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Modern theory of dynamical systems is mostly based on nonlinear differential equations
and operations. At the same time, the theory of hypernumbers and extrafunctions, a
novel approach in functional analysis, has been limited to linear systems. In this paper,
nonlinear structures are introduced in spaces of real and complex hypernumbers by ex-
tending the concept of a hypernumber. In such a way, linear algebras of extended hy-
pernumbers are built. A special topology of conical neighborhoods in these algebras is
introduced and studied. It is proved that the space of all extended real hypernumbers
is Hausdorff. This provides uniqueness for limits what is very important for analysis of
dynamical systems. It is also proved that construction of extended real hypernumbers is
defined by a definite invariance principle: the space of all extended real hypernumbers
is the biggest Hausdorff factorization of the sequential extension of the space of all real
numbers with the topology of conical neighborhoods. In addition, this topology turns the
set of all bounded extended real hypernumbers into a topological algebra. Other topolo-
gies in spaces of extended hypernumbers are considered.

1. Introduction

Discrete dynamics reflects a new emerging tendency towards utilization of iterative math-
ematical models to describe the behavior of complex systems. The theory of hypernum-
bers and extrafunctions (cf., e.g., Burgin [7]) provides tools and structures for discrete
dynamics. The first advantage of this theory is a possibility to construct new dynamical
models. If a system R is represented by means of its state space which is usually a Eu-
clidean, Hilbert, or Banach space, then trajectories in this space reflect dynamics of R.
It is natural to represent such trajectories by systems (vectors, matrices, n-dimensional
matrices, etc.) of hypernumbers. This is especially convenient when a researcher consid-
ers discrete time or the trajectory of a system is given (by measurement or computation)
at discrete moments of time. Hypernumbers that represent trajectories show asymptotic
behavior of the system.

In general, the theory of hypernumbers and extrafunctions emanated from physically
directed thinking and was derived by a natural extension of the classical approach to the
real number universe construction. Namely, an important class of problems that appear
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in contemporary physics and involve infinite values inspired this theory. As it is known,
many mathematical models, which are used in modern theories of elementary particles
(such as gauge theories), imply divergence of analytically calculated properties of physical
systems. The simplest example is the case of a free electron when its interaction with pho-
tons changes the energy of the electron so that the energy becomes infinite (in a model).
Mathematical investigation of various physical problems gives rise to divergent integrals
and series that are such mathematical constructions that have, in some sense, infinite val-
ues. However, physical measurements give, as the result, only finite values. That is why
many methods of divergence elimination (regularization), that is, of elimination of in-
finity, have been elaborated. Nevertheless, the majority of them were not well grounded
mathematically because they utilized operations with formal expressions that had neither
mathematical nor physical meaning. Moreover, there are such models in physics that con-
tain infinities that cannot be eliminated by these methods based on existing mathematical
theories. Only in the theory of hyperintegration, based on the theory of hypernumbers,
all divergent integrals and series that appear in the calculations with physical quantities
become correctly grounded as strict mathematical objects.

The second advantage of the theory of hypernumbers and extrafunctions is a possibil-
ity to build a new calculus for discrete processes. As Gontar [17] writes, “. . . the calculus
of infinitesimals—the theory of differential equations, to date the only mathematical ap-
paratus for describing dynamics—will seemingly have to be modified before it can be
used to describe the nonlinear dynamics of systems with chaotic behavior. The problem
of the existence of a lim∆x/∆t for ∆t→ 0 is particularly crucial in the study of chaos. Is
the language of differential calculus which appears in the mathematical formulation of
all dynamical laws truly so universal? Or is it possible to construct a mathematical tool
or even a new calculus for describing dynamics without using derivatives and free of the
contradiction between the continuous time and space of differential equations and the
discrete process of calculation?”

In the context of hypernumbers, it is not necessary to take the limit for finding the
derivative. Instead of arbitrary converging sequences, we can use hypernumbers and ap-
proximations of points and functions for the same goal. Namely (cf. Burgin [4, 7]),
given a point a and a real or complex function f (x), we take an approximation I =
{(am,bm);n ∈ ω} of a and approximation F = { fn;n ∈ ω} of f (x) and define the par-
tial extraderivative ∂/∂F,I fx of f at x with respect to F and I equal to the hypernumber
Hn(∆m fn/∆mx)(m,n)∈ω2, where ∆mx = bm − am and ∆m fn = fn(bm)− fn(am). When it is
possible to obtain (to measure or compute) values of the initial function f (x) and the
value x, we do not need approximations, and the extraderivative of f at x has the simpler
form ∂/∂I fx =Hn(∆m f/∆mx)m∈ω. This approach is an extension of the classical differen-
tiation because in the case of continuous spaces and existing limits, we get exactly the
classical derivative.

At the same time, when we take a general case of approximations, the differential cal-
culus of extraderivatives is relevant to discrete processes and includes as particular cases,
or as subcalculi, different calculi of finite differences (Boole [3]; Milne-Thomson [34];
Richardson [39]; Jordan [21]; Spiegel [43]), as well as the quantum calculus developed
by Kac and Cheung [22].
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The third advantage of the theory of hypernumbers and extrafunctions is a possibility
to solve much more differential equations than it is possible to solve with classical meth-
ods and even with distributions (Burgin and Ralston [11]). However, the main advance
took place only with linear differential equations due to the fact that there were essential
problems with multiplication of hypernumbers and extrafunctions. Spaces of hypernum-
bers and extrafunctions form only linear spaces over the field of real/complex numbers.
There is no general multiplication in these sets. In such spaces, it is possible to multiply
only very limited sets of hypernumbers and extrafunctions. The situation appeared to be
very similar to the problem of distribution multiplication due to the fact that the theory
of extrafunctions encompasses distribution theory.

At the same time, many problems in physics and PDE demand multiplication (cf., e.g.,
Oberguggenberger [37] or Nicolis and Prigogine [36]). Only structures with multiplica-
tion are relevant for generating and describing complex nonlinear phenomena, including
chaotic regimes and fractals. This caused different mathematicians to introduce various
constructions for multiplication of distributions. As Oberguggenberger [37] writes, “first
attempts in defining nonlinear operations within distribution theory go back to the early
fifties, pressed by the renormalization problem in quantum field theory as it was seen
then.” The most developed constructions of differential algebras that contained distribu-
tions were presented in the works by Berg [1], Burgin [6], Colombeau [13], Delcroix and
Scarpalezos [14], Egorov [15], Fisher [16], B. H. Li and Y. Q. Li[29], Oberguggenberger
[37], Rosinger [40, 41], and others, and a new theory of generalized functions has been
developed.

In this work, we define multiplication in the setting of hypernumbers and extrafunc-
tions (Section 2) and study topological properties of this system (Section 3). To be able
to use operation of multiplication, we extend the system of hypernumbers Rω studied in
Burgin [4, 7, 8, 9], Burgin and Ralston [11] to the system of E-hypernumbers ERω. This
extension gives means for multiplication in vast classes of E-hypernumbers, preserving
at the same time good topological properties. In turn, this provides a possibility to study
nonlinear transformations and nonlinear dynamical systems for hypernumbers.

An important property of mathematical spaces used for modeling physical systems is
their topology. As history of physics shows, topology of underlying spaces is inherently
connected with properties of physical systems (cf., e.g., Nash [35], Witten [44, 45]). An
important field of modern quantum physics is formed by topological quantum field theo-
ries (see [23]). Inappropriate topology in the state space can result in insolvability of such
simple partial differential equations as ∂/∂t f = c, where c is a constant (Oberguggenberger
[37]).

In addition, the topological structure of hypernumbers and extrafunctions has an im-
pact on differential calculus in the hypernumber universe: essential properties of differ-
entiation rest on this topology in a similar way as many features of the classical calculus
are dependent on the topology of the real line. An example of such a feature is uniqueness
of the limit of a sequence.

That is why Section 3 of the paper deals with topology in the space of E-hypernumbers.
The goal is to have a “good” topology such as, for example, the Hausdorff topology. If we
take for E-hypernumbers topology determined by spherical neighborhoods, which gave
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Hausdorff topology for spaces of hypernumbers, we easily find that for E-hypernumbers
the corresponding topology is not Hausdorff. Thus, we introduce another topology for
E-hypernumbers that is defined by conical neighborhoods.

It is proved (Theorem 3.24) that the space of all E-hypernumbers is Hausdorff in this
topology. This provides uniqueness for limits what is very important for analysis. In ad-
dition to this, it is proved (Theorem 3.25) that construction of E-hypernumbers is de-
fined by a definite invariance principle: the space of all real E-hypernumbers is the biggest
Hausdorff factorization of the sequential extension of the space of all real numbers with
the topology defined by conical neighborhoods.

Thus, we achieve the goal to build a sufficiently general hypernumber algebra, preserv-
ing at the same time good topological properties.

Denotations.
(1) N is the set of all natural numbers.
(2) ω is the sequence of all natural numbers.
(3) R is the set of all real numbers.
(5) If a is a real number, then |a| is its absolute value.
(6) R+ is the set of all nonnegative real numbers.
(7) R++ is the set of all positive real numbers.
(8) Rω is the set of all sequences of real numbers.
(9) in = (1/in)i∈ω; 0= (ai = 0)i∈ω; ek = (e−ki)i∈ω.

