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We first give sufficient conditions for the permanence of nonautonomous discrete ratio-
dependent predator-prey model. By linearization of the model at positive solutions and
construction of Lyapunov function, we also obtain some conditions which ensure that a
positive solution of the model is stable and attracts all positive solutions.

1. Introduction

In the theoretical ecology, permanence and global stability of the population model are
very important. There are extensive literature related to these topics for differential equa-
tion models (see [3, 6, 7, 8, 9, 12] and the references cited therein). Recently, there has
been a tendency for some researchers in the field of difference equations to develop some
new methods which are analogous to those used in the study of differential equations.
(See, e.g., [1, 2, 4, 5, 10, 11] and the references therein.)

In [5], Fan and Wang considered the following discrete periodic ratio-dependent
predator-prey model:

x1(k+ 1)= x1(k)exp
{
a(k)− b(k)x1(k)− c(k)x2(k)

m(k)x2(k) + x1(k)

}
,

x2(k+ 1)= x2(k)exp
{
−d(k) +

f (k)x1(k)
m(k)x2(k) + x1(k)

}
,

(1.1)

and establish sufficient conditions for the existence of a positive periodic solution of the
periodic system (1.1). In this paper, we will establish sufficient conditions for the per-
manence of system (1.1) and also obtain some conditions which ensure that a positive
solution of the model is stable and attracts all positive solutions.

First, we present two definitions.

Definition 1.1. System (1.1) is defined to be permanent if there are positive constants M
and m such that each positive solution {x1(k),x2(k)} of system (1.1) satisfies

m≤ lim inf
k→∞

xi(k)≤ lim sup
k→∞

xi(k)≤M, i= 1,2. (1.2)
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Definition 1.2. System (1.1) is defined to be globally asymptotically stable if a positive
solution of system (1.1) is stable and this solution attracts all positive solutions.

Throughout this paper, we will assume that a(k), b(k), c(k), d(k), m(k), and f (k)
are bounded nonnegative sequences, and use the following notations: for any bounded
sequence {u(k)},

uM = sup
k∈N

u(k), uL = inf
k∈N

u(k). (1.3)

For biological reasons, we only consider solution {x1(k),x2(k)}, with x1(0) > 0, x2(0) > 0.
The organization of this paper is the following. In the next section, we establish the

permanence of system (1.1). In Section 3, we obtain the sufficient conditions which en-
sure that a positive solution of system (1.1) is stable and attracts all positive solutions.

2. Permanence

In this section, we establish a permanence result for system (1.1).

Lemma 2.1. For every solution {x1(k),x2(k)} of (1.1),

lim
k→∞

supx1(k)≤ B1, lim
k→∞

supx2(k)≤ B2, (2.1)

where

B1 =max

{
aM

bL
,
exp

(
aM − 1

)
bL

}
, B2 =

{
f MB1

mLdL
,
f MB1

mLdL
exp

{−dL + f M
}}

. (2.2)

Proof. Clearly, x1(k) > 0 and x2(k) > 0 for k ≥ 0. We first prove that

lim
k→∞

supx1(k)≤ B1. (2.3)

To prove (2.3), we first assume that there exists an l0 ∈ N such that x1(l0 + 1) ≥ x1(l0).
Then,

a
(
l0
)− b

(
l0
)
x1
(
l0
)− c

(
l0
)
x2
(
l0
)

m
(
l0
)
x2
(
l0
)

+ x1
(
l0
) ≥ 0. (2.4)

Hence,

x1
(
l0
)≤ a

(
l0
)

b
(
l0
) ≤ aM

bL
. (2.5)

It follows that

x1
(
l0 + 1

)= x1
(
l0
)

exp

{
a
(
l0
)− b

(
l0
)
x1
(
l0
)− c

(
l0
)
x2
(
l0
)

m
(
l0
)
x2
(
l0
)

