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The paper investigates the conditions for full and partial synchronization in systems of
coupled chaotic maps that include the presence of a major element, that is, an element
that interacts with all the other elements of the system. We consider a system which con-
sists of two globally coupled populations of one-dimensional maps that interact via a
major element. The presence of this element can induce synchronization in both of the
globally coupled populations even though they operate in different states. If a parameter
mismatch is introduced between two populations of uncoupled maps, the presence of a
major element is found to provide for the existence of states in which peripheral elements
with different parameter values display similar dynamics.

1. Introduction

The cooperative behavior in systems of coupled nonlinear oscillators is of significant in-
terest in many areas of science and technology [22, 27]. Traditionally, two specific and
highly symmetric coupling structures have attracted most attention.

In coupled map lattices [1, 14, 37], each oscillator is considered to interact with its near-
est neighbors. Depending on the type of oscillators, the coupling strength, the dimension
of the lattice, and the assumed boundary conditions, this coupling typically produces
various forms of wavelike structures. In the biological realm, this situation may repre-
sent a group of interacting pancreatic β-cells [3] where the communication occurs via
gap-junctional coupling. Coupled oscillator lattices have also been used as models of in-
teracting Josephson junctions [36] and of simple forms of turbulence [7].

In populations of globally coupled maps [15, 16], each oscillator is considered to in-
teract with all the other oscillators on an even basis. If the coupling is strong enough
and the microscopic parameter dispersion sufficiently small, this provides for a state of
coherence [10, 38]. As the coupling strength is reduced, the coherent state is typically
found to break up into clusters of oscillators that maintain internal synchronization, but
have lost their synchronization with the other clusters [26, 28, 29, 30]. In the presence
of significant microscopic disorder, one can observe the phenomenon of oscillator death
[4, 11]. A suspension of yeast cells that interact via the metabolic products they release to
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the intercellular fluid represents an example of a globally coupled oscillator system [9]. A
group of nerve cells in the brain may also act as a system of globally coupled oscillators
[33, 35], since each cell communicates with many other nerve cells, on short as well as on
long distances.

The introduction of small-world models [31, 32] has opened up for a broader discus-
sion of the role of the coupling structure in systems of coupled chaotic oscillators. In a
small-world system, one typically combines a nearest neighbor coupling with a few more
or less randomly chosen interactions between elements that are farther apart. This cap-
tures to some extent the heterogeneous coupling structure that one finds in many social
(and biological) systems.

The purpose of the present paper is to study different forms of full and partial synchro-
nization in systems of chaotic oscillators that involve a major element, that is, an element
that couples directly to all the other oscillators of the system. Structures of this type are
characteristic of certain neuronal networks in which the so-called septo hippocampal re-
gion (supposed to act as the major element) interacts with other neurons in the brain.
Besides displaying its own dynamics, the major element also experiences a component
of the mean field dynamics for the oscillator population. We examine how the interac-
tion between two populations of globally coupled maps via a major element can lead to
different forms of partial synchronization.

Full synchronization, where all the elements of an ensemble display the same temporal
behavior, can be achieved for identical maps [12]. In this case the motion of the system is
restricted to an invariant subspace of the phase space and in this subspace it is governed by
the one-dimensional map that describes the dynamics of the individual element. Partial
synchronization (or clustering) occurs in coupled map ensembles when the population of
maps splits into subgroups (clusters) with different dynamics, but such that all elements
within a given cluster move in synchrony. In the cluster state, the motion of the system
is also restricted to an invariant manifold in the phase space [5, 6], the dimension of this
manifold being given by the number of clusters in the system.

The largest transverse Lyapunov exponent is a measure of the stability for the synchro-
nized chaotic state in the direction perpendicular to the synchronization manifold. If this
exponent is negative, all trajectories in the neighborhood of the synchronized state will
be attracted on the average by the synchronized state. The transition in which the largest
transverse Lyapunov exponent becomes positive, and transverse stability is lost, is often
referred as a blowout bifurcation [23].