(10) If a= (ai)i∈ω, then |a| = (|ai|)i∈ω.
(11) C is the set of all complex numbers.
(12) Cω is the set of all sequences of complex numbers.
(13) If F is a set of complex functions, then FCω is the set of all F-moderate sequences

of complex numbers.
(14) DRω is the set of all D-moderate sequences of real numbers, where D= {kxn; k ∈

R++,n∈N}.
(15) E−1Rω is the set of all E−1-moderate sequences of real numbers, where E−1 =

{e−kx; k ∈R++}.
(16) Rω is the set of all real hypernumbers.
(17) ERω is the set of all real E-hypernumbers.
(18) EDRω is the set of all D-moderate real E-hypernumbers.
(19) Cω is the set of all complex hypernumbers.
(20) ECω is the set of all complex E-hypernumbers.
(21) EDCω is the set of all D-moderate complex E-hypernumbers.

2. Moderate sequences, majorants, and extended hypernumbers

We consider the set Rω = {(ai)i∈ω;ai ∈ R} of all sequences of real numbers and define
hypernumbers studied in Burgin [4, 7, 8].

Definition 2.1. For arbitrary sequences a= (ai)i∈ω, b = (bi)i∈ω ∈Rω,

a∼ b←→ lim
i→∞

∣∣ai− bi
∣∣= 0. (2.1)

The relation ∼ is an equivalence. This allows us to define real hypernumbers.
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Definition 2.2. Classes of the equivalence ∼ are called real hypernumbers and their set is
denoted by Rω.

Any sequence a= (ai)i∈ω determines a hypernumber α=Hn(ai)i∈ω. Real hypernum-
bers are sets of equivalent sequences of real numbers like rational numbers are sets of
equivalent fractions or real number sets of equivalent fundamental sequences of rational
numbers. In a similar way, real hypernumbers are defined as sets of equivalent sequences
of real numbers.

However, there is no natural multiplication in the set Rω. To overcome this shortcom-
ing, we extend the space of hypernumbers.

Definition 2.3. An (increasing) function f :R++→R++ is called an (increasing) majorant
[k-majorant] of a sequence (ai)i∈ω if f (i) > |ai| [if f (i) > |ai|+ k] for almost all i ∈ N,
meaning “all but finitely many i from N.”

Definition 2.4. A k-majorant of a sequence (ai)i∈ω with an arbitrary k is also called its
strict majorant.

Lemma 2.5. Any strict majorant of a sequence is a majorant of the same sequence. Let f (i)
be an increasing function.

Definition 2.6. A sequence (ai)i∈ω is called (strictly) f -moderate if f (i) is its increasing
(strict) majorant.

Lemma 2.7. If f (i) is a (strict) majorant of a sequence (ai)i∈ω and g(i)≥ f (i) for almost all
i∈N, then g(i) is a (strict) majorant of the sequence (ai)i∈ω.

Lemma 2.8. The concept of an (increasing) strict majorant is invariant with respect to the
choice of a sequence that represents a hypernumber, that is, if f (i) is an (increasing) strict
majorant of a sequence (ai)i∈ω and Hn(ai)i∈ω = Hn(bi)i∈ω, then f (i) is an (increasing)
strict majorant of a sequence (bi)i∈ω.

Proof. Properties of real numbers imply the following sequence of equalities and inequal-
ities: bi = bi− ai + ai = (bi− ai) + ai ≤ |bi− ai|+ ai. By the definition of a strict majorant,
there are k ∈R++ and m∈ ω such that for all i > m, we have |ai− bi| < f (i) + k and by the
definition of a hypernumber, there is n ∈ ω such that for all i > n, we have |bi − ai| < k.
Consequently, for all i > max(m,n), we have bi ≤ |bi− ai|+ ai ≤ f (i) + 2k. It means that
f (i) is an (increasing) strict majorant of a sequence (bi)i∈ω.

The lemma is proved. �

Remark 2.9. The concept of a majorant is not invariant with respect to the choice of
a sequence that represents a hypernumber, that is, if a function f (i) is a majorant of a
sequence (ai)i∈ω and Hn(ai)i∈ω =Hn(bi)i∈ω, then f (i) is not necessarily majorant of a
sequence (bi)i∈ω, as the following example demonstrates.

Example 2.10 (J. Ralston). By the definition, 1=Hn(1 + 1/i)i∈ω =Hn(1− 1/i)i∈ω. Then
the function f (i) ≡ 1 is a majorant of a sequence (1− 1/i)i∈ω but is not a majorant of a
sequence (1 + 1/i)i∈ω.

The result of Lemma 2.7 allows us to introduce increasing majorants for hypernum-
bers.
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Definition 2.11. An (increasing) function f (i) is called an (increasing) majorant of a hy-
pernumber α=Hn(ai)i∈ω if f (i) is an (increasing) strict majorant of the sequence (ai)i∈ω.

Definition 2.12. A hypernumber α=Hn(ai)i∈ω is called f -moderate if f (i) is its majorant.
The set of all f -moderate sequences of real numbers is denoted by fRω, the set of

all strictly f -moderate sequences of real numbers is denoted by s fRω, and the set of all
f -moderate real hypernumbers is denoted by fRω.

Lemma 2.13. A hypernumber α is f -moderate if and only if f (i) is a strict majorant of any
sequence (ai)i∈ω such that α=Hn(ai)i∈ω.

Corollary 2.14. If f (i) is a majorant of a hypernumber α and g(i) ≥ f (i) for almost all
i∈N, then g(i) is a majorant of the hypernumber α.

Corollary 2.15. If g(i)≥ f (i) for almost all i∈N, then fRω ⊆ gRω, s fRω ⊆ sgRω, and
fRω ⊆ gRω.

Let F= { ft(i); t ∈ T} be a class of functions from R++ into R++.

Definition 2.16. A sequence (ai)i∈ω is called (strictly) F-moderate if some function f (i)
from F is its (strict) majorant.

For the class F, the set of all F-moderate sequences is denoted by FCω and the set of all
strictly F-moderate sequences is denoted by sFCω.

Let G be also a class of functions from R++ into R++.

Proposition 2.17. If for any function f from F there is a function h from G such that
h(i)≥ f (i) for almost all i∈N, then any (strictly) F-moderate sequence (ai)i∈ω is (strictly)
G-moderate.

It is possible that for different classes F and G of increasing functions, classes FRω and
GRω coincide, as well as classes FRω and GRω.

Definition 2.18. A hypernumber α=Hn(ai)i∈ω is called F-moderate if some function f (i)
from F is its majorant.

Example 2.19. Given an increasing function f (x) from R++ into R++ with f (2) > 1, we
can consider the set D( f )= {k f n; k,n∈N} as the class F. In particular, we have the set
D= {kxn; k,n∈N} of powers of the variable x.

Example 2.20. Given an increasing function f (x) from R++ into R++, we can consider
the set Pw( f ) of all polynomials of f with whole number coefficients as the class F. In
particular, we have the set Pw of all polynomials of f with whole number coefficients.

Lemma 2.21. A sequence (ai)i∈ω is strictly D( f )-moderate (strictly D-moderate) if and only
if it is D( f )-moderate (D-moderate).

Proof. By the definition, for any set of functions F, if a sequence (ai)i∈ω is strictly F-
moderate, then this sequence is F-moderate. Let (ai)i∈ω be a D( f )-moderate sequence.
Then there are numbers k ∈ R++ and n, m ∈ ω such that for all i > m, we have |ai| <
k f (i)n. As f (x) is an increasing function and f (2) > 1, there is a number h ∈ R++ such
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that for all i > m≥ 2, we have h f (i)n > 1. Then taking q = k+h, we have q f (i)n = k f (i)n +
h f (i)n > |ai|+ 1 for all i > m. It means that (ai)i∈ω is a strictly D( f )-moderate sequence.

�

Proposition 2.17 and Lemma 2.21 imply the following result.

Lemma 2.22. A real hypernumber α (a sequence (ai)i∈ω) is D( f )-moderate (D-moderate)
if and only if it is Pw( f )-moderate (Pw-moderate), that is, D( f )Rω = Pw( f )Rω, DRω =
PwRω, D( f )Rω = Pw( f )Rω, and DRω = PwRω.

Corollary 2.23. A sequence (ai)i∈ω is strictly Pw( f )-moderate (strictly P-moderate) if and
only if it is Pw( f )-moderate (P-moderate).

Lemma 2.24. A sequence (ai)i∈ω is D( f )-moderate (D-moderate) if and only if there is a
number h such that h f (i)n > |ai|+ k (correspondingly, h f (i)n > |ai|+ k) for all i∈N.

Example 2.25. Given an increasing function f (i), we can consider the set E( f )={ek f ; k ∈
R++} as the class F. In particular, we have the set E= {ekx; k ∈R++} of positive exponents.

Lemma 2.26. A sequence (ai)i∈ω is strictly E( f )-moderate (strictly E-moderate) if and only
if it is E( f )-moderate (E-moderate).

Example 2.27. Given an increasing function f (i), we can consider the set E−1( f )= {e−k f ;
k ∈ R++} as the class F. In particular, we have the set E−1 = {e−kx; k ∈ R++} of negative
exponents.

Remark 2.28. The result of Lemma 2.26 is not true for E−1( f )-moderate sequences. As a
result, the set E( f )Rω of all E( f )-moderate sequences (and in particular the set ERω) is
invariant with respect to hypernumbers, while the set E−1( f )Rω of all E−1( f )-moderate
sequences (and in particular the set E−1Rω) is not invariant.

In what follows, we assume that the class F of functions is closed from above with
respect to addition and multiplication, that is, if f ,g ∈ F, then ∃h ∈ F( f + g ≤ h) and
∃v ∈ F( f · g ≤ v).

Proposition 2.29. The classes D, E, and E−1 are closed from above with respect to addition
and multiplication and the classes D( f ), E( f ), E−1( f ) are closed from above with respect to
addition and multiplication when the function f is strictly increasing.

Remark 2.30. The result of Proposition 2.29 is not true in general when the function f is
not strictly increasing.