+ x1
(
l0
)}

≤ x1
(
l0
)

exp
{
a
(
l0
)− b

(
l0
)
x1
(
l0
)}

≤ x1
(
l0
)

exp
{
aM − bLx1

(
l0
)}≤ exp

(
aM − 1

)
bL

,

(2.6)
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here we used

max
x∈R

{
xexp(a− bx)

}= exp(a− 1)
b

, for a,b > 0. (2.7)

We claim that

x1(k)≤ B1, for k ≥ l0. (2.8)

By way of contradiction, assume that there exists a p0 > l0 such that x1(p0) > B1. Then
p0 ≥ l0 + 2. Let p̃0 ≥ l0 + 2 be the smallest integer such that x1( p̃0) > B1. Then x1( p̃0−1) <
x1( p̃0). The above argument produces that x1( p̃0)≤ B1, a contradiction. This proves the
claim. Now, we assume that x1(k + 1) < x1(k) for all k ∈ N. In particular, limk→∞ x1(k)
exists, denoted by x1. We claim that x1 ≤ aM/bL. By way of contradiction, assume that
x1 > aM/bL. Taking limit in the first equation in system (1.1) gives

lim
k→∞

(
a(k)− b(k)x1(k)− c(k)x2(k)

m(k)x2(k) + x1(k)

)
= 0, (2.9)

which is a contradiction since

a(k)− b(k)x1(k)− c(k)x2(k)
m(k)x2(k) + x1(k)

≤ a(k)− b(k)x1(k)≤ aM − bLx1 < 0, for n∈N.
(2.10)

This proves the claim. Note that aM/bL ≤ B1. It follows that (2.3) holds.
Next, we prove that

lim
k→∞

supx2(k)≤ B2. (2.11)

At first, we assume that there exists an n0 ∈N such that x2(n0 + 1)≥ x2(n0). Then

−d(n0
)

+
f
(
n0
)
x1
(
n0
)

m
(
n0
)
x2
(
n0
)

+ x1
(
n0
) ≥ 0. (2.12)

Hence,

−d(n0
)

+
f
(
n0
)
x1
(
n0
)

m
(
n0
)
x2
(
n0
) ≥ 0,

x2
(
n0
)≤ f

(
n0
)
x1
(
n0
)

m
(
n0
)
d
(
n0
) ≤ f MB1

mLdL
.

(2.13)

It follows that

x2
(
n0 + 1

)= x2
(
n0
)

exp

{
−d

(
n0
)

+
f
(
n0
)
x1
(
n0
)

m
(
n0
)
x2
(
n0
)

+ x1
(
n0
)}

≤ f MB1

mLdL
exp

{−dL + f M
}
.

(2.14)
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We claim that x2(k) ≤ B2 for k ≥ n0. By way of contradiction, assume that there exists a
q0 > n0 such that x2(q0) > B2. Then q0 = n0 + 2. Let q̃0 ≥ n0 + 2 be the smallest integer such
that x2(q̃0) > B2. Then x2(q̃0−1) < x2(q̃0). The above argument produces that x2(q̃0)≤ B2,
a contradiction. This proves the claim. Now, we assume that x2(k + 1) < x2(k) for all k ∈
N. In particular, limk→∞ x2(k) exists, denoted by x2. We claim that x2 ≤ f MB1/mLdL. By
way of contradiction, assume that x2 > f MB1/mLdL. Taking limit in the second equation
in system (1.1) gives

lim
k→∞

(
−d(k) +

f (k)x1(k)
m(k)x2(k) + x1(k)

)
= 0, (2.15)

which is a contradiction since

−d(k) +
f (k)x1(k)

m(k)x2(k) + x1(k)
≤−dL +

f MB1

mLx2
< 0. (2.16)

It follows that (2.11) holds. This completes the proof. �

Lemma 2.2. Assume that

aL >
cM

mL
, f L > dM. (2.17)

Then

lim inf
k→∞

x1(k)≥D1, lim inf
k→∞

x2(k)≥D2, (2.18)

where

D1 =min

{
aL− cM/mL

bM
exp

{
aL− bMB1− cM

mL

}
,
aL− cM/mL

bM

}
,

D2 =min

{
f L−dM

mMdM
D1,

f L−dM

mMdM
exp

{
−dM +

f LD1

mMB2 +D1

}}
.