In order to understand the influence of the coupling structure on the synchronization
properties, let us shortly review some of the properties of the coupled map system

xt+1
i = (1− ε) f

(
xti
)

+ ε f
(
zt
)
, i= 1, . . . ,N ,

zt+1 = (1− ε) f
(
zt
)

+
ε

N

N∑
j=1

f
(
xtj
)
,

(1.1)

where (x1, . . . ,xN ,z) ∈ RN+1, t = 0,1, . . . is a discrete time index. f : R→ R is a smooth
one-dimensional map, for which we will use the logistic map f (x) = fa(x) = ax(1− x).
System (1.1) consists of a population of N identical noninteracting elements xi and of
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Figure 1.1. Schematic form of the considered models. (a) Star system; (b) Two globally coupled
groups with a major element. In both schemes squares denote individual elements of the system,
arrows denote bidirectional couplings, and z is the major element. In (b) elements arranged in a col-
umn belong to a globally coupled population.

the major element z, which is coupled to each of the elements xi with the same coupling
strength. The parameter ε controls the coupling strength. The coupling structure of sys-
tem (1.1) is illustrated in Figure 1.1a. This so-called star topology represents one of the
well-studied prototypes of graph theory [13].

System (1.1) allows for the existence of the fully synchronized state C = {x1 = ··· =
xN = z} and of the two-cluster state C2 = {x1 = x2 = ··· = xN �= z}, where all elements xi
are synchronized with each other, but not synchronized with the major element z.

System (1.1) always has N + 1 degrees of freedom. Assume that full synchronization
takes place in the system. The dynamics is then restricted to a one-dimensional invariant
manifold in phase space and, therefore, the Jacobian matrix has one eigendirection along
this manifold and N eigendirections transverse to it. Trajectories of the system can lose
their transverse stability in N directions.

For any N , the Jacobian matrix for the fully synchronized system, where x := x1 =
··· = xN = z, has three different eigenvalues: ν‖ = f ′(x), ν⊥,1 = (1− ε) f ′(x), ν⊥,2 = (1−
2ε) f ′(x). The eigenvalues ν‖ and ν⊥,2 have multiplicities 1, and the eigenvalue ν⊥,1 has
multiplicity N − 1.

The transverse stability of the fully synchronized state is controlled by the transverse
Lyapunov exponents:

λ⊥,1 = lim
k→∞

1
k

k−1∑
n=0

ln
∣∣ f ′(xn)(1− ε)

∣∣, λ⊥,2 = lim
k→∞

1
k

k−1∑
n=0

ln
∣∣ f ′(xn)(1− 2ε)

∣∣, (1.2)

where {xn}∞n=1 is a typical trajectory of the one-dimensional map fa(x).
Note, that a negative value of the transverse Lyapunov exponents implies weak sta-

bility, as defined by Milnor [21]. This means that the coherent (chaotic) state is attract-
ing on the average. However, a negative Lyapunov exponent does not imply asymptotic
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Figure 1.2. Stability diagram for the star system (1.1). a is the nonlinearity parameter of the individual
logistic map, and ε is the coupling strength. The region of transverse stability for full synchronization
(coherence) is shown light gray; the regions of stability for the two-cluster state C2 are dark gray.
White zones correspond to states of desynchronization in the system. The diagram applies for any
number of elements in system (1.1).

stability. Any (N + 1)-dimensional neighborhood of the synchronized state may contain
initial conditions from which the trajectories approach other limiting states or diverge to
infinity [2].

If the stability of the synchronized state is lost because λ⊥,2 becomes positive, we arrive
at the two-cluster state C2. This state is sometimes referred to as the “drum-head” mode
[24, 25]. In the stateC2, the dynamics of the (N + 1)-dimensional system (1.1) is restricted
to a two-dimensional invariant manifold in phase space and governed there by the system

xt+1 = (1− ε) f
(
xt
)

+ ε f
(
zt
)
,

zt+1 = (1− ε) f
(
zt
)

+ ε f
(
xt
)
.

