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The multiscale behavior of a recently reported model for stock markets is presented. It
has been shown that indexes of real-world markets display absolute returns with memory
properties on a long-time range, a phenomenon known as cluster volatility. The mul-
tiscale characteristics of an index are studied by analyzing the power-law scaling of the
volatility correlations which display nonunique scaling exponents. Here such analysis
is done on an artificial time series produced by a simple model for stock markets. Af-
ter comparison, excellent agreements with the multiscale behavior of real-time series are
found.

1. Introduction

There seems to be a general agreement on the statement that stock market’s absolute re-
turns (see below for definition) have long-range correlation properties, a phenomenon
known in financial literature as cluster volatility. More recently, a scaling analysis of the
generalized cumulative absolute returns has been done, showing that volatility correlations
are power-law correlated on a long-time range (from days to one year) and that the corre-
lation exponent is not unique, a phenomenon known in the theory of dynamical systems
as multiscaling [4].

On the other hand, several computational models trying to represent the behavior of
actual stock markets have been presented [6, 7, 8, 9]. From a theoretical point of view,
it is clear that it could be very useful to have available a model that could reproduce as
closely as possible the behavior of real-world markets. Here a multiscaling analysis on the
time series generated by a recently reported model for stock markets is presented [6]. It
is found that the scaling properties of the artificial time series generated by the model are
in excellent agreement with those of actual time series.

In the rest of this introductory section, a brief description of the model used to gen-
erate the time series is presented. A complete description of the model as well as other
characteristics can be found in [6]. The theory and methods for analyzing the properties
of a time series in searching for multiscale behavior are outlined in Section 2 as well as
the results of the present study.
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1.1. Model. In order to obtain a good representation of the time evolution of actual
markets, two types of “traders” must be included in a model: the followers and the fun-
damentalists. The so-called followers are supposed to follow the local (in space and time)
trend of the market, buying or selling orders on a given stock following the behavior of
other (related) stocks. They are also called noisy traders. On the other hand, there are
also traders who are considered to be responsible for the market turnoffs. These kinds of
traders are supposed to know something more about the market and then, are able to de-
velop some kind of more sophisticated strategy to operate. They can take actions to buy
or sell according to other indicators; the market’s fundamentals. These indicators could
depend on other types of information which usually come from outside of the market.
It is more realistic to think that both types of behaviors are acting at the same time and
influence the way in which a specific stock price changes.

In the model of [6], the market is modeled by a vector of stock prices x having N
integer-valued components xi, each one representing the price of a market asset (in arbi-
trary units). Then, associated with each xi is a direction of movement value vi. The compo-
nents of the direction of movements vector v are of Ising type, that is, they can take two
values vi = ±1. The model evolves in time according to the following dynamical rules.
The evolution of a (randomly chosen) component xi follows the equation

xi(t+∆t)= xi(t) + vk(t), (1.1)

while for the corresponding components vi, the following evolution equation is valid:

vi(t+∆t)=


vi±1(t) if

∣∣xi(t)
∣∣ < Xth,

−vi(t) if
∣∣xi(t)

∣∣ > Xth.
(1.2)

The value of vi(t + ∆t) is obtained by choosing at random among the direction values
of each one of the neighbors, that is, vk = vi−1 or vk = vi+1 with equal probability. In
principle, the algorithm described by the equations above takes into account the influence
of the noisy traders who follow the trend of related stocks in order to buy (vi = +1) or to
sell (vi =−1) a specific asset. However, it is not reasonable to think that the prices x could
take arbitrary positive or negative values. There is no actual market following a given
trend for ever. Then in order to take into account the influence of the fundamentalist
traders, a threshold Xth is established for the absolute value of each xi. As it can be seen
in (1.2), if at any time |xi| > Xth, the corresponding direction of movement vi is reversed,
vi →−vi. This reversal procedure simulates the influence of the fundamentalist traders
who, when the absolute value of a stock reaches a value Xth, consider that the price is low
enough so it is time to buy or it is high enough and then it is time to sell.

A representative index for the described artificial market is taken to be the mean value
time series

xM(t)= S(t)= 1
N

N∑
i=1

xi(t). (1.3)
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Figure 1.1. A typical path of the simulated price process S(t) up to T = 2750. The data of this figure
are used in the multiscaling analysis.

Here, the corresponding returns are defined as

R(t)=
∣∣S(t+ 1)− S(t)

∣∣
∣∣S(t)

∣∣ , (1.4)

where | · | represents the absolute value operation on the argument. Because in the above-
presented model, prices S(t) are in arbitrary units, it is necessary to use absolute values
in order to avoid negative arguments within the detrended logarithm of returns used for
the multiscaling analysis (see (2.2) below).

The dynamical behavior of the above-described model was investigated in [6] by
means of Monte Carlo simulations. N = 1024 and Xth = 30 where used as typical param-
eters. Using these parameters, a typical path of the simulated price S(t) up to T = 2750
is shown in Figure 1.1. The total amount of data was arbitrarily taken to be small in or-
der to reproduce as close as possible the conditions of a real market study. Although the
statistical properties reported here have been verified to be consistent with several time
series obtained from different simulations using the same set of parameters, the S(t) data
presented in Figure 1.1 were used in the multiscaling study. These data are available from
the author upon e-mail request in the form of a two-column ASCII file representing t and
S(t).

