
STABILITY AND GLOBAL ATTRACTIVITY FOR A CLASS OF
NONLINEAR DELAY DIFFERENCE EQUATIONS

BINXIANG DAI AND NA ZHANG

Received 13 April 2005

A class of nonlinear delay difference equations are considered and some sufficient condi-
tions for global attractivity of solutions of the equation are obtained. It is shown that the
stability properties, both local and global, of the equilibrium of the delay equation can be
derived from those of an associated nondelay equation.

1. Introduction

Consider the following nonlinear delay difference equations

x(n+ 1)= cx(n) + f
(
x(n)− x(n− k)

)
, (1.1)

where c ∈ [0,1) is a given constant, k is a positive integer, f : R→ R is continuous and
f (0)= 0, f (u) �= 0 for u �= 0. Such a equation arises from some of the earliest mathemat-
ical models of the macroeconomic “trade cycle,” and have attracted a great deal of atten-
tion (see, e.g., [1, 4, 5, 6, 7, 8, 9, 10] and references cited therein). When k = 1, Sedaghat
[9] obtained some sufficient conditions for the permanence and boundedness by explor-
ing the relationship between the first order equations and the higher order equations.

Our main goal in this paper is to obtain some sufficient conditions which guarantee
that the equilibrium of (1.1) is a global attractor. We still investigate the stability of (1.1)
and show that the stability properties, both local and global, of the equilibrium of the
delay equation (1.1) can be derived from those of the associated nondelay equation

x(n+ 1)= f
(
x(n)

)
, (1.2)

where the f is the same function as in (1.1). This result is of considerable benefit to the
study of delay-difference equations of this type since the stability properties of nondelay
difference equations are better understood [2, 3].

A point x̄ is called an equilibrium of (1.1) if x(n)= x̄(n≥ 0) is a solution of (1.1). It is
obvious that (1.1) has the only equilibrium x̄ = 0 under the hypothesis.
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We say that the equilibrium x̄ = 0 of (1.1) is a global attractor if and only if, for arbi-
trary initial conditions, the corresponding solution x(n) of (1.1) satisfies limn→∞ x(n)= 0.
The region of attraction of the equilibrium x̄ = 0 is defined as the set of all initial points
{x(−k),x(−k+ 1), . . . ,x(0)} such that limn→∞ x(n)= 0.

Without loss generality, throughout this paper the norm will be defined as

‖x‖ = max
1≤i≤m

|xi|, x ∈ Rm. (1.3)

The rest of the paper is organized as follows. In Section 2, we derive a sufficient condi-
tion for global attractivity of the equilibrium of (1.1). In Section 3, we discuss the stability
properties of (1.1).

2. Global Attractivity of (1.1)

The objective of this section is to derive sufficient conditions which guarantee that the
equilibrium of (1.1) is a global attractor. Let

u(n)= x(n)− x(n− k). (2.1)

Then (1.1) is reduced to:

u(n+ 1)= cu(n) + f
(
u(n)

)− f
(
u(n− k)

)
. (2.2)

Noting that c ∈ [0,1), (2.2) has the unique equilibrium ū= 0. We first show the following
proposition.

Proposition 2.1. Assume that there exist a constant α∈ (0,1) such that α+ c < 1 and

∣∣ f (u)
∣∣≤ α|u| (2.3)

for all u. Then every solution u(n) of (2.2) satisfies

lim
n→∞u(n)= 0. (2.4)

Proof. By (2.2) and the assumption of f , we have

∣∣u(n+ 1)
∣∣= ∣∣cu(n) + f

(
u(n)

)− f
(
u(n− k)

)∣∣
≤ c
∣∣u(n)

∣∣+α
∣∣u(n)

∣∣+α
∣∣u(n− k)

∣∣
= (α+ c)

∣∣u(n)
∣∣+α

∣∣u(n− k)
∣∣,

(2.5)

for n= 0,1, . . . . Using induction and noting that 0 < α < 1 and α+ c < 1, we have

lim
n→∞

∣∣u(n)
∣∣= 0, (2.6)

which implies that limn→∞u(n)= 0. The proof is complete. �

The following theorem gives a sufficient condition for the equilibrium x̄ = 0 of (1.1)
to be a global attractor.
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Theorem 2.2. If the condition (2.3) holds, then every solution of (1.1) converges to x̄ = 0.

Proof. Let

u(n)= x(n)− x(n− k). (2.7)

Then (1.1) can be written as

x(n+ 1)= cx(n) + f
(
u(n)

)
, for n= 0,1, . . . . (2.8)

So we have

x(1)= cx(0) + f
(
u(0)

)
,

x(2)= cx(1) + f
(
u(1)

)= c2x(0) + c f
(
u(0)

)
+ f
(
u(1)

)
.