Definition 2.31. For arbitrary sequences a= (ai)i∈ω, b = (bi)i∈ω ∈Rω

a∼F b⇐⇒ the sequence c = (∣∣ai− bi
∣∣)

i∈ω is strictly F-moderate. (2.2)

Lemma 2.32. The relation ∼F is an equivalence.

Proof. The properties “a ∼F a” and “a ∼F b implies b ∼F a” of an equivalence relation
follow directly from the definition of the equivalence ∼F, and we need to check only
transitivity of this relation.
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Let a ∼F b and b ∼F c. Then by the definition, there are numbers k ∈ R++ and m ∈
ω and a function f ∈ F such that for all i > m, we have |ai − bi| + k < f (i), and there
are numbers l ∈ R++ and n ∈ ω and a function g ∈ F such that for all i > n, we have
|bi− ci|+ l < g(i). Consequently, for r = k+ l and all i > max(m,n), we have |ai− ci|+ r ≤
|ai − bi|+ k + |bi − ci|+ l < f (i)) + g(i) ≤ h(i) for some function h ∈ F as the class F of
functions is closed from above with respect to addition. It means that a∼F c.

The lemma is proved. �

This result allows us to define F-extended hypernumbers.

Definition 2.33. Classes of the equivalence ∼F are called real F-extended hypernumbers
and their set is denoted by FRω.

Any sequence a= (ai)i∈ω of real numbers determines an F-extended real hypernumber
α =HnF(ai)i∈ω. Real F-extended hypernumbers are sets of equivalent sequences of real
numbers like rational numbers are sets of equivalent fractions or real number sets of
equivalent fundamental sequences of rational numbers.

Theorem 2.34. FRω is a vector space over R.

Let F be a set of functions from R++ into R++ and let MF be the closure of F with
respect to addition and multiplication of functions and multiplication by elements from
R++, that is, MF is the least linear algebra that contains F.

Definition 2.35. The set F is called ordinal complete if for any element p from MF, there
is an element q from F larger than or equal to p.

Proposition 2.17 implies the following result.

Corollary 2.36. Any MF-moderate sequence (ai)i∈ω is F-moderate.

Example 2.37. The sets E, E−1, P, D are ordinal complete.
In what follows, we take the set E−1 = {e−kx; k ∈R++} as the class F of functions and

develop the theory for this case.

Definition 2.38. For arbitrary sequences a= (ai)i∈ω, b = (bi)i∈ω ∈Rω,

a∼E b⇐⇒ the sequence c = (∣∣ai− bi
∣∣)

i∈ω is E−1-moderate. (2.3)

In other words, a∼E b if and only if there is k ∈R++ such that ∃m∈ ω for all i > m(|ai−
bi| < e−ki).

Lemma 2.39. The relation ∼E is an equivalence.

Proof. Indeed, the properties “a ∼E a” and “a ∼E b implies b ∼E a” follow directly from
the definition, and we need to check only transitivity of this relation.

Let a∼E b and b ∼E c. Then by the definition, there are numbers k ∈ R++ and m∈ ω
such that for all i > m, we have |ai− bi| < e−ki and there are numbers h∈R++ and n∈ ω
such that for all i > n, we have |bi − ci| < e−hi. Consequently, for all i > max(m,n), we
have |ai − ci| ≤ |ai − bi|+ |bi − ci| < e−ki + e−hi < e−li + e−li (with l =min(k,h)) = 2e−li <
ee−li = e1−kli < e(1/q−l)i = e−ri with r = l− 1/q. It means that a∼E c.

The lemma is proved. �
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Definition 2.40. The classes of the equivalence∼E are called real E−1-extended hypernum-
bers, or simply E-hypernumbers, and their set is denoted by ERω.

Any sequence a = (ai)i∈ω determines an E-hypernumber α = HnE(ai)i∈ω. Real E-
hypernumbers are sets of equivalent sequences of real numbers like rational numbers
are sets of equivalent fractions or real number sets of equivalent fundamental sequences
of rational numbers.

Remark 2.41. There are E-hypernumbers more than hypernumbers.

Lemma 2.42. The set R of all real numbers is isomorphically included into ERω.

Proposition 2.43. There are projections Rω pE−→ ERω
qE−→Rω.

Remark 2.44. In the set ERω, there are numbers such that they are smaller than any pos-
itive real number and larger than zero. For example, α = HnE(1/i)i∈ω = 0 and for any
r ∈R++, α < r.

Remark 2.45. It is possible in the same way as for ordinary sequences of real numbers
to define E-hypernumbers for more general (than partially ordered) sets of indices, in
particular, E-hypernumbers may be defined by ω2-sequences, that is, sets of real numbers
indexed by elements from ω2. The sets of E-hypernumbers that are defined by different
sets of indices do not coincide.

The relations on R induce corresponding relations on Rω.

Definition 2.46. If a,b ∈Rω, then

a≤ b⇐⇒∃n ∀i≥ n
(
ai ≤ bi

)
,

a < b⇐⇒∃n ∀i≥ n
(
ai < bi

)
.

(2.4)

Lemma 2.47. The relations ≤ and < on Rω are a partial order and strict partial order,
respectively.

These relations induce similar relations on Rω.

Definition 2.48. If α, β ∈ ERω, then

α≤ β⇐⇒∃a∈ α,∃b ∈ β (a≤ b),

α < β⇐⇒(∃a∈ α,∃b ∈ β (a < b)
)

and α = β.
(2.5)

Lemma 2.49. The relations ≤ and < on ERω are a partial order and a strict partial order,
respectively.

There are two operations in R++ : addition and multiplication. These operations in-
duce three operations in sets of functions from R++ into R++ : addition of functions,
multiplication by elements from R++, and multiplication of functions.

Theorem 2.50. ERω is a vector space over R.
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Proof. To be a vector space over the algebra R, the set ERω has to possess two operations:
addition + and multiplication by elements fromR, which satisfy corresponding identities
(Mallios [30]).

(1) Let α,β ∈ ERω. To define addition α+ β = γ in ERω, we take some sequences a=
(ai)i∈ω ∈ α and b = (bi)i∈ω ∈ β and determine the E-hypernumber γ =HnE(ai + bi)i∈ω.
Indeed, (ai + bi)i∈ω is a sequence in Rω and thus defines some E-hypernumber. To show
that this is a correct definition of an operation in ERω, it is necessary to prove that γ
belongs to ERω and does not depend on the choice of sequences a and b. To prove the
second statement, let us take another sequence l = (li)i∈ω in β and show that if the hyper-
number δ is equal to HnE(ai + li)i∈ω, then δ = γ.

Indeed, |(ai + bi)− (ai + li)| = |bi − li| for all i. By Definition 2.4, the sequence c =
(|bi − li|)i∈ω is E−1-moderate. Consequently, (ai + bi)i∈ω ∼E (ai + li)i∈ω and δ = γ. If we
take another sequence that represents the E-hypernumber α, the result of addition will be
the same E-hypernumber γ.

(2) Let α ∈ ERω and c ∈ R. To define the product cα = γ in ERω, we take some se-
quence a = (ai)i∈ω ∈ α and determine the E-hypernumber γ =HnE(cai)i∈ω. The proof
that the product of an E-hypernumber and a real number is defined correctly is similar
to the proof that the sum of two E-hypernumbers is defined correctly.

Necessary identities for operation in ERω follow for the corresponding identities for
multiplication and addition of real numbers.

The theorem is proved. �

Lemma 2.51. The concept of a majorant from the class D is invariant with respect to the
choice of the sequence that represents an E-hypernumber.

Proof. By Lemma 2.13, it is sufficient to show that if kxn is a majorant of a sequence a=
(ai)i∈ω and HnE(ai)i∈ω =HnE(bi)i∈ω, then for some number h∈ R++, hxn is a majorant
of a sequence b = (bi)i∈ω. Indeed, the equivalence a∼E b means (cf. Definition 2.4) that
there are m ∈ N and q ∈ R++ such that |ai − bi| < e−qi when i > m. In addition, ∃t ∈ ω
for all i > t(|ai| < kin). Then |bi| = |bi − ai + ai| ≤ |bi − ai| + |ai| < e−qi + kin when i >
max{m, t}. At the same time, e−qi < 1 < in. So, |bi| < (1 + k)in and hxn is a majorant for b
with h= 1 + k.

The lemma is proved. �

Corollary 2.52. If a sequence a=(ai)i∈ω is D-moderate and a∼E b, then the sequence b
is also D-moderate.

This allows us to introduce D-moderate E-hypernumbers.

Definition 2.53. An E-hypernumber α =HnE(ai)i∈ω is called D-moderate if some func-
tion f (i) from D is its majorant.

The set of all D-moderate real E-hypernumbers is denoted by EDRω.

Proposition 2.54. EDRω is a linear subspace of ERω.

Proof. (a) If α = HnE(ai)i∈ω, β = HnE(bi)i∈ω ∈ EDRω, and γ = α + β in ERω, then E-
hypernumber γ =HnE(ci)i∈ω, where ci = ai + bi for all i∈ ω. As α and β are D-moderate
E-hypernumbers, there are numbers k,h,m,n ∈ R++ such that kxn is a majorant of
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a sequence a= (ai)i∈ω and hxm is a majorant of a sequence b = (bi)i∈ω, that is, |ai| < kin

and |bi| < him for all i ∈ ω. Then |ci| = |ai + bi| ≤ |ai| + |bi| < kin + him ≤ kiq + hiq =
(k+h)iq for q =max{m,n}. It means that γ is also a D-moderate E-hypernumber.

