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This paper presents several novel approaches of particle swarm optimization (PSO) al-
gorithm with new particle velocity equations and three variants of inertia weight to solve
the optimal control problem of a class of hybrid systems, which are motivated by the
structure of manufacturing environments that integrate process and optimal control. In
the proposed PSO algorithm, the particle velocities are conceptualized with the local best
(or pbest) and global best (or gbest) of the swarm, which makes a quick decision to di-
rect the search towards the optimal (fitness) solution. The inertia weight of the proposed
methods is also described as a function of pbest and gbest, which allows the PSO to con-
verge faster with accuracy. A typical numerical example of the optimal control problem is
included to analyse the efficacy and validity of the proposed algorithms. Several statistical
analyses including hypothesis test are done to compare the validity of the proposed algo-
rithms with the existing PSO technique, which adopts linearly decreasing inertia weight.
The results clearly demonstrate that the proposed PSO approaches not only improve the
quality but also are more efficient in converging to the optimal value faster.

1. Introduction

The hybrid systems combine two different types of categories, subsystems with continu-
ous dynamics and subsystems with discrete dynamics that interact with each other. Such
hybrid systems arise in varied contexts in manufacturing, communication networks, au-
tomotive engine design, computer synchronization, and chemical processes, among oth-
ers. In hybrid manufacturing systems, which is considered in this paper, the manufac-
turing process is composed of the event-driven dynamics of the parts moving among
different machines and the time-driven dynamics of the processes within particular ma-
chines. Frequently in hybrid systems, the event-driven dynamics are studied separately
from the time-driven dynamics, the former via timed state automata or Petri net models,
PLC etc., and the latter via differential or difference equations [6].

The hybrid framework can be modeled either by extending the event-driven mod-
els with time-driven dynamics; or by extending the traditional time-driven models with
event- driven dynamics. The hybrid system-modeling framework, which is motivated by
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Figure 2.1. Hybrid framework with time-driven and event-driven dynamics.

the structure of many manufacturing system, considered in this research adopts the first
category. To represent the hybrid nature of the model, each job is characterized by a phys-
ical state and a temporal state. The physical state represents the physical characteristics of
interest and evolves according to the time-driven dynamics (e.g., difference or differential
equations) while the job is being processed by a server. The temporal state represents pro-
cessing arrival and completion times and evolves according to the discrete-event dynam-
ics (e.g., queuing dynamics). The interaction of time-driven with event-driven dynamics
leads to a natural tradeoff between temporal requirements on job completion times and
physical requirements on the quality of the completed jobs (see Figure 2.1). Such model-
ing frameworks and optimal control problems have been considered in [1, 8].

A number of algorithms were developed so far to solve such optimal control prob-
lems. Particle swarm optimization (PSO) is one of the modern heuristic algorithms under
the evolutionary algorithms (EA) and gained lots of attention in solving optimal control
problems. Several variants of the PSO technique have been proposed so far, following
Eberhart and Kennedy [3, 4]. In this paper, different global versions of PSO with modi-
fied velocity equations and inertia weights are investigated. The parameter selections in
the PSO equations are carefully anlaysed in terms of pbest and gbest. Three different in-
ertia weight (one standard and two new) variants are adopted with four versions (one
existing and three proposed) of velocity equations are investigated in this paper. Among
such 12 methods, the best methods are identified and their validity is verified through a
number of statistical analyses and approaches.

The remaining of this paper is organized as follows: In Section 2, the optimal control
problem of a single-stage hybrid manufacturing system is studied and formulated. The
functional procedure and behavior of standard PSO are briefed in Section 3. Section 4
depicts the design of new inertia weight variants, modified velocity equations and the
parameter selections for PSO algorithms. The numerical example, the simulation results
and the statistical analyses are given in Section 5 and finally the discussions and conclu-
sions are drawn in Section 6.