(1.3)

Systems of the form (1.3) have been studied in detail by Popovych et al. [28, 29], and
many of their results may be found in the recent book by Mosekilde et al. [22].

The stability of the two-cluster state C2 can be lost in N − 1 transverse directions and is
controlled by N − 1 transverse Lyapunov exponents, which all are equal to λ⊥,1. They cor-
respond to different ways of breaking of the synchronized population of N maps x1, . . . ,xN
into two parts.

From the above analysis it is obvious, that the stability regions of fully and partially
synchronized states in the star system (1.1) are independent of the size of the system.
Figure 1.2 shows the stability regions of C and C2 in the parameter plane (a,ε) where, as
before, a is the nonlinearity parameter of single map fa(x)= ax(1− x).

In the present paper, we propose various modifications of the star system and examine
their properties. First, we consider a population of identical maps that consists of two
globally coupled groups each of N elements. Moreover, each individual map will be cou-
pled to the major element, which is shared between both groups. The system describing
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this situation has the form:

xt+1
i = (1− ε) f

(
xti
)

+
ε

N + 1

( N∑
j=1

f
(
xtj
)

+ f
(
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))

,

yt+1
i = (1− ε) f

(
yti
)

+
ε

N + 1

( N∑
j=1

f
(
ytj
)

+ f
(
zt
))

, i= 1, . . . ,N ,

zt+1 = (1− ε) f
(
zt
)

+
ε

2N

N∑
j=1

(
f
(
xtj
)

+ f
(
ytj
))

,

(1.4)

where {xi}Ni=1 and {yi}Ni=1 are two identical ensembles each of N globally coupled maps,
and z is the major element, which is coupled to all of the 2N maps. ε is the map-to-
map coupling strength in the system. The local one-dimensional map we again choose
to be the logistic map f (x)= fa(x)= ax(1− x). The coupling structure of this system is
shown in Figure 1.1b. Here, elements connected in columns represent globally coupled
ensembles, z is the major element, and arrows denote bidirectional couplings between
major and peripheral elements in the system.

It is well-known that the parameter regions of stability for fully and partially synchro-
nized states in the ensemble of globally coupled logistic maps are rather small [15]. In
previous works, we considered two identical globally coupled ensembles with additional
pairwise couplings between their elements [19, 20]. This structure results in wider pa-
rameter regions of stability for the fully and partially synchronized states.

As mentioned above, the structures of these systems derive from the form of certain
neuronal networks in which the septo hippocampal region interacts with other neurons
in the brain [8, 17, 18]. The star system (1.1) and its modification with parameter mis-
match can be considered as simplified models for such neuronal networks. It is well-
known that the brain contains so-called cortical columns of neurons, where the neuron
interaction is stronger than the interaction between neurons in different columns. Hence,
system (1.4) can be interpreted as two cortical columns, represented by globally coupled
groups, interacting via the septo hippocampal region, represented by the major element.
A better understanding of the synchronization properties of such systems is essential for
the use of deep brain stimulation techniques to treat various forms of tremor [34].

2. Two globally coupled groups interacting via a major element

Let us now turn our attention to system (1.4). Our purpose is to examine how the pres-
ence of the major element influences the stability properties and to find out if it is possible
to reach a state of synchronization for the maps {xi} and {yi}, which are connected only
through the coupling via the major element z.

The coupling structure of system (1.4) allows for the existence of invariant manifolds
in phase space corresponding to the following states:

(i) Full synchronization C: x1 = ··· = xN = y1 = ··· = yN = z︸ ︷︷ ︸
xyz

.
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(ii) Two-cluster state C2: x1 = ··· = xN = y1 = ··· = yN︸ ︷︷ ︸
xy

�= z.