(2.19)

Proof. We first show that

lim inf
k→∞

x1(k)≥D1. (2.20)

According to Lemma 2.1, there exists a k∗ ∈N such that

x1(k)≤ B1 + ε, x2(k)≤ B2 + ε, for k ≥ k∗. (2.21)
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Firstly, we assume that there exists an l0 ≥ k∗ such that x1(l0 + 1)≤ x1(l0). Note that, for
k ≥ l0,

x1(k+ 1)= x1(k)exp

{
a(k)− b(k)x1(k)− c(k)x2(k)

m(k)x2(k) + x1(k)

}

≥ x1(k)exp

{
a(k)− b(k)x1(k)− c(k)

m(k)

}

≥ x1(k)exp

{
aL− bMx1(k)− cM

mL

}
.

(2.22)

In particular, with k = l0, we have

aL− bMx1
(
l0
)− cM

mL
≤ 0, (2.23)

which implies that

x1
(
l0
)≥ aL− cM/mL

bM
. (2.24)

Then

x1
(
l0 + 1

)≥ aL− cM/mL

bM
exp

{
aL− bM

(
B1 + ε

)− cM

mL

}
. (2.25)

Let

x1ε = aL− cM/mL

bM
exp

{
aL− bM

(
B1 + ε

)− cM

mL

}
. (2.26)

We claim that

x1(k)≤ x1ε, for k ≥ l0. (2.27)

By way of contradiction, assume that there exists a p0 ≥ l0 such that x1(p0) < x1ε. Then
p0 ≥ l0 + 2. Let p̃0 ≥ l0 + 2 be the smallest integer such that x1( p̃0) < x1ε. Then x1( p̃0− 1) >
x1( p̃0). The above argument produces that x1( p̃0)≥ x1ε, a contradiction. This proves the
claim. Now, we assume that x1(k + 1) > x1(k) for all k ∈ N. In particular, limk→∞ x1(k)
exists, denoted by x1. We claim that

x1 ≥
(
aL− cM/mL

)
bM

. (2.28)

By way of contradiction, assume that

x1 <

(
aL− cM/mL

)
bM

. (2.29)



140 Discrete ratio-dependent predator-prey model

Taking limit in the first equation in system (1.1) gives

lim
k→∞

(
a(k)− b(k)x1(k)− c(k)x2(k)

m(k)x2(k) + x1(k)

)
= 0, (2.30)

which is a contradiction since

lim
k→∞

(
a(k)− b(k)x1(k)− c(k)x2(k)

m(k)x2(k) + x1(k)

)
≥ aL− bMx1−

cM

mL
> 0. (2.31)

This proves the claim. It follows that (2.20) holds.
Next, we prove that

lim inf
k→∞

x2(k)≥D2. (2.32)

At first, we assume that there exists an n0 ∈ N such that x2(n0 + 1) ≥ x2(n0). Note that,
for k ≥ n0,

x2(k+ 1)= x2(k)exp

{
−d(k) +

f (k)x1(k)
m(k)x2(k) + x1(k)

}

≥ x2(k)exp

{
−d(k) +

f (k)D1

m(k)x2(k) +D1

}
.