2. Problem formulation of single-stage hybrid manufacturing system

The general hybrid system framework with event-driven and time-driven dynamics is
given in Figure 2.1.
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dynamicsżi(t) = g(zi, ui, t)ui

Figure 2.2. A single-stage hybrid manufacturing system.

Consider the hybrid model of a single-stage manufacturing hybrid system model is
shown in Figure 2.2. A sequence of N jobs (C1,C2,C3, . . . ,CN ) is assigned by an exter-
nal source to arrive for processing at known times 0 ≤ a1 ≤ a2 ≤ ··· ≤ aN . The jobs are
processed first-come first-serve (FCFS) basis by a work-conserving and nonpreemptive
server. The processing time is s(ui), which is a function of a control variable ui, and
s(ui)≥ 0.

The time-driven dynamics of the hybrid system is defined by the equation which
evolved the job Ci which is initially at some physical state ξi at time x0.

żi(t)= g
(
zi,ui, t

)
, zi

(
x0
)= ξi. (2.1)

The event-driven dynamics is described by recursive non-linear equations (Max-plus
equations) involving a maximum or a minimum operation, which is typically found in
models of discrete event systems (DES). For the fist-come first-serve (FCFS), nonpre-
emptive, single server example in Figure 2.2, these dynamics are given by the “max-plus”
recursive equation

xi =max
(
x(i−1),ai

)
+ s
(
ui
)
, i= 1, . . . ,N , (2.2)

where xi is the departure or completion time of ith job and x0 =−∞. The recursive rela-
tionship given in (2.2) is known in queuing theory as the Lindley equation [8].

From (2.1) and (2.2), it is clear that the choice of control ui affects both the physical
state zi and next temporal state xi, and thus time-driven dynamics (2.1) and event-driven
dynamics (2.2), justifying the hybrid nature of the system. According to [6], there are
two alternative ways to view this hybrid system. The first is as a discrete event queuing
system with time-driven dynamics evolving during processing in the server as shown in
Figure 2.3.

The second viewpoint interprets the model as a switched system. In this framework,
each job must be processed until it reaches a certain “quality level” denoted by Γi (e.g., a
threshold above which zi satisfies a desired quality level). That is, the processing time for
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Figure 2.3. Typical trajectory.

each job is chosen to satisfy the stopping rule

si
(
ui
)=min

[
t ≥ 0; zi

(
t0
)=

∫ t0+t

t0
gi
(
τ,ui, t

)
dτ + z

(
t0
)∈ Γi

]
. (2.3)

Figure 2.3 shows the evolution of the physical state as a function of time t. It is shown
in the figure that the dynamics of the physical state experiences a “switch” when certain
events occur. These events may classify into two categories: uncontrolled (or exogenous)
arrival events and controlled departure events. In Figure 2.2, the first event is an exoge-
nous arrival event at time a1. When the first job arrives at a1, the physical state starts
to evaluate the time-driven dynamics until it reaches the departure time x1. It is clearly
observed that the first job completes before the second job arrives and hence there is an
idle period, in which the server has no jobs to process. The physical state again begins
evolving the time-driven dynamics at time a2 (arrival of second job) until the second job
completes at x2. However, that the third job arrived before the second job was completed.
So the third job is forced to wait in the queue until time x2. After the second job com-
pletes at x2 the physical state begins to process the third job. As indicated in Figure 2.3,
not only do the arrival time and departure time cause switching in the time-driven dy-
namics according to (2.1), but also the sequence in which these events occur is governed
by the event-driven dynamics given in (2.2).

This system is hybrid is the sense that it combines the time-driven dynamics (2.1) with
the event-driven dynamics (2.2), the two being coupled through the choice of control
sequence {u1, . . . ,uN}. Hence the optimal control problem considered in this paper is to
minimize an objective function of the form

J =
N∑
i=1

{
θi
(
ui
)

+φi
(
xi
)}η

. (2.4)

Although, in general, the state variables zi, . . . ,zN evolve continuously with time, min-
imizing (2.4) is an optimization problem in which the values of the state variables are
considered only at the job completion times x1, . . . ,xN . Since the stopping criterion in
(2.3) is used to obtain the service times, a cost on the physical state zi(xi) is unnecessary
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because the physical state of each completed job satisfies the quality objectives, that is,
zi(xi)∈ Γi.