(b) Let α = HnE(ai)i∈ω ∈ ERω, c ∈ R, and cα = θ in ERω. Then we have the E-
hypernumber θ =HnE(cai)i∈ω. Consequently, |c · ai| ≤ |c| · |ai| < |c| · kin = hin for h =
|c| · k. It means that θ is also a D-moderate E-hypernumber.

The proposition is proved. �

Theorem 2.55. EDRω is a linear algebra over R.

Proof. To be a linear algebra over the algebra R, the set EDRω has to possess three opera-
tions: addition +, multiplication ·, and multiplication by elements from R. Two of these
operations are defined in Theorem 2.34 and we need only to determine multiplication of
D-moderate E-hypernumbers.

Let α,β ∈ EDRω. To define multiplication α · β=γ in EDRω, we take some sequences
a=(ai)i∈ω ∈ α and b = (bi)i∈ω∈β and determine the E-hypernumber γ=HnE(ai · bi)i∈ω.
Indeed, (ai · bi)i∈ω is a sequence in Rωand thus defines some E-hypernumber. To show
that this defines an operation in EDRω, it is necessary to prove that γ belongs to EDRω

and does not depend on the choice of sequences a and b.
By the definition of D-moderate E-hypernumbers, there are numbers k,h,m,n∈R++

such that |ai| < kin and |bi| < him for all i ∈ ω. Then |ai · bi| ≤ |ai| · |bi| < kin · him =
(kh)in+m for all i∈ ω. It means that γ is a D-moderate E-hypernumber.

To prove the second statement, let us take another sequence l = (li)i∈ω in β and show
that if the E-hypernumber δ is equal to HnE(ai · li)i∈ω, then δ = γ.

Indeed, |(ai · bi)− (ai · li)| = |ai · (bi − li)| (as multiplication of real numbers is dis-
tributive) ≤ |ai| · |bi − li| (by properties of the norm of real numbers) < kin · |bi − li| <
kin · e−qi. Then taking r = 1/2q, we have kin · e−qi = e−ri(kin/eri) ≤ e−ri as kin/eri < 1 for
sufficiently big i ∈ ω. By Definition 2.4, the sequence c = (|ai · bi − ai · li|)i∈ω is E−1-
moderate. Consequently, (ai · bi)i∈ω ∼E (ai · li)i∈ω and δ = γ. If we take another sequence
that represents the E-hypernumber α, the result of multiplication will be the same E-
hypernumber γ.

To conclude, we need to prove distributivity of multiplication with respect to addition.
Let us consider two sequences (ai · (bi + ci))i∈ω and (ai · bi + ai · ci)i∈ω. Taking the absolute
value of their differences, we have (|(ai · (bi + ci))i∈ω − (ai · bi + ai · ci)|)i∈ω = (|(ai · (bi +
ci))− (ai · bi + ai · ci)|)i∈ω = (0)= 0 as distributivity law is valid for real numbers. Thus,
for any D-moderate E-hypernumbers α, β, and γ, we have α · (β+ γ)= α ·β+α · γ.

The theorem is proved. �

3. Topology in the space of E-hypernumbers

Here we consider the set ERω as a topological space. It is possible to define various topolo-
gies in ERω. As ERω is quotient set of the set Rω of all sequences of natural numbers, we
can consider the topology τsp on Rω determined by the system T of all spherical neigh-
borhoods (Burgin [7]) and take the topology δsp induced in ERω by τsp. On R as a subset
of Rω, τsp induces the natural topology for real numbers.
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However, results from Burgin [4] demonstrate that δsp is not a Hausdorff topology.
Thus, to get a good topology in ERω, we need to start with another topology in Rω.

Definition 3.1. Two elements a= (ai)i∈ω and b = (bi)i∈ω ∈Rω are called similar (denoted
a≈ b) if there is n∈ ω such that for all i > n, (ai = bi).

Proposition 3.2. . Similarity ≈ is an equivalence relation and defines a closure operation
on subsets of Rω.

Proof. If A is a subset of Rω, we define Clsim(A) = {d ∈ Rω; ∃a ∈ A ∧ d ≈ a}. This
construction satisfies all axioms of a closure operation (cf. Kuratowski [25]). Indeed,
by the definition, Clsim(A∪ B) = Clsim(A)∪Clsim(B), A ⊆ Clsim(A), Clsim(∅) =∅, and
Clsim(Clsim(A))= Clsim(A). �

Definition 3.1 implies reflexivity, symmetry, and transitivity of the relation ≈, that is,
≈ is an equivalence relation.

Let us take a set H of functions f :R++→R++. It is possible to define a specific topol-
ogy in the space Rω by means of neighborhoods that depend on functions from H. We
call it the H-conical topology in the space Rω.

Definition 3.3. An H-conical neighborhood of a sequence a ∈ Rω is a set Oa ⊆ Rω that
satisfies the following conditions:

(1) c = (ci)i∈ω ∈Oa⇒ a−|c− a| ∈Oa and a+ |c− a| ∈Oa;
(2) c = (ci)i∈ω ∈Oa ∧ c ≈ b⇒ b ∈Oa;
(3) for all d = (di)i∈ω ∈ Rω, (c = (ci)i∈ω ∈ Oa and there is n ∈ ω such that for all i >

n, (|ai−di| ≤ |ai− ci|)⇒ d ∈Oa);
(4) for all d = (di)i∈ω ∈Oa, (∃b = (bi)i∈ω ∈Oa (b > d) and ∃c = (ci)i∈ω ∈Oa(c < d));
(5) for all f ∈H, ((ai± f −1(i))i∈ω ∈Oa).
It is possible to define the H-conical neighborhood Oa in a different way, changing the

fifth condition.

Lemma 3.4. The following conditions are equivalent if condition (4) is valid:
(5) for all f ∈H, ((ai± f −1(i))i∈ω ∈Oa),

(5◦) for all f ∈H, there is n∈ ω such that for all i > n∃c = (ci)i∈ω ∈Oa(ci− ai > f −1(i)))
and there is m∈ ω such that for all i > m ∃d = (di)i∈ω ∈Oa(ai−di > f −1(i)).

Example 3.5. The set O1/x0 = {c = (ci)i∈ω ∈ Rω;∃n ∈ ω for all i > n(|ci| < 1/i)} is an E-
conical neighborhood of the sequence 0= (ai = 0)i∈ω ∈Rω.

Example 3.6. Let a = i = (ai = 1/i)i∈ω and b = i2 = (bi = 1/i2)i∈ω. The set Oa = {c =
(ci)i∈ω ∈ Rω;|c− a| < i2} is an E-conical neighborhood of the sequence a. Indeed, if we
take an element d = a+ |c− a| ∈Rω, then |d− a| = |a+ |c− a|− a| = |c− a| < i2. Thus,
d = a+ |c− a| ∈ Oa and a similar reasoning gives us that e = a− |c− a| ∈ Oa. Conse-
quently, condition (1) from Definition 3.3 is valid for the set Oa. Condition (2) directly
follows from Definition 3.1 and the construction of Oa. Condition (3) directly follows
from the construction of Oa.

Let c = (ci)i∈ω ∈ Rω and |c− a| < i2. Then for d = (di)i∈ω ∈ Rω with di = ci + (1/2)
(1/i2 − |ci − ai|), we have d > c and d ∈ Oa. In a similar way, for b = (bi)i∈ω ∈ Rω with
bi = ci− (1/2)(1/i2−|ci− ai|), we have b < c and b ∈Oa. This implies condition (4).
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Let us check condition (5). For E-conical neighborhoods, it has the following form:
for all k ∈ R++,(a± ek = (ai)i∈ω ± (e−ki)i∈ω = (ai ± e−ki)i∈ω ∈ Oa). To show that given a
sequence ek = (e−ki)i∈ω from Rω, we have a+ ek ∈ Oa and a− ek ∈ Oa, we consider the
inequality ai + e−ki < ai + 1/i2. It is equivalent to i2 < eki. Taking the Taylor series for eki

(cf., e.g., (Ross, [42])), we have (ki)3/6 < 1 + ki+ (ki)2/2 + (ki)3/6 < eki. Then i2 < (ki)3/6
if i > [6/k3] + 1. Consequently, a+ ek ∈Oa as a+ i2 < a+ eki when i > [6/k3] + 1. Condi-
tion (1) implies that for the same sequence ek, we have a− ek ∈Oa. As eki is an arbitrary
function from E, condition (5) is also valid for the set Oa, that is, it is an E-conical neigh-
borhood of the sequence a.

Condition (3) for H-conical neighborhood implies the following results.

Lemma 3.7. If O0 is an H-conical neighborhood of the sequence 0∈ Rω and c = (ci)i∈ω ∈
O0, then |c| = (|ci|)i∈ω ∈O0.

Lemma 3.8. If Oa is an H-conical neighborhood of a sequence a ∈ Rω, c = (ci)i∈ω ∈ Rω,
and a+ |c− a| ∈Oa, then c ∈Oa.

Indeed, for all i∈ ω, (|ai− ci| ≤ |ai− (ai + |ci− ai|)| = |ai− ci|), and by condition (3),
c ∈Oa.

Proposition 3.9. The system T of all H-conical neighborhoods determines a topology τcH

on Rω.

Proof. Let us define open sets in Rω by the following rule: a set X in Rω is open if for any
point x from X , it contains some H-conical neighborhood of x. To prove that we have a
topology, we demonstrate that the set of all open sets is closed with respect to arbitrary
unions and finite intersections. For unions, this property follows directly from the defini-
tion. To prove this property for intersections, it is sufficient to show that the intersection
of two arbitrary H-conical neighborhoods of a sequence a ∈ Rω is an H-conical neigh-
borhood of the same sequence a (Kuratowski [25]). Rω is a vector space. Thus, by the
definition of H-conical neighborhoods, any H-conical neighborhood Oa of a sequence
a∈ Rω is a shift of some H-conical neighborhood O0 of 0, that is, Oa=O0 + a. Conse-
quently, to prove our assertion, we need to consider only H-conical neighborhoods of 0.