(2.33)

In particular, with k = n0, we get

−d(n0
)

+
f
(
n0
)
D1

m
(
n0
)
x2
(
n0
)

+D1
≤ 0, (2.34)

which implies that

x2
(
n0
)≥ f L−dM

mMdM
D1. (2.35)

Then

x2
(
n0 + 1

)≥ f L−dM

mMdM
D1 exp

{
−dM +

f LD1

mM
(
B2 + ε

)
+D1

}
. (2.36)

Let

x2ε = f L−dM

mMdM
D1 exp

{
−dM +

f LD1

mM
(
B2 + ε

)
+D1

}
. (2.37)

We claim that x2(k) ≥ x2ε for k ≥ n0. By way of contradiction, assume that there exists
a q0 ≥ n0 such that x2(q0) < x2ε. Then q0 ≥ n0 + 2. Let q̃0 ≥ n0 + 2 be the smallest inte-
ger such that x2(q̃0) < x2ε. Then x2(q̃0 − 1) > x2(q̃0). The above argument produces that
x2(q̃0) ≥ x2ε, a contradiction. This proves the claim. Now, we assume that x2(k + 1) <
x2(k) for all k ∈N. In particular, limk→∞ x2(k) exists, denoted by x2. We claim that

x2 ≥
f L−dM

mMdM
D1. (2.38)
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By way of contradiction, assume that

x2 <
f L−dM

mMdM
D1. (2.39)

Taking limit in the second equation in system (1.1) gives

lim
k→∞

(
−d(k) +

f (k)x1(k)
m(k)x2(k) + x1(k)

)
= 0, (2.40)

which is a contradiction since

−d(k) +
f (k)x1(k)

m(k)x2(k) + x1(k)
≥−dM +

f LD1

mMx2 +D1
> 0. (2.41)

It follows that (2.32) holds. This completes the proof. �

Now, by Lemmas 2.1 and 2.2, we can easily obtain the following result.

Theorem 2.3. Assume that

aL >
cM

mL
, f L > dM. (2.42)

Then system (1.1) is permanent.

3. Global stability

In this section, we derive sufficient conditions which guarantee that the positive solution
of (1.1) is globally stable. Our strategy in the proof of the global stability of the positive
solution of (1.1) is to construct suitable Lyapunov functions

Theorem 3.1. In addition to the assumptions made in Theorem 2.3, assume further that
(i) there exist positive constant ν and positive constants ni, i= 1,2, such that

min

{
n1b(k)−n1

c(k)
4m(k)D1

−n2
f (k)
4D1

,n2
f (k)D1(

m(k)B2 +B1
)2 −n1

c(k)
4m(k)D2

}
> ν, (3.1)

for all large k, where Di and Bi are given in Lemmas 2.1 and 2.2,
(ii) b(k)B1 ≤ 1 and f (k)≤ 4 for all large k, where B1 is given in Lemma 2.1.

Then system (1.1) is globally asymptotically stable, that is, a positive solution of (1.1)
is stable and attracts all positive solutions.

Proof. Let {x∗1 (k),x∗2 (k)} be a positive solution of (1.1). We prove below that it is uni-
formly asymptotically stable. To this end, we introduce the change of variables

u1(k)= x1(k)− x∗1 (k), u2(k)= x2(k)− x∗2 (k). (3.2)
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System (1.1) is then transformed into

u1(k+ 1)= x1(k)exp

{
a(k)− b(k)x1(k)− c(k)x1(k)x2(k)

m(k)x2(k) + x1(k)

}

− x∗1 (k)exp

{
a(k)− b(k)x∗1 (k)− c(k)x∗1 (k)x∗2 (k)

a1(k)x∗2 (k) + x∗1 (k)

}
,

u2(k+ 1)= x2(k)exp

{
f (k)x1(k)

m(k)x2(k) + x1(k)
−d(k)

}

− x∗2 (k)exp

{
f (k)x∗1 (k)

a1(k)x∗2 (k) + x∗1 (k)
−d(k)

}
(3.3)

which, by Taylor formula, can be rewritten as

u1(k+ 1)= exp

{
a(k)− b(k)x∗1 (k)− c(k)x∗1 (k)x∗2 (k)

m(k)x∗2 (k) + x∗1 (k)