Obviously, the control variable ui is affecting the processing time through si = s(ui) for
extensions to cases with time-varying controls ui(t) over a service time. By assuming si(·)
is either monotone increasing or monotone decreasing, given a control ui, service time si
can be determined from si = s(ui) and vice versa. For simplicity, let si = ui and the rest of
the analysis is carried out with the notation ui. Hence the optimal control problem, with
η = 1.5, denoted by P is of the following form:

P : min
u1,...,uN

{
J =

N∑
i=1

{
θi
(
ui
)

+φi
(
xi
)}1.5

: u≥ 0, i= 1, . . . ,N

}
(2.5)

subject to

xi =max
(
x(i−1),ai

)
+ s
(
ui
)
, i= 1, . . . ,N. (2.6)

The optimal solution of P is denoted by u∗i for i = 1, . . . ,N , and the corresponding
departure time in (2.6) is denoted by x∗i for i= 1, . . . ,N .

3. Review of standard particle swarm optimization techniques

The particle swarm optimization (PSO) is a parallel evolutionary computation technique
developed by Kennedy and Eberhart based on the social behavior of metaphor. The PSO
technique has ever since turned out to be a competitor in the fields of numerical opti-
mization. The evolutionary algorithms, EAs, like genetic algorithm (GA) and evolution-
ary programming (EP) are search algorithms based on the simulated evolutionary process
of natural selection, variation, and genetics. Both GA and EP can provide a near global
solution [4]. PSO is similar to the other evolutionary algorithms in that the system is ini-
tialized with a population of random solutions, conceptualized as particle. Each particle
is assigned a randomized velocity and is iteratively moved through the problem space. It
is attracted towards the location of the best fitness achieved so far by the particle itself,
called as personal best (pbest) and the location of the best fitness achieved so far across
the whole population, known as global best (gbest). The PSO algorithm includes some
tuning parameters which are clearly influence the performance of the algorithm, often
referred to as exploration-exploitation tradeoff. Exploration is the ability to test various
regions in the problem space in order to locate a good optimum, hopefully a global so-
lution. Exploitation is the ability to concentrate the search around a promising candidate
solution in order to locate the optimum precisely. A complete theoretical analysis of PSO
has been described by Clerc and Kennedy in [2].

Also, PSO will not follow survival of the fittest, the principle of other EAs. PSO when
compared to EP has very fast converging characteristics; however it has a slow fine-tuning
ability of the solution. Also PSO has a more global searching ability at the beginning of
the run and a local search near the end of the run. Therefore, while solving problems with
more local optima, there are more possibilities for the PSO to explore local optima at the
end of the run [5, 7].
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PSO is basically through simulation of bird flocking in two-dimension space. The po-
sition of each particle is represented by XY axis position and the velocity is expressed by
vx (the velocity of X axis) and vy (the velocity of Y axis). Modification of the particle po-
sition is realized by position and velocity information. Each particle knows its best value
so far (pbest) and its XY position. The information corresponds to personal experiences
of each particle in the concept of individual learning and cultural transmission (ILCT).
Moreover, each particle knows the best value so far in the group (gbest) among pbests.
The information corresponds with the knowledge of how the other particles around them
have performed in the concept of ILCT [5]. Namely, each particle tries to modify its po-
sition using the following information:

(i) the distance between the current position and pbest;
(ii) the distance between the current position and gbest.

