3c show the estimation of the
same gain if the estimator related to the first or second reduced-order model, respectively,
is maintained during the whole simulation.

5.5. Remarks. A multiestimation scheme has been presented to obtain a reduced-order
estimated model for a (possibly nonlinear) stable real plant at the current operating
point. Each of the nominal models to be estimated suppresses at least one of the plant
modes. The estimation algorithms within the multiestimation scheme run in parallel
and estimate the gain associated with each mode included in its corresponding nom-
inal model. The simulation results corroborate the achievable performance when us-
ing reduced-order estimation models of the true plant at the current operation point.
The improvement in the identification performance is apparent with the inclusion of
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Figure 5.3. (a) Active estimator. (b) Estimated value of k(1)
1,1 . (c) Estimated value of k(2)

1,1 (d) Estimated

value of k
(ck)
1,1 using the multiestimation scheme.

a relative adaptation dead zone if the contribution of the unmodeled dynamics to the
system output is relevant or if the spectrum of the plant input is close to the frequency
range of the unmodeled dynamics. The reason is that some of the estimators do not op-
erate efficiently for such frequencies. A good reduced-order model of the true plant can
be obtained subject to an input whose frequency spectrum is far from the frequencies
associated to the unmodeled dynamics.

6. Conclusions

In this work, a multiestimation scheme for discrete adaptive control has been presented.
The various estimation schemes are, in general, associated with parameterized reduced-
order plant models plus extra unmodeled dynamics and possess a relative adaptation
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dead zone. Such a dead zone freezes the estimation process when the absolute value of
the identification error is smaller than a known absolute upper bound of the contribu-
tion of the unmodeled dynamics to the output. It is only requested that at least one of the
reduced-order models possess stable unmodeled dynamics which is also a main theoret-
ical contribution of this paper related to the previous literature on the subject. A super-
visor with two hierarchized supervision levels selects on-line the appropriate estimation
model which gives the best identification performance to update the adaptive controller
parameterization via switches through time. Each estimation model generates a pole-
placement-based parameterization of the adaptive controller with only one of them being
in fact in operation at each time interval. The selection of the estimated model is made
automatically by minimizing an identification performance index while respecting a min-
imum residence time between consecutive switches at each estimator/controller parame-
terization so as to guarantee closed-loop stability. It is shown that the most recent input
frequency range is very relevant in the online current estimator to be selected to param-
eterize the adaptive controller. It is due to the fact that the effective loop-gain highly de-
pends on the input frequency spectrum because of the filtering effect of the plant and then
on its reduced-order model being more relevant to the input band frequency. The scheme
has been proved to guarantee the closed-loop stability if the switchings between the vari-
ous estimators are subject to a minimum dwell time, which can be estimated either from
a priori knowledge or through an ad hoc on-line computation algorithm. It has been
proved that a judicious choice of the switching rule allows the designer to obtain relevant
improvements in the identification and transient closed-loop control performances in
the case when the choice of a fixed constant value yields a worse transient behavior. It can
be concluded that the multiestimation scheme is an effective option for the development
of high-performance transient response adaptive controllers, especially for plants that are
highly uncertain (i.e., the compact set D where the real plant parameter vector belongs is
very large). For such plants, a significant adaptation transient response improvement can
be achieved in two ways, that is, the output overshoot peaks and the accumulated devi-
ations from the desired output are smaller in this case than in the conventional adaptive
control basic scheme. The scheme also achieves an acceptable performance when applied
to plants whose parameters change abruptly with time. In those cases, the multiestima-
tion scheme gives a better performance than the conventional adaptive configuration not
only because of the switching but also because of the supervision. The proposed scheme
reveals to be promising for the adaptive control of time-varying discrete systems as well.
The scheme has also been adapted to the open-loop identification problem without using
any controller to more clearly elucidate the relevance of the various reduced-order mod-
els to the parameter estimation depending on the frequency spectrum of a prefixed plant
test input. Simulations have corroborated through numerical examples all the expected
results from the previous theoretically addressed analysis.