Let us take the intersection O0=O10∩O20 of two H-conical neighborhoods O10 and
O20 of the element 0= (0)i∈ω ∈Rω and show that this set is an H-conical neighborhood
of 0. To do this, we need to check conditions (1)–(5) from Definition 3.3. �
Condition 1. Let c = (ci)i∈ω ∈O0. Then c ∈O10. Consequently, by condition (1), we have
a− |c− a| ∈ O10 and a+ |c− a| ∈ O10. In a similar way, a− |c− a| ∈ O20 and a+ |c−
a| ∈ O20. Thus, a− |c− a| ∈ O0 and a+ |c− a| ∈ O0, that is, condition (1) is true for
O0.

Condition 2. If c = (ci)i∈ω ∈O0 and c ≈ b, then c ∈O10 and b ∈O10. At the same time,
c ∈ O20 and b ∈ O20 as O10 and O20 are H-conical neighborhoods of 0. Consequently,
b ∈O0=O10∩O20, that is, condition (2) is true for O0.

Condition 3. Let d = (di)i∈ω ∈ Rω and for some c = (ci)i∈ω from O0, the following con-
dition is true: there is n∈ ω such that for all i > n, (|ai− di| ≤ |ai− ci|). Then d ∈O0=
O10∩O20 because c ∈O0=O10∩O20. Consequently, condition (3) is true for O0.
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Condition 4. Let d = (di)i∈ω ∈ O0. Then there is b = (bi)i∈ω ∈ O10 such that b > d and
there is c = (ci)i∈ω ∈O20 such that c > d. Let us take the element u= (ui)i∈ω, where ui =
min{di,ci} for all i = 1,2, . . .. Then, by definition, u > d and u ∈ O0 = O10∩O20 due to
condition (3), which is true for both O10 and O20. In a similar way, we find an element
v = (vi)i∈ω such that v < d and v ∈O0. Consequently, condition (4) is true for O0.

Condition 5. If f ∈H and (ai± f −1(i))i∈ω ∈O10 and (ai± f −1(i))i∈ω ∈O20, then (ai±
f −1(i))i∈ω ∈O0, that is, condition (5) is true for O0.

The proposition is proved as the whole set Rω and the empty set ∅ are open in this
topology.

In what follows, we consider only H= E and topology τcE.
As any spherical neighborhood is at the same time an E-conical neighborhood, we

have the following result.

Proposition 3.10. Topology τcE in Rω is stronger than topology τsp.

Indeed, if we take an arbitrary element a from Rω, then any spherical neighborhood
of it contains some E-conical neighborhood, for example, a neighborhood of the type
O1/xa. Thus, any open set in the topology τsp will be open in the topology τcE.

Remark 3.11. In contrast to topology τsp, topology τcH in Rω does not induce the natural
topology for real numbers R as a subset of Rω. In topology τcE, the natural inclusion of R
in Rω has discrete topology.

Indeed, R is included in Rω by the following correspondence: if a ∈ R, then the cor-
respondence a→ a= (ai = a)i∈ω ∈Rω determines a natural inclusion of R into Rω, that
is, R is isomorphic to Ro ⊆ Rω. Due to this inclusion, open sets in Ro are intersections
of open sets in Rω with Ro. If we take a neighborhood O1/xa of an element a ∈ R, its
intersection with Ro consists of the single element a. Consequently, the set {a} is open in
Ro, and as the union of any number of open sets in a topological space is open, the set
{a} is closed. This means that Ro has discrete topology.

Definition 3.12. If r ∈R++, then r · Oa = Clsim({d =(di)i∈ω; d = r · c = (rci)i∈ω; c =
(ci)i∈ω ∈Oa}).

Example 3.13. Let r ∈R++, a= i= (ai = 1/i)i∈ω, and b = i2 = (bi = 1/i2)i∈ω. The set Oa=
{c = (ci)i∈ω ∈ Rω; |c− a| < i2)} is an E-conical neighborhood of the sequence a and r ·
Oa= {c = (ci)i∈ω ∈Rω; |c− r · a| < r · i2} = {c = (ci)i∈ω ∈Rω; r−1 · |c− r · a| < i2}.
Lemma 3.14. IfOa is an E-conical neighborhood of a sequence a∈Rω, then for any r ∈R++,
r ·Oa is an E-conical neighborhood of the sequence r · a∈Rω.

Proof. As Oa=O0 + a and r ·Oa= r ·O0 + r · a, we can consider only E-conical neigh-
borhoods of 0. To show that r ·O0 is an E-conical neighborhood of 0, we need to check
conditions (1)–(5) from Definition 3.3.

Condition 1. Let c = (ci)i∈ω ∈ r ·O0. Then c ≈ r · b for some b = (bi)i∈ω ∈O0. By condi-
tion (1), we have |b| ∈ O0 and −|b| ∈ O0. Thus, |r · b| = r · |b| ∈ r ·O0 and −|r · b| =
−r · |b| = r · (−|b|) ∈ r ·O0. At the same time, c ≈ r · b implies |c| ≈ |r · b|. As the set
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r ·O0 is closed with respect to similar elements, we have |c| ∈ r ·O0 and −|c| ∈ r ·O0,
that is, condition (1) is true for r ·O0.

Condition 2. This condition is true for r ·O0 because similarity closure is an idempotent
operation (Kuratowski [25, Axiom 4]).

Condition 3. Let d = (di)i∈ω ∈ Rω, and for some c = (ci)i∈ω from r ·O0, the following
condition is true: there is n ∈ ω such that for all i > n, (|di| ≤ |ci|). Then for the same
n ∈ ω, we have r−1 · |di| ≤ r−1 · |ci| when i > n. By condition (2) for O0, r−1 · |c| ∈ O0.
Then by condition (3) for O0, r−1 · |d| ∈O0. Consequently, |d| = r · (r−1 · |d|)∈ r ·O0.
Lemma 3.8 implies that d ∈O0, that is, condition (3) is true for r ·O0.

Condition 4. Let d = (di)i∈ω ∈ r ·O0. Then d ≈ r · b for some b = (bi)i∈ω ∈ O0. Then
there is a= (ai)i∈ω ∈O0 such that b > a and there is c = (ci)i∈ω ∈O0 such that c > b. As
r ∈ R++, r · b > r · a and r · c > r · b. Then d > r · a and r · c > d. Besides, r · a and r · c
belong to r ·O0. It means that condition (4) is true for r ·O0.

Condition 5. Let us consider an arbitrary function e−hi from E−1 and the sequence e−hi =
(e−hi)i∈ω. By the definition, e−(h+1)i = (e−(h+1)i)i∈ω ∈ O0. Then e−hi < r · e−(h+1)i ∈ r ·O0
and by condition (3), which has been already proved, e−hi ∈ r ·O0, that is, condition (5)
is true for O0.

The lemma is proved. �
Definition 3.15. If r ∈R++, then r ◦Oa= Clsim({d = (di)i∈ω; d = (ai− r(ai− ci))i∈ω; c =
(ci)i∈ω ∈Oa}).

Example 3.16. Let r ∈R++, a= i= (ai = 1/i)i∈ω, and b = i2 = (bi = 1/i2)i∈ω. The set Oa=
{c = (ci)i∈ω ∈ Rω; |c− a| < i2} is an E-conical neighborhood of the sequence a and r ◦
Oa= {c = (ci)i∈ω ∈Rω; |c− a| < r · i2} = {c = (ci)i∈ω ∈Rω; r−1 · |c− a| < i2}.
Lemma 3.17. IfOa is an E-conical neighborhood of a sequence a∈Rω, then for any r ∈R++,
r ◦Oa is an E-conical neighborhood of the sequence a∈Rω.

Proof. As in Lemma 3.14, we can consider only E-conical neighborhoods of 0. However,
for any such neighborhood O0, we have r ◦O0= r ·O0. Thus, Lemma 3.17 follows from
Lemma 3.14. �

A topological space X may satisfy the following axioms (Kelley [24]).
(T0) (The Kolmogorov axiom). For all x, y ∈ X , (∃Ox(y /∈Ox)∨∃Oy(x /∈Oy)).
(T1) (The Alexandroff axiom). For all x, y ∈ X ,∃Ox,∃Oy (x /∈Oy & y /∈Ox).
(T2) (The Hausdorff axiom). For all x, y ∈ X ,∃Ox,∃Oy (Ox∩Oy =∅).
Here Ox, Oy are neighborhoods of x and y, respectively.
A topological space, which satisfies axiom Ti, is called a Ti-space. Each axiom Ti+1 is

stronger than axiom Ti. Traditionally, T2-spaces are called Hausdorff spaces (Kelley [24]).

Theorem 3.18. The topology τcE in the space Rω does not satisfy the axiom (T0).

Proof. To prove the theorem, it is sufficient to take elements 0= (ai = 0)i∈ω and b= (bi =
e−i)i∈ω. Any E-conical neighborhood of one of them includes the second point. Indeed, by
the definition of an E-conical neighborhood of 0, if O0 is an E-conical neighborhood of 0,
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then there is n∈ω such that for all i > n, (e−i∈Ci1). In this case, the sequence c=(ci)i∈ω,
in which ci = 0 for i = 1,2, . . . ,n and bi = e−i for i > n, belongs to O0. As the sequence
b = (bi = e−i)i∈ω is similar to the sequence c, it also belongs to O0.