This modification can be represented by the concept of velocity. Velocity of each particle
can be modified by the following equation:

vk+1
i =wvki + c1rand1×

(
pbesti−Xk

i

)
+ c2rand2×

(
gbest−Xk

i

)
, (3.1)

where
(i) vk+1

i : velocity of particle i at iteration k;
(ii) w: weighting function;

(iii) c1 and c2: two positive constants named as cognitive and social parameter respec-
tively (normally c1 = c2 = 2);

(iv) rand: random number between 0 and 1;
(v) Xk

i : current position of particle i at iteration k;
(vi) pbesti: pbest of particle i;

(vii) gbest: gbest of the group.
And the current position can be modified by the following equation:

Xk+1
i = Xk

i + vk+1
i . (3.2)

In the standard PSO, the inertia weight is introduced as a decreasing function which is set
to a higher value (wmax) at initial stage and is decreased linearly with the iteration, k to a
lower value (wmin) and it is represented by the equation

w =wmax−
(
wmax−wmin

kmax

)
× k, (3.3)

where kmax is the maximum iteration number.
From (3.1), three terms are taken into consideration: the first term is wvki , is the par-

ticle’s previous velocity weighted by the inertia weight w. The second term, (pbesti−Xk
i ),
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Table 4.1

Method PSO parameter Velocity equation

W Standard PSO vk+1
i =wvki + c1rand1×

(
pbesti−Xk

i

)
+ c2rand2×

(
gbest−Xk

i

)

X
c1 = c2 =

(
1 + pbesti

gbest

)
vk+1
i =wvki +

(
1 + pbesti

gbest

)
× rand× (pbesti + gbest− 2Xk

i

)
rand1 = rand2 = rand

Y
c1 = c2 = 2

vk+1
i =wvki +

[
2× rand× (pbesti + gbest− 2Xk

i

)]
rand1 = rand2

Z
c1 = c2 =

(
1 + gbest

pbesti

)
vk+1
i =wvki +

(
1 + gbest

pbesti

)
× rand× (pbesti + gbest− 2Xk

i

)
rand1 = rand2 = rand

Table 4.2

Method Inertia weight

A w =wmax−
(
wmax−wmin

kmax

)
× k

B wi =
(

1− gbesti
pbesti

)

C wi =
(

1− gbesti(
pbesti

)
average

)

is the distance between the particle’s best previous position, and its current position. And
the third term, (gbest−Xk

i ), is the distance between the swarm’s best experience, and the
ith particle’s current position. Equation (3.2) provides the new position of ith particle,
adding its new velocity, to its current position. In general, the performance of each parti-
cle is measured according to a fitness function, which is problem-dependent. In optimiza-
tion problems, the fitness function is usually the objective function under consideration.

4. New variants of inertia weight and velocity equation

The role of inertia weight is very crucial on PSO’s performance and convergence behavior.
The inertia weight is employed to control the impact of the history of velocities on the
current velocity. In this way, the inertia weight regulates the trade-off between global and
local exploration abilities of the swarm. A suitable value for the inertia weight provides
a balance between the global and local exploration ability of the swarm which results in
better convergence rates. Similarly, the velocity equation of PSO also plays an important
role for a quality solution and faster convergence. Since the new position of the parti-
cle depends on the velocity, it is very important to design the parameters in the velocity
equation carefully in order to move closer to the optimal solution faster. Such a care-
ful design of PSO parameters is considered in this paper. In this paper, new variants to
the inertia weight and velocity equations are considered and they are classified into two
groups. Group 1 (Table 4.1) includes the new proposed velocity equations and Group 2
(Table 4.2) consists of inertia weight variants.
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Step 1. Initialize
Set index of Global best (Gbest index) = 1.

Step 2. Create population
Randomize the positions and velocities for entire population
Set the reference value of best position PB (i). Fitness
Update velocity vector.

Step 3. Calculate P (i). Fitness
If P (i). Fitness < reference value of best position PB (i). Fitness Then
Set new reference value of best position as P (i). Fitness
If PB (i). Fitness < PB (GBestIndex). Fitness
Then Set new GBestIndex = i.