(2.9)

By induction, we get

x(n)= cnx(0) +
n−1∑
i=0

cn−1−i f
(
u(i)

)
. (2.10)

Noting that c ∈ [0,1), we have

lim
n→∞c

nx(0)= 0. (2.11)

Let

ũ(n)=
n−1∑
i=0

cn−1−i f
(
u(i)

)
. (2.12)

We distinguish two cases to prove

lim
n→∞ ũ(n)= 0. (2.13)

Case 1 (
∑∞

i=0 f (u(i)/ci < ∞). In this case, it is obvious that limn→∞ ũ(n) = 0 since
limn→∞ cn−1 = 0.

Case 2 (
∑∞

i=0 f (u(i)/ci =∞). By Stolz Theorem, we have

lim
n→∞ ũ(n)= lim

n→∞

∑n−1
i=0

(
f
(
u(i)

)
/ci
)

1/cn−1

= lim
n→∞

∑n
i=0

(
f
(
u(i)

)
/ci
)−∑n−1

i=0

(
f
(
u(i)

)
/ci
)

(
1/cn

)− (1/cn−1
)

= lim
n→∞

f
(
u(n)

)
/cn

(1− c)/cn

= 1
1− c

lim
n→∞ f

(
u(n)

)
.

(2.14)
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Using the continuity of the function f and Proposition 2.1, we have

lim
n→∞ f (u(n))= 0. (2.15)

Thus

lim
n→∞ ũ(n)= 0. (2.16)

Finally (2.11) and (2.13) imply that limn→∞ x(n)= 0. The proof is completed. �

3. Stability of (1.1)

Let x(n) be a solution of (1.1). We defined the vector y(n) ∈ Rk+1 as y(n) = (y1(n), . . . ,
yk+1(n))T , where

yj(n)= x(n+ j− k− 1), j = 1,2, . . . ,k+ 1. (3.1)

Then the delay equation (1.1) is equivalent to the following (k+ 1)-dimensional system

y(n+ 1)= g
(
y(n)

)
, y(n)∈ Rk+1, (3.2)

where g(y)= (g1(y),g2(y), . . . ,gk+1(y))T with

gj
(
y(n)

)= yj+1(n), j = 1,2, . . . ,k, (3.3)

gk+1
(
y(n)

)= cyk+1(n) + f
(
yk+1(n)− y1(n)

)
. (3.4)

It is obvious that ȳ = 0 is the only equilibrium of the system (3.2).
In this section, we present the main results which relate the stability properties of the

delay equation (1.1) to those of the associated nondelay equation

x(n+ 1)= f
(
x(n)

)
, n≥−k. (3.5)

First we establish a lemma which will be used in proving the main theorem.

Lemma 3.1. Let y(n) be a solution of the system (3.2). Then for j = 1,2, . . . ,k + 1, the fol-
lowing statements are true:

(a)

yj(n)= yj+n(0), 0≤ n≤ k+ 1− j; (3.6)

(b)

∣∣yj(n)
∣∣≤ cn+ j−k−1

∣∣yk+1(0)
∣∣

+
n+ j−k−2∑

i=0

cn+ j−k−2−i∣∣ f (yk+1(i)− y1(i)
)∣∣, n≥ k+ 2− j.

(3.7)
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Proof. From (3.3), we have

yk+1(n)= cyk+1(n− 1) + f
(
yk+1(n− 1)− y1(n− 1)

)

= cnyk+1(0) +
n−1∑
i=0

cn−1−i f
(
yk+1(i)− y1(i)

)
.

(3.8)

Now let 1≤ j ≤ k+ 1. Equation (3.3) also implies

yj(n)= yj+1(n− 1)= yj+n(0), for 0≤ n≤ k+ 1− j, (3.9)

which leads to (a), and

yj(n)= yk+1(n+ j− k− 1), for n≥ k+ 2− j. (3.10)

Combined with (3.8), this yields, for n≥ k+ 2− j, that

yj(n)= cn+ j−k−1yk+1(0) +
n+ j−k−2∑

i=0

cn+ j−k−2−i f
(
yk+1(i)− y1(i)

)
. (3.11)

This leads to the inequality (3.7), and thus, (b) holds. The proof is completed. �

Theorem 3.2. Assume f satisfies

∣∣ f (x+ y)
∣∣≤ ∣∣ f (x)

∣∣+
∣∣ f (y)

∣∣, (3.12)

for all x, y ∈ R. If the equilibrium of (3.5) is stable, then the equilibrium of (1.1) is also stable.

Proof. It is sufficient to prove the stability of the equilibrium of (3.2) because of the equiv-
alence of (1.1) and (3.2).