2. Multiscale analysis and results

We consider at first if some general statistical property of the probability distribution func-
tion (pdf) of the artificial series under study is similar to the other found in real-world
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time series. In particular, it was pointed out by several authors that the distribution of
returns is leptokurtic [2]. This property was analyzed in [1] by considering the distance
h between the empirically calculated pdf of a random variable X and the Gaussian distri-
bution. The quantity h is defined as

h≡ 〈x〉√〈
x2
〉−〈x〉2

. (2.1)

It is nondimensional and it takes the value hG =
√

2/π for the Gaussian pdf. For other
leptokurtic pdf ’s (such as Laplace distribution), h is always smaller than hG and it is con-
sidered to be a good parameter to measure the degree of leptokurtosis of a pdf [1].

Here, the quantity h was calculated for the artificial time series of returns R(t) (see
(1.4)) in two forms, global and local. A global value of h for the whole time series was
calculated by applying directly (2.1) to all the 2750 values available. It results in a global
value for the relation h/hG of 0.87, a clear indication of a leptokurtic pdf. A second test
was done locally (in time) by dividing the R(t) series into T/τ nonoverlapping segments,
with τ being the length of each segment.

In general, the τ is taken to be a representative time interval on which a given property
is expected to have an interesting behavior. It can go from one “day,” τ = ∆t = 1, to one
“year” of trading, τ = ∆t = 250. The values of R(t) within each segment were considered
as independent time series and (2.1) was applied to each one of them. The values of
h for intervals of length τ = 200 are shown in Figure 2.1. It can be seen that, mostly, the
behavior of R(t) is leptokurtic. This is a first indication that the artificial time series under
study represents very well an actual market (or stock) index.

In order to start the multiscaling study, following [4], a quantity named the detrended
logarithm of returns is defined as

r(t)= logR(t)− 〈 logR(t)
〉

, (2.2)

where R(t) is the value of the return at time and 〈·〉 represents the average over the whole
sequence. The underlying volatility σt is usually defined as rt = σtηt, where ηt are identi-
cally distributed random variables. Once the log returns are defined, the set of variables
called cumulative returns

ρt(τ)= 1
τ

τ−1∑
i=0

rt+i (2.3)

is considered. From the assumption that rt are uncorrelated in the long range, it fol-
lows that the standard deviation σ(τ) of the nonoverlapping variables ρt(τ) should have
a power-law behavior of the type σ(τ)∼ τ−β with β � 0.5. In Figure 2.2, the standard de-
viation of the variables ρt(τ) is log-log plotted against τ for the returns calculated using
(2.2) from the index data of Figure 1.1. The slope of a line through the slanted crosses
gives the exponent β = 0.55. A value of β close to 0.5 is an indication that the cumulative
returns are not correlated in the long range. A similar characteristic was found for the
NYSE index [3, 4].
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Figure 2.1. Plot of the relation h/hG calculated independently for twelve segments of length τ = 200.
Most of the points are under the h/hG = 1 line, indicating a leptokurtic characteristic of each time
series.

In order to study the correlations of the absolute values of the returns, the generalized
cumulative absolute returns

ρt(τ,γ)= 1
τ

τ−1∑
i=0

∣∣rt+i
∣∣γ (2.4)

are introduced. γ is a real-valued exponent and if the absolute returns happen to be un-
correlated, again an exponent β � 0.5 for the scaling of the standard deviations should
be obtained no matter which value of γ is used in the calculations of (2.4). In particular,
the signature of the multiscale behavior of a time series is the multiscaling power-law be-
havior of the correlation through the relation β(γ)= α(γ)/2, with α(γ) being the scaling
exponent of the autocorrelation function

C(τ,γ)= 〈∣∣rt
∣∣γ∣∣rt+τ

∣∣γ〉− 〈∣∣rt
∣∣γ〉〈∣∣rt+τ

∣∣γ〉∼ τ−α(γ). (2.5)

In Figure 2.2, two other plots are included. They show the dependence of the standard
deviation σ(τ,γ) of the variables ρt(τ,γ) as a function of τ, for γ = 1.0 and γ = 3.0. It can
be seen that there is a dependence of the exponent β on γ which denotes the presence
of different scales. Finally, this result is confirmed by the plot of Figure 2.3 in which the
variation of the exponent β on γ is presented in the range 0.1 < γ < 10. The longest cor-
relation is obtained for γ ∼= 0.75, corresponding to β ∼= 0.11. The plot of Figure 2.3 is the
signature of the multiscale behavior of the time series since it implies the multiscaling
power-law behavior of the correlations through the above-mentioned relation between
β(γ) and α(γ).
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Figure 2.2. Dependence of the standard deviations σ(τ) (× symbol) and σ(τ,γ) (+ and ∗ symbols)
of the variables ρ(τ) and ρt(τ,γ), respectively. σ(τ,γ) is displayed for γ = 1.0 and γ = 3.0 showing the
dependence of the slope on the exponent γ.
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Figure 2.3. Variation of the scaling exponent β as a function of γ in the range 0.1 < γ < 10.
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3. Conclusions

A multiscale analysis on an artificial time series generated by a model representing the
behavior of a stock market has been presented. The results show that the simulated time
series obtained from the operation of the dynamical system defined by (1.1) and (1.2)
have the correct statistical properties to be considered as an excellent representation of the
operation of an actual stock market. In particular, it has been shown that the simulated
time series show multiscaling characteristics very similar to those recently reported for
real-world time series [4, 5].
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