Appendices

A. Proof of Theorem 3.1.

In this proof the superscripts denoting each estimation scheme � ∈Ne in the multiestima-
tion scheme are deleted in the notation for simplicity so that no confusion arises. For each



A. Bilbao-Guillerna et al. 63

�th estimation scheme, define the following positive definite sequence Vk = θ̃Tk P
−1
k θ̃k,

with the associated nominal parametrical error θ̃k = θ − θ̂k and covariance matrix Pk.
Its one-step increment is

∆Vk =Vk+1−Vk

= (θ̃Tk −φkϕ
T
k Pkek

)(
P−1
k +

skϕkϕ
T
k

1 +
(
1− sk

)
ϕT
k Pkϕk

)(
θ̃k −φkPkϕkek

)− θ̃Tk Pkθ̃k
(A.1)

since P−1
k+1 = (P−1

k + skϕkϕ
T
k /(1 + (1− sk)ϕT

k Pkϕk)) by using the matrix inversion lemma in
(2.14a), where φk = sk/(1 +ϕT

k Pkϕk). Equation (A.1) may be rewritten as

∆Vk =− sk(
1 +ϕT

k Pkϕk
)2(

1 +
(
1− sk

)
ϕT
k Pkϕk

)
× (2(θ̃Tk ϕk

)
ek −

(
θ̃Tk ϕk

)2
+ϕT

k Pkϕk
(
4
(
θ̃Tk ϕk

)
ek − 2

(
θ̃Tk ϕk

)2− ske
2
k

)
+
(
ϕT
k Pkϕk

)2(−(θ̃Tk ϕk
)2

+ 2
(
θ̃Tk ϕk

)
ek − ske

2
k

))
.

(A.2)

Now, replacing θ̃Tk ϕk = ek −ηk in the previous equation,

∆Vk =− sk(
1 +ϕT

k Pkϕk
)2(

1 +
(
1− sk

)
ϕT
k Pkϕk

)
× (e2

k −η2
k +ϕT

k Pkϕk
((

2− sk
)
e2
k − 2η2

k

)
+
(
ϕT
k Pkϕk

)2((
1− sk

)
e2
k −η2

k

))
=− sk(

1 +ϕT
k Pkϕk

)(
1 +

(
1− sk

)
ϕT
k Pkϕk

)(ϕT
k Pkϕk

(
e2
k

(
1− sk

)−η2
k

)
+ e2

k −η2
k

)
.

(A.3)

When the algorithm is not frozen, |ek| > µη̄k (if not ∆Vk = 0):

∆Vk =− sk(
1 +ϕT

k Pkϕk
)(

1 +
(
1− sk

)
ϕT
k Pkϕk

)(ϕT
k Pkϕk

(
µη̄k

∣∣ek∣∣−η2
k

)
+ e2

k −η2
k

)

≤− sk(
1 +ϕT

k Pkϕk
)(
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(
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ϕT
k Pkϕk

)(ϕT
k Pkϕk

(
µ2η̄2

k −η2
k

)
+µ2η̄2

k −η2
k

)

=− sk(
1 +

(
1− sk

)
ϕT
k Pkϕk

)(µ2η̄2
k −η2

k

)≤ 0,

(A.4)

where (2.14b) has been used. Thus, ∆Vk ≤ 0 and Vk = θ̃Tk P
−1
k θ̃k ≤ V0 < ∞, for any

bounded θ̂0 and P−1
0 while it tends to a bounded nonnegative real constant asymptotically

as k→∞ since it is uniformly bounded, monotonically decreasing, and nonnegative for
all integers k ≥ 0. Also,∞ > V0−V∞ =

∑∞
k=0 |∆Vk| <∞ and limk→∞ |∆Vk| = 0. Moreover,
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∞ > Vk ≥ 1/(λmax(P0))‖θ̃k‖2implies‖θ̃k‖ <∞ and ‖θ̂k‖ <∞. Properties 1 and 2 follow di-
rectly from the previous equation and (A.3). Property 3 is proved using property 2,

∞ >
∞∑
k=0

skϕ
T
k Pkϕk

(
e2
k

(
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)
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1 +ϕT
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)