Let ε > 0 be arbitrary. Since the equilibrium of (3.5) is stable, there exists δ1 > 0
such that |x(−k)| < δ1 implies |x(n)| < (1− c)ε/2 for all n ≥ −k. Now choose δ =
min(δ1, (1− c)ε/2), Then ‖y(0)‖ < δ implies |x(−k)| < δ ≤ δ1 from the definition of y
given by (3.1). Hence,

∣∣x(n)
∣∣ < (1− c)ε

2
, (3.13)

for all n≥−k, which implies

∣∣ f (x(n)
)∣∣ < (1− c)ε

2
, (3.14)

for all n≥−k. Therefore, for all n≥ 0, by (3.1)

∣∣ f (yk+1(n)
)∣∣ < (1− c)ε

2
,

∣∣ f (y1(n)
)∣∣ < (1− c)ε

2
. (3.15)

Noting that f satisfies

∣∣ f (x+ y)
∣∣≤ ∣∣ f (x)

∣∣+
∣∣ f (y)

∣∣, (3.16)
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we get

∣∣ f (yk+1(n)− y1(n)
)∣∣ < (1− c)ε. (3.17)

Now ‖y(0)‖ < δ implies that |yj(0)| < δ ≤ (1− c)ε/2 < ε for 1 ≤ j ≤ k + 1. Hence,
from Lemma 3.1(a) ,

∣∣yj(n)
∣∣= ∣∣yj+n(0)

∣∣ < ε , for 0≤ n≤ k+ 1− j, (3.18)

and from Lemma 3.1(b) and (3.17),

∣∣yj(n)
∣∣ < εcn+ j−k−1 + (1− c)ε

cn+ j−k−2− 1/c
1− 1/c

= εcn+ j−k−1 + ε(1− c)
1− cn+ j−k−1

1− c

= ε, for n≥ k+ 2− j.

(3.19)

Therefore, for arbitrary ε > 0, there exists δ > 0, such that ‖y(0)‖ < δ implies ‖y(n)‖ < ε
for n≥ 0, so the equilibrium of (3.2) is stable. This completes the proof. �

Theorem 3.3. Assume that (3.12) holds. If there exists a constant m> 0 such that G(m)=
{x ∈ R||x| <m} is a subset of attractive region of the equilibrium of (3.2), then G(m) is also
contained in the attractive region of the equilibrium of (1.1).

Proof. Let ε > 0 be arbitrary. Since G(m) is a subset of attractive region of (3.2), there
exists T1(m,ε) such that |x(−k)| <m implies |x(n)| < ε for n≥ T1.

Assume that y(0) ∈ Rk+1 and ‖y(0)‖ < m, then we have |x(−k)| < m. So there exists
T2
(
m, (1− c)ε/4

)≥ T1 such that |x(n)| < (1− c)ε/4 for all n≥ T2, which implies, by (3.1)
and (3.12), that

∣∣ f (yk+1(n)− y1(n)
)∣∣ < (1− c)ε

2
(3.20)

for all n≥ T2 + k. Let 1≤ j ≤ k+ 1. By Lemma 3.1, we have

∣∣yj(n)
∣∣ <mcn+ j−k−1 +

ε
2

+
T2+k−1∑
i=0

cn+ j−k−2−i∣∣ f (yk+1(i)− y1(i)
)∣∣ (3.21)

provided n≥ k+ 2− j which is true for n≥ k+ 1. Now

∣∣ f (yk+1(i)− y1(i)
)∣∣= ∣∣ f (x(i)− x

(
i− k)

)∣∣
≤ ∣∣ f (x(i)

)∣∣+
∣∣ f (x(i− k)

)∣∣
= ∣∣ f i+k+1(x(−k)

)∣∣+
∣∣ f i+1(x(−k)

)∣∣,

(3.22)
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where f j = f ◦ f ◦ ··· ◦ f︸ ︷︷ ︸
j

means the function f composed with itself j times. The conti-

nuity of f implies that f j is also continuous, and so there exists L > 0 such that
| f i+k+1(x(−k))| < L and | f i+1(x(−k))| < L. From (3.21), we obtain for n≥ T2 + 2k

∣∣yj(n)
∣∣ <mcn+ j−k−1 +

ε
2

+ 2L
T2+k−1∑
i=0

cn+ j−k−2−i

<
(
m+

2L
1− c

)
cn+ j−2k−1−T2 +

ε
2
.

(3.23)

Now choose T3 such that
(
m+

2L
1− c

)
cn+ j−2k−1−T2 ≤ ε

2
(3.24)

holds for n≥ T3, that is

T3 ≥ T2 + 2k+
ln
(
ε/2
(
m+

(
2L/(1− c)

)))
lnc

. (3.25)

Then ‖y(0)‖ < m implies ‖y(n)‖ < ε for n ≥ T3. So G(m) is also s subset of attractive
region of the equilibrium of (1.1). This completes the proof. �

Theorems 3.2 and 3.3 can be combined to give the following corollaries.

Corollary 3.4. Assume that the condition (3.12) holds. If the equilibrium of (3.5)
is asymptotically stable, then the equilibrium of (1.1) is also asymptotically stable.

Corollary 3.5. Assume that the condition (3.12) holds. If the equilibrium of (3.5) is glob-
ally stable, then the equilibrium of (1.1) is also globally stable.
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