The proof for the neighborhoods of b is similar.
Theorem 3.18 is proved. �

Proposition 3.19. Rω is a topological abelian group (McCarty [32]) with respect to addi-
tion in Rω and topology τcE.

Remark 3.20. However, Rω is not a topological vector space with respect to τcE although
(Burgin [6]) Rω is a topological vector space with respect to τsp.

To show this, let us consider number 1 with its neighborhood Ok1 = {a ∈ R; |a−
1| < k}, where k ∈R++ and the sequence 1= (ci = 1)i∈ω. Then to be a topological vector
space with respect to τcE, the space Rω needs the following property: for any E-conical
neighbourhood O1 of the element 1, there are neighborhoods Ok1 and O11 such that
Ok1 ·O11 ⊆ O1. The product Ok1 ·O11 always contains the set Ok1 · 1 = Ok1, which
is a spherical neighborhood of 1. However, there are E-conical neighbourhoods of the
element 1, for example, O1/x0 = {c = (ci)i∈ω ∈ Rω; ∃n∈ ω for all i > n(|ci| < 1/i)}, such
that they do not contain any spherical neighborhood of 1. Thus, Rω is not a topological
vector space with respect to τcE.

Lemma 3.21. The points a,b ∈ Rω determine the same E-hypernumber if and only if any
E-conical neighborhood of a contains b.

Proof

Necessity. Let the sequences a = (ai)i∈ω and b = (bi)i∈ω from Rω determine the same
E-hypernumber, that is, α=HnE(ai)i∈ω =HnE(bi)i∈ω, and let Oa be an E-conical neigh-
borhood of a. Then there is k ∈ R++ such that there is m∈ ω such that for all i > m, we
have |ai − bi| < e−ki. Consequently, we have ai + |ai − bi| < ai + e−ki for any i > m. If Oa
is an E-conical neighborhood of a sequence a ∈ Rω, then a± ek = (ai)i∈ω ± (e−ki)i∈ω =
(ai± e−ki)i∈ω ∈Oa. In addition, |ai− bi| < e−ki = |ai− (ai + e−ki)|. Consequently, by con-
dition (3) for E-conical neighborhoods, the sequence b = (bi)i∈ω belongs to Oa.

Necessity is proved.

Sufficiency. Let us consider two sequences a= (ai)i∈ω and b = (bi)i∈ω fromRω that define
different hypernumbers, that is, α = HnE(ai)i∈ω = β = HnE(bi)i∈ω. Then the following
statement is true:

∀k ∈R++,∀n∈ ω, ∃i≥ n
(∣∣ai− bi

∣∣ > e−ki
)
. (3.1)

We define n(1) equal to a number n such that for some i ≥ n, (|ai − bi| > e−i). Then
n(2) is equal to a number n such that n > n(1) and for some i≥ n, (|ai− bi| > e−i/2). We
continue this process, defining numbers n(r), where r ∈ ω and n(r) is equal to a number
n such that n > n(r − 1) and for some i≥ n, (|ai− bi| > e−i/r). It is possible to do this for
any r as the formula (3.1) is true for any number n.
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This allows us to define sets Ci = (ai − |an(r) − bn(r)|,ai + |an(r) − bn(r)|) with n(r) ≤
i < n(r + 1) for all r = 1,2,3, . . .. Then we put Oa = Clsim(

⋃∞
i=1Ci) and show that it is an

E-conical neighborhood of a, validating conditions (1)–(5) from Definition 3.3.

Condition 1. Let c = (ci)i∈ω ∈Oa. Then there is m∈ ω such that for all i > m with n(r)≤
i < n(r + 1), we have |ai − ci| < |ai − (ai + |an(r) − bn(r)|)| = |an(r) − bn(r)| for all r with
n(r) > m. This implies that there is m ∈ ω such that for all i>m with n(r)≤ i<n(r + 1),
we have |ai− (ai + |ai− ci|)|<|ai− ci|<|ai− (ai + |an(r)− bn(r)|)| = |an(r)− bn(r)| for all r
with n(r) >m. Consequently, a+ |c− a| ∈Oa. In a similar way, we show that a−|c− a| ∈
Oa.

Conditions 2–4. Conditions 2–4 for Oa follow directly from the definition of Oa.

Condition 5. Given e−ti, we can find a number r ∈ ω such that t > r−1. Then e−ti <
e−i/r for any i ∈ ω. This implies an(r) + e−tn(r) < an(r) + e−n(r)/r < an(r) + |an(r) − bn(r)| and
an(r) − e−tn(r) > an(r) − e−n(r)/r > an(r) − |an(r) − bn(r)|. Consequently, an(r) + e−tn(r) ∈ Cn(r)

and an(r) − e−tn(r) ∈ Cn(r). When n(r) ≤ i <n(r + 1), we have ai + e−ti < ai + e−i/r < ai +
e−n(r)/r < ai + |an(r) − bn(r)| and ai − e−ti > ai − e−i/r > ai − e−n(r)/r > ai − |an(r) − bn(r)|.
Consequently, ai + e−ti ∈ Ci and ai− e−ti ∈ Ci. When n(r + 1)≤ i < n(r + 2), we have ai +
e−ti < ai + e−i/r < ai + e−i/(r+1) < ai + e−n(r+1)/(r+1) < ai + |an(r+1) − bn(r+1)| and ai − e−ti >
ai − e−i/r > ai − e−i/(r+1) > ai − e−n(r+1)/(r+1) > ai − |an(r+1) − bn(r+1)|. Hence, ai + e−ti ∈ Ci

and ai− e−ti ∈ Ci. We continue this process, demonstrating by induction that condition
(5) is true for Oa.

Let k be an arbitrary natural number and n(r + k) ≤ i < n(r + k + 1). Then ai + e−ti <
ai + e−i/r < ai + e−i/(r+k) < ai + e−n(r+k)/(r+k) < ai + |an(r+k) − bn(r+k)| and, in a similar way,
ai− e−ti >ai− e−i/r>ai− e−i/(r+k)>ai− e−n(r+k)/(r+k)>ai−|an(r+k)−bn(r+k)|. Consequently,
ai + e−ti ∈ Ci and ai − e−ti ∈ Ci. As k is an arbitrary natural number, this implies that
a± et = (ai)i∈ω± (e−ti)i∈ω = (ai± e−ti)i∈ω ∈Oa.

Thus, Oa is an E-conical neighborhood of a. By Lemma 3.17, (1/2) ◦Oa is also an
E-conical neighborhood of the sequence a. At the same time, b /∈ (1/2)◦Oa.

By the principle of excluded middle, sufficiency is also proved. This concludes the
proof of the Lemma. �

Lemma 3.21 implies that the topology τcE is stable with respect to E-hypernumbers,
that is, if points a= (ai)i∈ω, b = (bi)i∈ω ∈ Rω determine the same E-hypernumber, then
any E-conical neighborhood of a contains b, and vice versa.

As ERω is the quotient space ofRω, the topology τcE induces in ERω the definite topol-
ogy δcE, which is generated by means of the projections of the E-conical neighborhoods,
that is, if pE : Rω → ERω is the natural projection and u ∈ ERω, then any neighborhood
of u is the image of some E-conical neighborhood of a point a∈Rω such that p(a)= u.

Remark 3.22. In contrast to topology δsp induced by τsp in ERω, topology δcE in ERω does
not induce the natural topology for real numbersR as a subset ofRω. In topology δcE, the
natural inclusion of R in ERω has discrete topology.

Indeed, topology δcE in ERω is induced by topology τcE, while R is a discrete subset of
Rω in topology τcE (Remark 3.11).

Proposition 3.9 implies the following result.
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Corollary 3.23. Topology δcE in Rω is stronger than topology δsp.

Properties of the induced topology δcE are better than similar properties of the topol-
ogy τcE.

Theorem 3.24. The topology δcE satisfies axiom (T2), and thus ERω is a Hausdorff space.

Proof. Let us consider two arbitrary hypernumbers α and β from the set ERω. If α =
β in ERω, then any sequences a = (ai)i∈ω ∈ α and b = (bi)i∈ω ∈ β satisfy the following
condition (cf. Section 2): for any positive number k and any n∈ ω there is an i > n such
that |ai− bi| > e−k j . It makes possible to choose for a given positive number k an infinite
set M of natural numbers such that for any m∈M the inequality |am− bm| > e−k j is valid.

Let us take the E-conical neighborhood Oa of a constructed in the proof of Lemma
3.21. By the definition Oa = Clsim(

⋃∞
i=1Ci), where Ci = (ai − |an(r) − bn(r)|,ai + |an(r) −

bn(r)|) with n(r)≤ i < n(r + 1) for all r = 1,2,3, . . . .
In a similar way, we construct the E-conical neighborhood Ob of b defined as Ob =

Clsim(∪∞i=1Di), where Di = (bi− |an(r)− bn(r)|,bi + |an(r)− bn(r)|) with n(r)≤ i < n(r + 1)
for all r = 1,2,3, . . . .

By Lemma 3.14, O4a = (1/4) ·Oa and O4b = (1/4) ·Ob are also E-conical neighbor-
hoods of the points a and b, correspondingly. The projections p(O4a) and p(O4b) of these
neighborhoods will be E-conical neighborhoods of α and β with respect to the topology
δcE. Moreover, p(O4a)∩ p(O4b)=∅. To prove this, we suppose that there is γ ∈Rω and
γ is an element of the set p(O4a)∩ p(O4b). It implies that there are such points u,v ∈Rω,
for which p(u)= p(v)= γ, p :Rω →Rω is a natural projection, and u∈O4a, v ∈O4b.