Step 4. Calculate the particle velocity using the swarm equations given in group 1 & 2
Update the particle positions using (3.1).

Step 5. Repeat until Max number of generation or best solution.

Algorithm 4.1

Each method described in group 1 adopts all the three inertia weights given in group 2
individually and hence 12 methods are formed namely methods WA, WB, WC, XA, XB,
XC, Y, YB, YC, ZA, ZB, and ZC. All these 12 methods are implemented in the PSO al-
gorithm (Algorithm 4.1), to solve the optimal control problem of the single-stage hybrid
manufacturing systems.

5. Experimental results and statistical analyses

In order to compare the validity and usefulness of the proposed PSO methods, the opti-
mal control problem from (2.5) and (2.6) with the following functions are considered:

θi
(
ui
)= 2

ui
, φ

(
xi
)= 3∗xi, η = 1.5. (5.1)

Now (2.5) becomes

min
u1,...,uN

{
J =

N∑
i=1

(
2
ui

+ 3xi

)1.5
}

(5.2)

subject to

xi =max
(
x(i−1),ai

)
+ui. (5.3)

The optimal controls (ui), the departure time (xi) and cost or fitness (J) for the objec-
tive function given in (5.2) are computed with the following parameter settings.

(i) The maximum number of generations is set as 2000.
(ii) The population size = 20.
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ab(1)= 0.3; ab(2)= 0.5; ab(3)= 0.7; ab(4)= 1
For bb= 1 To N/4

For aa= 1 To 4
ab(aa + 4∗bb)= ab(aa) + 1∗bb

Next aa
Next bb
For i= 1 To N

a(i)= ab(i)
Next i

Algorithm 5.1. Arrival sequence for hybrid systems.

Table 5.1. Statistical analyses of various methods at the 500th generation.

Method
number

Method Average Best Worst SD CV Avedev

1 WA 15379.9102 13907.6580 19786.4941 170.9924 0.0111 62.1193

2 WB 7891.9087 7795.7406 8190.4794 25.5744 0.0032 14.0143

3 WC 7901.4545 7777.6306 8292.2425 20.4858 0.0026 10.1641

4 XA 17376.4738 14081.6692 20189.4607 180.6685 0.0104 91.4140

5 XB 9004.9407 8055.2561 10690.0855 24.8136 0.0028 37.1037

6 XC 9398.6967 8174.7296 11432.7873 62.7363 0.0067 32.0660

7 YA 17221.8462 14097.6442 19386.2370 177.1593 0.0103 131.8242

8 YB 7815.1086 7769.5156 7933.5245 2.4994 0.0003 1.2602

9 YC 7817.5676 7763.1663 7895.4521 3.5350 0.0005 1.9573

10 ZA 15750.0587 12465.2807 17613.1775 58.2452 0.0037 26.0689

11 ZB 7858.3669 7795.8160 8026.0831 6.9454 0.0009 3.4780

12 ZC 7861.0846 7779.7099 8011.0604 14.6579 0.0019 9.4978

(iii) Number of jobs = 50, and
(iv) Total number of run (simulation) = 1000.

The arrival sequence (ai for i= 1 to N) for N = 50 is obtained from Algorithm 5.1.
The PSO algorithms associated with the 12 methods are simulated 1000 times at dif-

ferent intervals of time. The optimal control variable (ui), the departure time (xi for
i = 1,2, . . . ,50) and the fitness objective function (J) are computed for all 12 methods.
The average value of the optimal control variable (ui), and the corresponding departure
time (xi) are presented in Tables 5.5 and 5.6. The cost or fitness value of the objective
function which represents the class of single-stage hybrid system is recorded for every
500 generations and their statistical analyses are compared in Tables 5.1–5.4.

All the 12 methods are executed through visual basic program and the fitness values
for all the methods are taken by running the simulation 1000 times at different times.
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Table 5.2. Statistical analyses of various methods at the 1000th generation.