(iii) Three-cluster state C3: x1 = ··· = xN︸ ︷︷ ︸
x

; y1 = ··· = yN︸ ︷︷ ︸
y

; x �= y, x �= z, y �= z.

System (1.4) has always 2N + 1 degrees of freedom. The number of transverse direc-
tions of potential instability for the synchronized states depend directly on the number
of clusters in the considered state. Increasing the number of clusters reduces the number
of transverse instability directions. If we consider the transition C→ C2 → C3, we observe
an increasing number of clusters: 1→ 2→ 3, and a corresponding decreasing number of
directions of possible transverse instabilities: 2N → (2N − 1)→ (2N − 2). Below we con-
sider the eigensystems of the Jacobian matrix of system (1.4) for the various cases in more
detail.

Let us first analyse the three-cluster state

C3 :
{
x1 = ··· = xN︸ ︷︷ ︸

x

; y1 = ··· = yN︸ ︷︷ ︸
y

; x �= y, x �= z, y �= z
}

, (2.1)

where elements of each globally coupled group are synchronized inside the group, but
there is no synchronization neither with the major element nor between the groups.

The eigenvalues of the Jacobian matrix J can be divided into two types. Three of them
coincide with the eigenvalues of the Jacobian matrix of the three-dimensional system

xt+1 =
(

1− ε

N + 1

)
f
(
xt
)

+
ε

N + 1
f
(
zt
)
,

yt+1 =
(

1− ε

N + 1

)
f
(
yt
)

+
ε

N + 1
f
(
zt
)
,

zt+1 = (1− ε) f
(
zt
)

+
ε

2

(
f
(
xt
)

+ f
(
yt
))
.

(2.2)

This system describes the in-cluster dynamics of system (1.4) in the three-dimensional
manifold, corresponding to the cluster state C3.

The other 2N − 2 eigenvalues of the Jacobian matrix J correspond to the transverse
eigendirections:

ux =
(
ξ1, . . . ,ξN ,0, . . . ,0︸ ︷︷ ︸,

N

0
)
,

N∑
i=1

ξi = 0, uy =
(
0, . . . ,0︸ ︷︷ ︸,

N

η1, . . . ,ηN ,0
)
,

N∑
i=1

ηi = 0.

(2.3)

The corresponding transverse Lyapunov exponents are

λx = lim
k→∞

1
k

k−1∑
n=0

ln
∣∣ f ′(xn)(1− ε)

∣∣,

λy = lim
k→∞

1
k

k−1∑
n=0

ln
∣∣ f ′(yn)(1− ε)

∣∣,

(2.4)
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where {(xn, yn,zn)}∞n=0 is a typical trajectory of system (2.2). From the form of the trans-
verse eigenvectors it is clear that the multiplicity of λx (λy) is N − 1, and each of these
exponents corresponds to breaking of the synchronized group of N globally coupled el-
ements. The three-cluster state C3 is transversely stable when all its transverse Lyapunov
exponents are negative.

Figure 2.1 shows the borders of the transverse stability regions for the three-cluster
state C3 in system (1.4) with N = 10 (bold curve) and N = 100 (thin curve). For values of
the coupling parameter above these curves, the three-cluster stateC3 is transversely stable.
As our calculations show, these regions do not vary much with the number of elements
in the ensemble. It is easy to see from Figure 2.1, that increasing N only results in a small
decrease of the size of the stability regions.

Consider now the two-cluster state

C2 :
{
x1 = ··· = xN = y1 = ··· = yN︸ ︷︷ ︸

xy

�= z
}

, (2.5)

where all the peripheral elements are equal and compose one cluster, while the major
element forms a separate cluster. In this state two clusters x and y of C3 overlap (x = y)
and form a single cluster xy.