Let u = (ui)i∈ω and v = (vi)i∈ω. The equality p(u) = p(v), Lemma 3.21, and the def-
inition of E-hypernumbers imply that there is a number k > 0 for which the follow-
ing condition is valid: there is m ∈ ω such that for all i > m(|ui − vi| < (1/3)e−ki). At
the same time, the set M, which is determined above, is infinite. So, there is a number
j ∈M, which is greater than m. For this j, we have |uj − vj| ≥ |aj − bj| − |aj − uj| −
|bj − vj| ≥ e−k j − (1/4)e−k j − (1/4)e−k j = (1/2)e−k j > (1/3)e−k j . It contradicts the condi-
tion |uj − vj| < (1/3)e−k j .

Consequently, the assumption is not true, and p(O4a)∩ p(O4b) =∅. Theorem 3.24
is proved because α and β are arbitrary points from ERω and both p(O4a) and p(O4b)
are E-conical neighborhoods of α and β, respectively. �

This result makes it possible to give an axiomatic description of Rω.

Theorem 3.25. The space ERω with the topology δcE is the largest Hausdorff quotient space
of the topological space Rω with the topology τcE.

In other words, if a Hausdorff space Xis a quotient space of Rω with the continuous
projection q : Rω → X , then there is a continuous projection v : ERω → X for which q =
pv, that is, the following diagram is commutative:

Rω PE

q

ERω

v

X

(3.2)
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Proof. By Theorem 3.24, ERω is a Hausdorff space. Thus, to prove the theorem, it is nec-
essary to demonstrate that if a Hausdorff space X is a quotient space of Rω with the
continuous projection q :Rω → X , then there is a continuous projection v : ERω → X for
which q = pEv.

Let us consider such a Hausdorff space X with the continuous projection q :Rω → X .
Then, for any points x, y ∈ X , the inequality x = y implies existence of neighborhoods Ox
and Oy for which Ox∩Oy =∅ is valid. As X is a quotient space of Rω, there are points
a,b ∈ Rω for which q(a) = x and q(b) = y. The inverse images q−1(Ox) and q−1(Oy)
are open sets because q is a continuous mapping. Besides, a∈ q−1(Ox) and b ∈ q−1(Oy)
because q(a)= x and q(b)= y. That is why q−1(Ox) contains an E-conical neighborhood
Oa of a, and q−1(Oy) contains an E-conical neighborhood Ob of b.

Let us suppose that pE(a) = pE(b). Then by Lemma 3.21, a ∈ Ob and b ∈ Oa. As a
consequence, x = q(a)∈ q(Ob)⊆Oy and y = q(b)∈ q(Oa)⊆Ox. It contradicts the con-
dition that Ox∩ Oy = ∅. Thus, for arbitrary points x and y from X and elements a and
b from Rω such that q(a)= x and q(b)= y, we have pE(a) = pE(b).

This makes it possible to define the mapping v : ERω → X as follows: v(x) = p(a) for
any x ∈ X and for a∈Rω such that q(a)= x. The definition of v implies that the mapping
v is continuous because pEv = q and the topology δcE in ERω is induced by the topology
τcE in Rω, that is, pE is an open mapping.

Theorem 3.25 is proved. �
Theorem 3.25 gives an axiomatic topological characterization of the space ERω of real

E-hypernumbers as the largest Hausdorff quotient space of the topological spaceRω with
the topology τcE. The condition that the space Rω has the topology τcE is essential because
in the discrete topology, for example, there are larger quotient spaces of Rω .

Theorem 3.26. The set EDRω of all D-moderate real E-hypernumbers is an open subspace
of the topological space ERω.

Proof. Let us consider a D-moderate sequence a= (ai)i∈ω ∈Rω and the D-moderate real
E-hypernumber α=Hn(ai)i∈ω. By the definition of D-moderate sequences, we have ai <
in starting from some i =m. The set O0 = {c = (ci)i∈ω ∈ Rω; |c| < in+1} is an E-conical
neighborhood of 0 = (ci = 0)i∈ω. The proof is the same as given in Example 3.6 for the
case n=1.

Consequently, the set Oa= a+O0 is an E-conical neighborhood of a. As all elements
fromO0 belong to DRω, all elements from Oa belong to DRω. As a is an arbitrary element
from DRω, the set DRω is open inRω. As topology in ERω is determined by the projection
pE :Rω → ERω and EDRω is the image of an open set DRω, the set EDRω is also open.

Theorem 3.26 is proved. �
We study how topology in spaces ERω and EDRω is correlated with algebraic structures

in these sets. To do this, we need some general results for topological, universal, and
heterogeneous algebras. We recall basic concepts from the theory of topological, linear,
universal, and heterogeneous algebras (Cohn [12]; Kurosh [27]; Burgin [5]; Mallios [30]).

Definition 3.27. A heterogeneous or multibase universal algebra A is a set A with a system
of operations Σ in which elements of A form an indexed system A= {Ai} of sets and each
operation is a mapping having the form ω: Ai1×Ai2×···×Aik → Ai.
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A universal algebra is a heterogeneous algebra in which A consists of a single set.

Definition 3.28. The system A is called the carrier of the heterogeneous algebra A.

Examples of heterogeneous universal algebras are vector spaces, linear algebras, mod-
ules, polygons (i.e., sets on which monoids act), automata or state machines, polyadic or
Halmos algebras (Halmos [18]), and nonhomogeneous polyadic algebras (LeBlanc [28]).
Heterogeneous universal algebras were studied by several authors under different names.
To mention only some of them, it is necessary to name algebras with a scheme of opera-
tors introduced by Higgins [19, 20], heterogeneous algebras from the papers of Birkhoff

and Lipson [2] and Matthiessen [31], and many-sorted algebras studied by Plotkin [38].
The term “heterogeneous algebras” is used more often than other related terms. Hetero-
geneous (multibase or many-sorted) algebras represent the next level of the development
of algebra. Namely, in ordinary (or homogeneous) universal algebras operations are de-
fined on a set, while in heterogeneous algebras operations are defined on a named set
(Burgin [10]). This makes it possible to develop more adequate models for many pro-
cesses.

Let A= (A= {Ai},Σ) and B= (B = {Bi},Σ) be heterogeneous algebras.

Definition 3.29. A system of mappings f = { fi : Ai → Aj} defined for all i is called a ho-
momorphism of a heterogeneous algebra A into a heterogeneous algebra B if for any op-
eration ω from Σ the following identity is true: f (ω(x1,x2, . . . ,xk)) = ω( f (x1), f (x2), . . . ,
f (xk)).

Definition 3.30. The homomorphism f : A→ B is called an epimorphism if all fi are pro-
jections.

Definition 3.31. A heterogeneous algebra A is topological if all sets Ai are topological
spaces and each operation is a continuous mapping of the form ω : Ai1 ×Ai2 × ··· ×
Aik → Ai.

Theorem 3.32. If A is a heterogeneous topological algebra, B is a heterogeneous algebra,
p : A→ B is an epimorphism, B has topology induced by topology in A, then B is also a
heterogeneous topological algebra.

Proof. We need to prove that taking an element u = ω(u1,u2, . . . ,uk) from the algebra
B and its neighborhood Ou, we can find neighborhoods Ou1,Ou2, . . . ,Ouk such that
ω(Ou1,Ou2, . . . ,Ouk) ⊆ Ou. As p : A→ B is a projection, there are elements a1,a2, . . . ,ak
from the algebra A such that ui = p(ai) for all i = 1,2, . . . ,k. As p : A→ B is an epimor-
phism, u = ω(u1,u2, . . . ,uk) = ω(p(a1), p(a2), . . . , p(ak)) = p(ω(a1,a2, . . . ,ak)). As topol-
ogy in B is induced by the topology in A, there is a neighborhood Oa of the element a=
ω(a1,a2, . . . ,ak) such that p(Oa)=Ou. As A is a heterogeneous topological algebra, there
are neighborhoods Oa1, Oa2, . . . , Oak such that ω(Oa1,Oa2, . . . ,Oak) ⊆ Oa. As topol-
ogy in B is induced by the topology in A, the projections p(Oa1), p(Oa2), . . . , p(Oak) are
neighborhoods of the elements u1, u2, . . . , uk such that ω(p(Oa1), p(Oa2), . . . , p(Oak))=
p(ω(Oa1,Oa2, . . . ,Oak))⊆ p(Oa)=Ou.

Theorem 3.32 is proved. �

Theorem 3.32 and Proposition 3.9 imply the following result.
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Corollary 3.33. The set ERω with the topology δcE is a topological abelian group.

For topology τsp, we have a stronger result.

Theorem 3.34 (Burgin [4]). The set Rω with the topology τsp is a topological vector space
over the field R with the natural topology, and the set DRω of all D-moderate sequences is its
topological subspace.

Proof. The topology τsp in Rω is defined by spherical neighborhoods. A spherical neigh-
borhood of a sequence a=(ai)i∈ω∈Rω is an arbitrary set Oka={c=(ci)i∈ω∈Rω; ∃n∈ω
for all i>n(|ai−ci| < k)} with k∈R++. To prove that Rω with the topology τsp is a topo-
logical linear algebra, we need to show that operations of addition a+ b, multiplication
a · b, and multiplication by a real number r · a are continuous mappings (Mallios [30]).

Let us consider a spherical neighborhood Ok(a+ b) of the sum a+ b. Taking h= 1/2k,
we have Oha+Ohb⊆Ok(a+ b). So, addition is a continuous mapping.

It follows from the definitions that the product Oh(r) ·Ok(a) is a spherical neighbor-
hood Ohk(r · a) of the product r · a. Thus, Rω with the topology τsp is a topological linear
algebra.