Method
number

Method Average Best Worst SD CV Avedev

1 WA 11983.6000 10168.3405 13881.3154 170.9860 0.0143 122.9995

2 WB 7814.2846 7755.6382 8033.7556 20.1515 0.0026 11.3079

3 WC 7820.6383 7764.4469 8097.1594 12.0986 0.0015 2.8512

4 XA 13441.9106 10168.3405 16386.9300 78.3690 0.0058 46.8587

5 XB 7921.0846 7772.2090 9475.1826 70.5600 0.0089 10.7831

6 XC 8083.1708 7781.7568 9239.8054 63.8962 0.0079 30.9782

7 YA 12383.4070 10567.3418 13685.8476 74.8552 0.0060 44.3305

8 YB 7765.2765 7744.6986 7806.4233 1.8247 0.0002 1.2557

9 YC 7768.6854 7742.2869 7801.9017 3.0599 0.0004 1.8542

10 ZA 11172.4901 9643.2855 13158.6611 108.8048 0.0097 104.0414

11 ZB 7778.0332 7744.3391 7825.2758 7.2364 0.0009 1.6913

12 ZC 7778.1319 7744.8737 7837.4551 2.7583 0.0004 1.8686

Table 5.3. Statistical analyses of various methods at the 1500th generation.

Method
number

Method Average Best Worst SD CV Avedev

1 WA 8608.4865 8091.6661 9669.7744 45.5096 0.0053 27.0239

2 WB 7789.7420 7748.8893 7862.9554 5.4448 0.0007 3.5318

3 WC 7797.7273 7749.4070 7884.1366 3.7937 0.0005 1.9491

4 XA 10545.2723 8091.6661 13129.3045 99.6716 0.0095 50.2086

5 XB 7778.7645 7744.7194 7988.4480 11.3561 0.0015 2.4609

6 XC 7792.4137 7748.8792 8085.4559 19.0309 0.0024 7.5050

7 YA 8749.2009 8201.6420 9651.5879 58.3183 0.0067 38.0115

8 YB 7753.3627 7740.4907 7782.9877 1.7317 0.0002 0.8079

9 YC 7754.8549 7738.6329 7774.2684 1.7599 0.0002 1.1162

10 ZA 8859.8511 8170.7338 9804.0423 14.0901 0.0016 15.3803

11 ZB 7759.7919 7739.6439 7792.9689 0.7206 0.0001 0.7065

12 ZC 7759.8744 7740.0971 7783.7389 1.6642 0.0002 0.7627

The average values (Mean), best and worst fitness values among 1000 simulated results
and the standard deviations (SD) of the fitness values for each method are calculated.
In order to strengthen the comparison, few more statistics tests are conducted, the co-
efficient variance, which is calculated from the ratio of standard deviation to the mean
and the average deviation, which will, give the average of the absolute deviation of the
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Table 5.4. Statistical analyses of various methods at the 2000th generation.