The dynamics of system (1.4) is restricted to a two-dimensional manifold and gov-
erned there by the two-dimensional system:

xt+1 =
(

1− ε

N + 1

)
f
(
xt
)

+
ε

N + 1
f
(
zt
)
,

zt+1 = (1− ε) f
(
zt
)

+ ε f
(
xt
)
.

(2.6)

The Jacobian matrix of system (1.4) has two eigenvalues, which coincide with the
eigenvalues of system (2.6). The corresponding eigenvectors are:

v1 =
(
ξ̃, . . . , ξ̃︸ ︷︷ ︸

2N

,1
)
, v2 =

(
η̃, . . . , η̃︸ ︷︷ ︸

2N

,1
)
. (2.7)

Besides 2N − 2 transverse eigendirections ux and uy, there appears one additional
transverse eigenvector:

uxy = (−1, . . . ,−1︸ ︷︷ ︸,
N

1, . . . ,1︸ ︷︷ ︸,
N

0) (2.8)

with the corresponding transverse Lyapunov exponent:

λxy = lim
k→∞

1
k

k−1∑
n=0

ln
∣∣∣∣ f ′(xn)(1− ε

N + 1

)∣∣∣∣, (2.9)

now evaluated for a typical trajectory {(xn,zn)}∞n=0 of system (2.6). From the form of the
eigenvector uxy we conclude that the Lyapunov exponent λxy corresponds to breaking of
the cluster xy of 2N elements into two groups x and y of N elements each. When λxy
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Figure 2.1. Borders of the region of transverse stability for the three-cluster state C3 in system (1.4)
with N = 10 (bold curve) and N = 100 (thin curve). Above these curves C3 is transversely stable. As
before, a is the nonlinearity parameter of the individual map, and ε is the coupling strength in the
system.

becomes positive (while the Lyapunov exponents λx and λy are negative), we observe a
transition from C2 to the three-cluster state C3.

For C2, as x = y, the Lyapunov exponents λx and λy merge into a single exponent of
multiplicity 2N − 2. Therefore, we have totally 2N − 1 possible directions of transverse
instability. The two-cluster state C2 is transversely stable when its transverse Lyapunov
exponents λxy and λx(= λy) are negative.

Calculation of the above transverse Lyapunov exponents for different N shows, that
the regions in parameter space where they are both negative do not overlap. Moreover,
increasing N increases the distance between the parameter regions where λxy and λx are
negative. We conclude that the two-cluster state C2 can not be stabilized.

Finally, consider the coherent state where all the variables display identical temporal
behavior: C = {x1 = ··· = xN = y1 = ··· = yN = z}. In this state, the dynamics of system
(1.4) is restricted to the main diagonal D2N+1 = {w ∈ R2N+1 | w1 = ··· = w2N+1} of the
(2N + 1)-dimensional phase space, and on this diagonal the motion is governed by the
one-dimensional map fa(x).

Transverse stability of the synchronized state can be lost in the 2N − 1 directions, de-
fined by the eigenvectors ux, uy, uxy, and in the direction of the eigenvector

uxyz =
(−1/(N + 1), . . . ,−1/(N + 1)︸ ︷︷ ︸

2N

,1
)
. (2.10)

Totally we have 2N directions of transverse instability of the fully synchronized state in
system (1.4). The coherent state C is transversely stable when the Lyapunov exponents
for all of these 2N transverse directions are negative.
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The transverse Lyapunov exponent corresponding to the eigendirection uxyz has a
form

λxyz = lim
k→∞

1
k

k−1∑
n=0

ln
∣∣∣∣ f ′(xn)(1− (N + 2)ε

N + 1

)∣∣∣∣. (2.11)

When λxyz becomes positive, we observe a transition from the coherent state C to the two-
cluster state C2. The corresponding eigenvector of the Jacobian matrix is ū= (1,1, . . . ,1).
It is directed along the main diagonal D2N+1 of the (2N + 1)-dimensional phase space of
the system. The associated Lyapunov exponent defines the stability of the trajectories of
the system along the diagonal and coincides with the Lyapunov exponent for the single
one-dimensional map fa(x).