By the definition (cf. Section 2), the set DRω is a subspace ofRω. At the same time, the
set DRω is an open subset of Rω. Consequently, DRω is a topological subspace of Rω.

Theorem 3.34 is proved. �

Remark 3.35. However, Rω with the topology τsp is not a topological linear algebra over
the field R with the natural topology.

Indeed, if we consider sequences 0 = (ci = 0)i∈ω and i+ = (ci = i)i∈ω, then 0·i+ = 0.
However, no spherical neighborhood of 0 contains the product Ok0·Ohi+ of neighbor-
hoods Ok0 and Ohi+ whatever small numbers k and h we would take.

While EDRω with the topology δsp is a topological vector space over the field R with
the natural topology, EDRω with the topology δcE is not a topological vector space over
the field R with the natural topology. However, if we take the field R with the discrete
topology, we have the following result.

Theorem 3.36. The set Rω with the topology τcE is a topological vector space over the field
R with the discrete topology.

Proof. To prove that Rω with the topology τcE is a topological vector space, we need to
show that operations of addition a+ b and multiplication by a real number r · a are con-
tinuous mappings.

By the definition of conical neighborhoods, for an arbitrary conical neighborhood
O(a+ b) of the sum a+ b, we haveO(a+ b)=O0 + (a+ b) for some conical neighborhood
O0(a + b) of 0. Then by Lemma 3.14, Oa = 1/2O0 + a is a conical neighborhood of a,
Ob = 1/2O0 + b is a conical neighborhood of b, and Oa+Ob = 1/2O0 + a+ 1/2O0 + b ⊆
O0 + (a+ b)=O(a+ b). So, addition is a continuous mapping.

Multiplication by a real number r · a is a continuous mapping because any r is an open
set in the discrete topology and, by Lemma 3.14, the r ·Oa is an E-conical neighborhood
of the sequence r · a∈Rω for any E-conical neighborhood Oa of the sequence a.

Theorem 3.36 is proved. �
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As it is proved in Burgin [7],Rω is a vector space overR and, by Theorem 2.50,Rω is a
vector space over R. Thus, for the topology δsp induced by the topology in Rω, Theorems
3.32 and 3.34 imply the following result.

Theorem 3.37. The sets Rω with the topology induced by the topology in Rω and ERωwith
the topology δsp are topological vector spaces over the field R with the natural topology.

As it is proved in Section 2, EDRω is a subspace of ERω. Thus, with the topology
δsp induced by the topology in Rω, Theorems 3.32 and 3.34 imply the following
result.

Theorem 3.38. The set EDRω with the topology δsp is a topological vector space over the
field R with the natural topology.

However, similar to Rω, the set EDRω with the topology δsp is not a topological linear
algebra over the field R with the natural topology.

While ERω with the topology δsp is a topological vector space, ERω with the topology
δcE is not a topological vector space over the field R with the natural topology. However,
Theorems 3.32 and 3.36 imply the following result.

Theorem 3.39. The set ERω with the topology δcE is a topological vector space over the field
R with the discrete topology.

At the same time, EDRω with the topology δcE is also not a topological linear algebra
and even not a topological vector space over the field R with the natural topology. How-
ever, if we take the field R with the discrete topology, Theorems 3.32 and 3.36 allow us to
prove that EDRω with the topology δcE is a topological linear algebra. Before doing this,
we need the following result.

Definition 3.40. If in = (1/in)i∈ω, then in ·Oa = Clsim({d = (di)i∈ω; d = in · c = ((1/in)
ci)i∈ω; c = (ci)i∈ω ∈Oa}).

Lemma 3.41. If O0 is an E-conical neighborhood of a sequence 0∈Rω, then for any n∈N,
in ·O0 is an E-conical neighborhood of the sequence 0.

Proof. To show that in ·O0 is an E-conical neighborhood of 0, we need to check condi-
tions (1)–(5) from Definition 3.3.

Condition 1. Let c = (ci)i∈ω ∈ in ·O0. Then c ≈ in · b for some b = (bi)i∈ω ∈ O0. By
condition (1), we have |b| ∈ O0 and −|b| ∈ O0. Thus, |in · b| = in · |b| ∈ in ·O0 and
−|in · b| = −in · |b| = in · (−|b|) ∈ in ·O0. At the same time, c ≈ in · b implies |c| ≈
|in · b|. As the set in ·O0 is closed with respect to similar elements, we have |c| ∈ in ·O0
and −|c| ∈ in ·O0, that is, condition (1) is true for in ·O0.

Condition 2. This condition is true for in ·O0 because similarity closure is an idempotent
operation (Kuratowski [25, Axiom 4]).

Condition 3. Let d = (di)i∈ω ∈ Rω, and for some c = (ci)i∈ω from in ·O0, the following
condition is true: there is m∈ ω such that for all i > m(|di| ≤ |ci|). Then for the same m∈
ω, we have in · |di| ≤ in · |ci| when i > m. By condition (2) for O0, i−n · |c| ∈ O0. Then
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by condition (3) for O0, i−n · |d| ∈ O0. Consequently, |d| = in · (i−n · |d|) ∈ i−n ·O0.
Lemma 3.8 implies that d ∈O0, that is, condition (3) is true for in ·O0.

Condition 4. Let d = (di)i∈ω ∈ in ·O0. Then d ≈ r · b for some b = (bi)i∈ω ∈ O0. Then
there is a= (ai)i∈ω ∈O0 such that b > a and there is c = (ci)i∈ω ∈O0 such that c > b. As
all 1/in ∈R++, in · b > in · a and in · c > in · b. Then d > in · a and in · c > d. Besides, in · a
and in · c belong to in ·O0. It means that condition (4) is true for in ·O0.

Condition 5. Let us consider an arbitrary function e−hi from E−1 and the sequence e−hi =
(e−hi)i∈ω. Let us take some number d ∈R++ such that h− d > 0. Then ∃m∈ ω for all i >
m(edi > 1/in). By the definition, e−(h−d)i = (e−(h−d)i)i∈ω ∈ O0. Then e−hi < in · e−(h−d)i ∈
in ·O0 and, by condition (3), which has been already proved, e−hi ∈ in ·O0, that is, con-
dition (5) is true for O0.

The lemma is proved. �

Theorem 3.42. The set EDRω with topology δcE is a topological linear algebra over the field
R with the discrete topology.

Proof. The results of Theorems 3.32 and 3.36 show that we need only to prove that mul-
tiplication a · b in EDRω is a continuous mapping.

Let us take two elements a and b from EDRω and consider an E-conical neighborhood
O(a · b) of the product a · b. Then O(a · b)=O0 + a · b for some E-conical neighborhood
O0 of 0. Let us take the set O10 = O0∩O1/20, where O1/20 = {c = (ci)i∈ω ∈ Rω; there is
n∈ ω such that for all i > n, (|ci| < 1/2)}. The set O10 is an E-conical neighborhood of 0
because the intersection of the E-conical neighborhood O0 and spherical neighborhood
O1/20 of 0 is an E-conical neighborhood of 0, as any spherical neighborhood is an open
set in the topology δcE (cf. Proposition 3.10 and Corollary 3.23). By the definition, O10 ·
O10⊆ (1/2) ·O10⊆O10 because all element from O10 have norms less than 1/2. As both
elements a and b belong to EDRω, there are numbers n and m such that a < in

+ and b < im
+ ,

where in
+ = (in)i∈ω and im

+ = (im)i∈ω.
We define O20= (1/3)im ·O10 and O30= (1/3)in ·O10, where in = (1/in)i∈ω and im =

(1/im)i∈ω. Then Oa=O20 + a and Ob =O30 + b are E-conical neighborhoods of a and b,
correspondingly. For these neighborhoods, we have

(Oa) · (Ob)= (O20 + a) · (O30 + b)⊆O20 ·O30 + a ·O30 + b ·O20 + a · b

⊆
(

1
9

)
·O10 ·O10 +

(
1
3

)
(a · in) ·O10 +

(
1
3

)
(b · im) ·O10 + a · b

⊆
(

1
9

)
·O10 +

(
1
3

)
·O10 +

(
1
3

)
·O10 + a · b

⊆O10 + a · b⊆O0 + a · b=O(a · b).

(3.3)

Thus, multiplication a · b in EDRω is a continuous mapping and EDRω with the topology
δcE is a topological linear algebra.

Theorem 3.42 is proved. �
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4. Conclusion

Thus, a topological linear algebra of extended hypernumbers has been constructed with a
Hausdorff topology in it. Topological properties made it possible to give (Theorem 3.25)
an axiomatic description of extended hypernumbers using an extremality principle.

One can think of the further development of the theory of extrafunctions in several
directions based on extended hypernumbers. First, a similar technique allows one to con-
struct linear algebras for different types of extended extrafunctions (pointwise, compact-
wise, and extended distributions) with Hausdorff topology and similar to ordinary extra-
functions, and to develop a differential calculus in this nonlinear context.

Second, it looks beneficial to apply this theory to the problems of nonlinear differential
equations. Specific properties of the theory of extended extrafunctions make it possible
to achieve much more in this direction, allowing one to solve equations that have no so-
lution even in distributions, than by means of the theory of generalized functions. Even
in a linear case, the scope of soluble equations is essentially enlarged (Burgin and Ral-
ston [11]). In a nonlinear situation, opportunities of extrafunction solutions grow much
more.

Third, it would be advantageous to use the theory of extrafunctions for the develop-
ment of the theory of operators and operator algebras. Extended hypernumbers allow
one to define hypernorms not only in topological spaces but also in topological algebras.
With respect to operators, this makes it possible to consider unbounded operators to a
full extent and to study algebras of such operators.
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