}

×
((

1− b(k)x∗1 (k) +
c(k)x∗1 (k)x∗2 (k)(

m(k)x∗2 (k) + x∗1 (k)
)2

)
u1(k)

− c(k)x∗1 (k)(
m(k)x∗2 (k) + x∗1 (k)

)2 x
∗
1 (k)u2(k) + f1

(
k,u(k)

))
,

u2(k+ 1)= exp

{
f (k)x∗1 (k)

m(k)x∗2 (k) + x∗1 (k)
−d(k)

}

×
((

1− f (k)m(k)x∗1 (k)x∗2 (k)(
m(k)x∗2 (k) + x∗1 (k)

)2

)
u2(k)

+
f (k)m(k)

(
x∗2 (k)

)2(
m(k)x∗2 (k) + x∗1 (k)

)2 u1(k) + f2
(
k,u(k)

))
,

(3.4)

where | fi(k,u)|/‖u‖ converges, uniformly with respect to k ∈ N, to zero as ‖u‖ → 0. In
view of system (1.1), it follows from (3.4) that

u1(k+ 1)= x∗1 (k+ 1)

((
1− b(k)x∗1 (k) +

c(k)x∗1 (k)x∗2 (k)(
m(k)x∗2 (k) + x∗1 (k)

)2

)
u1(k)
x∗1 (k)

− c(k)x∗1 (k)(
m(k)x∗2 (k) + x∗1 (k)

)2 u2(k) +
f1
(
k,u(k)

)
x∗1 (k)

)
,

u2(k+ 1)= x∗2 (k+ 1)

((
1− f (k)m(k)x∗1 (k)x∗2 (k)(

m(k)x∗2 (k) + x∗1 (k)
)2

)
u2(k)
x∗2 (k)

+
f (k)m(k)x∗2 (k)(

m(k)x∗2 (k) + x∗1 (k)
)2 u1(k) +

f2
(
k,u(k)

)
x∗2 (k)

)
,

(3.5)
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where | fi(k,u)|/‖u‖ converges, uniformly with respect to k ∈N, to zero as ‖u‖ → 0. We
define the function V by

V
(
u(k)

)= n1

∣∣∣∣∣ u1(k)
x∗1 (k)

∣∣∣∣∣+n2

∣∣∣∣∣ u2(k)
x∗2 (k)

∣∣∣∣∣, (3.6)

where nj are positive constants given in (i). Calculating the difference of V along the
solution of system (3.5) and using (ii), we obtain

∆V ≤−
(
n1b(k)−n1

c(k)
4m(k)D1

−n2
f (k)
4D1

)
x∗1 (k)

∣∣∣∣∣ u1(k)
x∗1 (k)

∣∣∣∣∣
−
(
n2

f (k)D1(
m(k)B2 +B1

)2 −n1
c(k)

4m(k)D2

)
x∗2 (k)

∣∣∣∣∣ u2(k)
x∗2 (k)

∣∣∣∣∣
+n1

∣∣ f1(k,u(k)
)∣∣

x∗1 (k)
+n2

∣∣ f1(k,u(k)
)∣∣

x∗2 (k)
, for large k.

(3.7)

Since | fi(k,u)|/‖u‖ converges uniformly to zero as ‖u‖→ 0, it follows from condition (i)
and Theorem 2.3 that there is a positive constant γ such that if k is sufficiently large and
‖u(k)‖ < γ,

∆V ≤−ν
∥∥u(k)

∥∥
2

. (3.8)

By [1], we see that the trivial solution of (3.5) is uniformly asymptotically stable, and so
is the solution {x∗1 (k),x∗2 (k)} of (1.1). Note that the positive solution {x1(k),x2(k)} is
chosen in an arbitrary way. Proceeding exactly as in [11], we conclude that the positive
solution {x∗1 (k),x∗2 (k)} of (1.1) is globally stable. The proof is complete �
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