Obviously, the stability regions for system (1.4) depend not only on the nonlinearity
parameter a of the local map, but also on the number of maps N in each group. We recall
that the star system (1.1) showed no such dependence on N .

The regions of stability for the coherent state of system (1.4) with N = 2,4,10 are
displayed in Figure 2.2. This figure shows how even small increases of the number of
elements in the system give rise to essential changes of the coherence stability region.
Figure 2.2a shows the region of transverse stability for the coherent state with N = 2.
Note, that in this case the region of stability is an empty set for a = 4. It is easy to see
from Figures 2.2b and 2.2c that with increasing N , broader and broader intervals for a
develop in which we do not have any region of stability. Hence, the region of stability for
the coherent state may be broken into separate intervals. Moreover, these stable intervals
typically correspond to parameter values, where the local map fa(x) displays a periodic
behavior. In Figure 2.2c, for instance, a′ ∼= 3.83 . . . , a′′ ∼= 3.63 . . . , a∗ ∼= 3.569 . . . , and the
largest stability regions appear near these values where the one-dimensional logistic map
fa(x) displays simple low-periodic behavior.

For values of the nonlinearity parameter a corresponding to periodic windows of the
individual map fa(x), the coherent state is transversely stable at any value of the coupling
strength. Therefore there are also an infinite number of thin regions of stability, corre-
sponding to each of the periodic windows. Figure 2.2 shows only the largest regions.

It is obvious from Figure 2.2, that a state of full synchronization in system (1.4) can be
realized only for small numbers of elements in the system.

3. Star system with parameter mismatch

In the previous section, we considered a system where the dynamics of every individ-
ual element was governed by logistic maps with the same nonlinearity parameter. Let us
now introduce a modification of system (1.1) by which the peripheral elements are di-
vided into two groups with different nonlinearity parameters, while the major element is
governed by the logistic map with a third nonlinearity parameter.

We will consider the symmetric case, where the two groups of peripheral elements have
the same number of elements. Let N be an even number, N = 2K , then the star system
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Figure 2.2. Parameter regions of transverse stability for the coherent state in system (1.4) with (a)
N = 2; (b) N = 4; and (c) N = 10. Note, as shown in (c), how the stability regions with increasing
N concentrate at values of the nonlinearity parameter that correspond to periodic behavior of the
one-dimensional logistic map.
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Figure 3.1. Structure of system (3.1) shown schematically. The major element is denoted z and the
peripheral elements are denoted xi and yi, i = 1, . . . ,K . Different shapes mean that the local dynam-
ics of the elements are governed by one-dimensional maps with different nonlinearity parameters.
Arrows denote bidirectional couplings.

with the assumed mismatch will have the form:

xt+1
i = (1− ε) fa1

(
xti
)

+ ε fa
(
zt
)
,

yt+1
i = (1− ε) fa2

(
yti
)

+ ε fa(zt), i= 1, . . . ,K ,

zt+1 = (1− ε) fa(zt) +
ε

2K

K∑
j=1

(
fa1

(
xtj
)

+ fa2

(
ytj
))

,

(3.1)

where fq(x)= qx(1− x), t = 0,1, . . . , and ε is the coupling strength. The structure of sys-
tem (3.1) is shown schematically in Figure 3.1. Here, z is the major element, xi and yi,
i= 1, . . . ,K , are peripheral elements, and arrows denote bidirectional couplings. The dif-
ferent shapes of the elements symbolize that the dynamics is governed by maps with dif-
ferent nonlinearity parameters.

Full synchronization in system (3.1) where xt1 = ··· = xtK = yt1 = ··· = ytK = zt is im-
possible because the corresponding one-dimensional manifold is not invariant under the
dynamics of the system.