=
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(A.5)

and the fact that the following sum of sequences is bounded as well:
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(A.6)

then property 3 is proved as well.
From property 3, φke2

k → 0 as k →∞ follows directly. As a result, either φk → 0 or
e2
k → 0. However, if e2

k → 0 as k→∞, then φk → 0 as k→∞ from (2.14b). Thus, φk → 0
as k→∞. On the other hand, if the regressor is bounded for each estimator, the above
asymptotic properties are achieved by replacing φk with sk, and property 4 is proved. The
last property is proved in the following way:

∞∑
k=0

∥∥θ̂k+1− θ̂k
∥∥2 =

∞∑
k=0

∥∥∥∥∥ skPkϕkek
1 +ϕT

k Pkϕk

∥∥∥∥∥
2

≤
∞∑
k=0

λmax
(
P0
)
s2
ke

2
k

1 +ϕT
k Pkϕk

<∞=⇒ lim
k→∞

∥∥θ̂k+1− θ̂k
∥∥= 0.

(A.7)

Moreover, since ‖θ̂k+m − θ̂k‖2 ≤ m(‖θ̂k+m − θ̂k+m−1‖2 + ‖θ̂k+m−1 − θ̂k+m−2‖2 + ··· +
‖θ̂k+1− θ̂k‖2), then limk→∞‖θ̂k+m− θ̂k‖ = 0 for m> 0 (finite) and property 5 is proved.

B. Intermediate auxiliary results and proof of Theorem 3.4

The following intermediate result will be used in the proof of Theorem 3.4.

Lemma B.1. There exists a sufficiently large finite integer k0 ≥ 0 such that

Max
�∈Ne

(∣∣e(�)
k

∣∣)≤ α′1 Sup
0≤ j≤k

(
σk− j

∥∥ϕj

∥∥)+α0 ∀k ≥ k0, � ∈Nes, (B.1)
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with

α′1 =Max
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α(�)
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∞
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(
α(�)

0

)≥ 0,

σ =Max
�∈Nes

(
σ (�))∈ (0,1),

(B.2)

where ϕj denotes the highest dimensional regressor ϕ(�)
j in the multiestimation scheme.

Proof of Lemma B.1. Note from (2.11) that

∣∣e(�)
k
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(B.3)

�

Proof of Theorem 3.4. As G(�)
k has bounded entries with its eigenvalues in |z| < 1 for all

k ≥ 0 and satisfies Assumption 3.2, there exist real constants K ≥ 1 (norm-dependent)
and ρ ∈ (ρ0,1) such that ‖∏k0+�+1

k=k0+1G
(ck)
k ‖ ≤ Kρ� provided that the residence time is suf-

ficiently large (see Lemma 3.3(ii)). Now, from (3.1), Assumptions 2.2 (3.1), and Lemma

B.1, one gets, since vk is uniformly bounded and ‖xk‖ ≥ ‖ϕ(�)
k ‖ for all � ∈ Ne and all

k ≥ k0 > 0 and sufficiently large, that ‖xk+N‖ is either bounded (and the proof is com-
plete) or arbitrary large on an interval (k0,k0 + �Tr]. Since at least one estimation scheme
i∗ has stable unmodeled dynamics of known convergence abscissa 0 < σ (i∗) ≤ σ < 1, then
there exists k ∈ (k0,k0 + �Nr) such that

Sup
0≤�≤N

∥∥xk+�
∥∥≤ K

{
ρN
∥∥xk∥∥+

1
1− ρ

[
α′1 Sup

0≤�≤k+N

(∥∥x�∥∥)+α0

]
+K ′1

}
. (B.4)

Thus the sequence {‖xk‖; k ≥ k0} cannot diverge if α′1 < (1− ρ)/K (i.e., it is sufficiently
small) since this implies that

Sup
0≤�≤N

(∥∥x�∥∥)≤
(

1− Kα′1
1− ρ

)−1(
KρN

∥∥x0
∥∥+K ′

)
<∞, (B.5)

for some constants K > 0 and K ′ > 0.
If the transfer function describing the unmodeled dynamics is strictly proper, then the

above constraints may be relaxed to α′1 ≤ (1− ρ)/kσ since Lemma B.1 may be rewritten

as Max�∈Ne(|e(�)
k |)≤ α′1σ Sup0≤ j≤k−1(‖ϕj‖) +α0 in this case. �
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