However, we can consider the three-cluster state

Ĉ3 =
{
x1 = ··· = xK︸ ︷︷ ︸

x̂

; y1 = ··· = yK︸ ︷︷ ︸
ŷ

; z; x̂ �= ŷ, x̂ �= z, ŷ �= z
}
. (3.2)

It is easy to check by simple substitution that the three-dimensional manifold M2K+1
3 =

{w ∈R2K+1 |w1 = ··· =wK ; wK+1 = ··· =w2K} corresponding to Ĉ3 is invariant under
the dynamics of system (3.1). The in-cluster dynamics on this manifold is governed by
the three-dimensional system:

xt+1 = (1− ε) fa1

(
xt
)

+ ε fa
(
zt
)
,

yt+1 = (1− ε) fa2

(
yt
)

+ ε fa
(
zt
)
,

zt+1 = (1− ε) fa
(
zt
)

+
ε

2

(
fa1

(
xt
)

+ fa2

(
yt
))
.

(3.3)
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The transverse eigenvalues of the Jacobian matrix, taken in the point

(
x, . . . ,x︸ ︷︷ ︸

K

, y, . . . , y︸ ︷︷ ︸
K

,z
)∈R2K+1, (3.4)

are given by ν⊥,1 = (1− ε) f ′a1
(x), ν⊥,2 = (1− ε) f ′a2

(y), and they each have multiplicity
(K − 1). Here x and y are the first two coordinates of the three-dimensional state vector
(x, y,z) of system (3.3). The corresponding transverse Lyapunov exponents define the
transverse stability of the three-cluster state Ĉ3:

λ⊥,a1 = lim
k→∞

1
k

k−1∑
n=0

∣∣ f ′a1

(
xn
)
(1− ε)

∣∣,

λ⊥,a2 = lim
k→∞

1
k

k−1∑
n=0

∣∣ f ′a2

(
yn
)
(1− ε)

∣∣.
(3.5)

Figure 3.2 shows graphs of the transverse Lyapunov exponents λ⊥,a1 and λ⊥,a2 for the
three-cluster state Ĉ3 in system (3.1) with a1 = 4 and a2 = 3.8. The major element is
chosen to be ruled by a logistic map with the nonlinearity parameter a= 4 (Figure 3.2a)
and a = 3.8 (Figure 3.2b). Inspection of these graphs shows that four types of behavior
can be observed in the system. Regions where both transverse Lyapunov exponents are
negative correspond to the transverse stability of the three-cluster state Ĉ3, that is, when
elements inside both groups are synchronized: x1 = ··· = xK ; y1 = ··· = yK . Regions of
this type are hatched.

The second type corresponds to positive values of λ⊥,a1 and negative values of λ⊥,a2 .
These regions are shown light gray. In this case, elements in the group {yi}Ki=1 are syn-
chronized, while the other group of peripheral elements are not synchronized.

The third type of behavior is opposite to the previous and appears when λ⊥,a1 < 0 and
λ⊥,a2 > 0. By analogy, in this case we have synchronization in group {xi}Ki=1 and do not
have it in {yi}Ki=1. Dark gray color denotes these regions.

Finally, the fourth type corresponds to complete desynchronization in the system,
when λ⊥,a1 and λ⊥,a2 are both positive.

Note, that for both of the chosen values for the nonlinearity parameter of the major
element, all four types of behavior can occur in the system. This is a consequence of the
fact that maps with different level of nonlinearity are coupled, and this has a significant
influence on their behavior. Hence, to reach the strongest effect of the presence of the
major element, the local behavior of the peripheral elements should have similar values
of the nonlinearity.

Figure 3.3 shows examples of the influence of the major element on the synchroniza-
tion of uncoupled peripheral elements, ruled locally by different one-dimensional maps.
For the examples shown, a1 = 4, a2 = 3.8, and a= 4. In Figures 3.3a and 3.3b ε= 0.7, and
system (3.1) reaches the three-cluster state Ĉ3. Figure 3.3a shows values of y versus x and
Figure 3.3b shows values of z versus x. From the obtained graphs it is easy to see, that
the values of x and y are very close, and the values of x and z, which actually are ruled
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Figure 3.2. Graphs of the transverse Lyapunov exponents for the three-cluster state Ĉ3 in system (3.1)
with (a) a1 = 4.0, a2 = 3.8, and a = 4.0 and with (b) a1 = 4.0, a2 = 3.8, and a = 3.8. λ⊥,a1 is drawn
by solid line and λ⊥,a2 is drawn by dotted line. Hatched regions denote parameter regions of trans-
verse stability for Ĉ3, where both the transverse Lyapunov exponents are negative. Light gray and
dark gray regions denote parameter regions where the transverse Lyapunov exponents have different
signs, λ⊥,a1 < 0 in dark gray regions, and λ⊥,a2 < 0 in light gray regions. This implies stability of the
synchronized state only in one of the ensembles, {xi}Ki=1 or {yi}Ki=1, respectively.

by maps with the same nonlinearity parameter, are less close. Figures 3.3c and 3.3d show
analogous graphs for ε = 0.8. Here, as in the previous case, the values of the peripheral
elements are very close while the values of the major element are quite different.
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Figure 3.3. Phase-space projections for system (3.1) in three-cluster state Ĉ3. Nonlinearity parameters
are a1 = 4, a2 = 3.8, and a= 4. For (a) and (b) ε = 0.7, and for (c) and (d) ε = 0.8. (a) and (c) show
the distribution of values of the elements in two groups of peripheral maps; (b) and (d) show the
distribution between the major element z and one of the peripheral groups.

These examples illustrate that, even when exact synchronization is not possible, the
presence of a major element allows the system to reach a state, where peripheral elements
with different nonlinearities demonstrate almost synchronized behavior, without being
synchronized with the major element.

4. Conclusion

To investigate the dynamic properties of coupled map systems with a major element, we
considered a modifications of the so-called star system, in which only couplings between



Iryna Omelchenko et al. 253

the major and the individual peripheral elements take place, while the peripheral ele-
ments are mutually uncoupled. The star system with identical elements exhibits a state of
full synchronization, where all the elements are synchronized with the major element, as
well as a partially synchronized state, where all peripheral elements move in synchrony,
but not in synchrony with the major element. The existence of this latter state illustrates
the role of the major element: its presence allows synchronization to be achieved between
otherwise uncoupled oscillators. The regions of transverse stability for the two synchro-
nized states are rather large. Moreover, synchronization of peripheral elements is possible
for any nonlinearity parameter of the individual logistic map. The stability regions for
the star system do not depend on the number N of peripheral elements.

In the system of two globally coupled groups interacting via a major element, the fully
synchronized state can be stable provided that the ensemble includes a relatively small
number of elements. This system exhibits a rather strong dependence of the stability
regions on the number of maps. We observed that increasing N produces a significant
reduction of the coherence stability regions. The advantage of the coupling structure of
system (1.4) appears in the large stability region for the three-cluster state C3. This allows
synchronization of elements within each of the globally coupled ensembles at parameters
values, where it is impossible to achieve the synchronization for the individual globally
coupled ensemble of logistic maps.

As a further development of the idea of a major element, we considered a modification
of the star system with a mismatch in the nonlinearity parameters. We supposed the pop-
ulation of peripheral maps to consist of two groups for which the dynamics are governed
by one-dimensional logistic maps with different nonlinearity parameters, and tried to
tune the nonlinearity of the major element to achieve synchronization. In this case, exact
synchronization of the peripheral elements is impossible, but we have observed states, in
which the peripheral elements produce nearly identical behaviors, while the dynamics of
the major element is quite different.

We conclude that introducing a major element into a population of oscillators con-
sisting of interacting or noninteracting elements, can give rise to new synchronized states
and to increased stability regions for already existing synchronized states in the systems.
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