Method
number

Method Average Best Worst SD CV Avedev

1 WA 7846.1401 7746.8580 8271.0692 18.9162 0.0024 6.4859

2 WB 7778.5150 7745.7858 7851.7101 3.2332 0.0004 2.1306

3 WC 7785.0885 7743.6033 7878.1134 3.2447 0.0004 0.8094

4 XA 8775.0653 7760.2905 9929.4221 185.4796 0.0211 100.8503

5 XB 7756.7710 7737.9135 7789.3040 1.9710 0.0003 0.9622

6 XC 7760.4903 7739.8483 7892.4369 7.9065 0.0010 1.8714

7 YA 7814.6565 7763.5000 7937.2679 8.9888 0.0012 5.1735

8 YB 7747.9780 7734.8516 7765.4052 0.7423 0.0001 0.3795

9 YC 7749.1308 7736.5328 7766.8408 1.6399 0.0002 1.0236

10 ZA 7935.2318 7802.2804 8476.1164 20.9959 0.0026 4.8424

11 ZB 7750.9974 7735.9609 7770.2229 0.3444 0.0000 0.2394

12 ZC 7751.6891 7738.2488 7771.5835 1.3291 0.0002 0.5233

fitness values from their mean, which are taken in 1000 simulation runs. Added to these
analyses, hypothesis t-test: analysis of variance (ANOVA) also carried out to validate the
efficacy among the proposed algorithms. These statistics analysis are presented in Tables
5.1–5.4. The graphical analysis is done through Box plot, which is shown in Figure 5.3.

In order to ease the analysis, all the 12 methods are compared with respect to group
1 and group 2 classification. That is, all the methods in group 1 are compared with each
of the inertia weight given in group 2 and vice versa. The comparisons of fitness values
between each method are done in 3 dimensional plots using MATLAB. And they are
shown in Figures 5.1 and 5.2.

The optimal control variables (u1,u2, . . . ,u50) in (5.2) and the departure time of each
job (x1,x2, . . . ,x50) in (5.3) are computed for all 12 methods and tabulated in Tables 5.5
and 5.6, respectively. From the departure time of each job, the queue lengths of the server
(of the single-stage hybrid system) at the arrival times (a1,a2, . . . ,a50) are computed and
plotted in Figure 5.4 for all the 12 methods individually.

The dynamic behavior of each particle in the search space for each method with N =
50 is taken over 2000 generations and the particles positions are recorded and presented
in Table 5.7 and Figure 5.5. The particle positions for the methods which are with W and
A are moving away form the equilibrium point (the position where the optimal solution
is obtained) often and takes a lot of generations to settle whereas in methods comprising
of Y, Z and B (sometimes C), the particle positions are always in a closer range of the
equilibrium point and converge faster.

The execution times for each method are calculated for every simulation and hence
the average execution time is calculated and presented in Table 5.8 and Figure 5.6, from
which it is understood that methods comprises of Y and Z are yield the optimal solution
faster with less execution time.
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Table 5.5. Comparison of optimal control variable (ui) for all 12 methods.

Arrival W X Y Z
a(i) A B C A B C A B C A B C

1 0.3 0.241 0.233 0.213 0.234 0.259 0.230 0.221 0.249 0.211 0.271 0.232 0.213
2 0.5 0.215 0.246 0.207 0.272 0.240 0.367 0.257 0.290 0.227 0.243 0.216 0.200
3 0.7 0.385 0.282 0.287 0.215 0.249 0.213 0.234 0.215 0.265 0.252 0.257 0.347
4 1 0.201 0.277 0.296 0.247 0.253 0.191 0.293 0.246 0.298 0.276 0.295 0.240
5 1.3 0.225 0.177 0.249 0.271 0.204 0.244 0.240 0.251 0.259 0.348 0.258 0.248
6 1.5 0.269 0.246 0.230 0.184 0.241 0.207 0.234 0.247 0.265 0.147 0.243 0.254
7 1.7 0.216 0.260 0.231 0.344 0.273 0.291 0.286 0.269 0.210 0.249 0.265 0.269
8 2 0.251 0.272 0.287 0.299 0.295 0.271 0.235 0.234 0.266 0.243 0.247 0.230
9 2.3 0.252 0.221 0.303 0.224 0.286 0.202 0.241 0.237 0.289 0.265 0.255 0.219

10 2.5 0.226 0.224 0.217 0.296 0.230 0.305 0.319 0.272 0.249 0.259 0.214 0.230
11 2.7 0.286 0.281 0.203 0.143 0.236 0.256 0.227 0.266 0.234 0.190 0.300 0.284
12 3 0.245 0.279 0.275 0.258 0.233 0.224 0.232 0.225 0.227 0.262 0.218 0.269
13 3.3 0.192 0.230 0.243 0.190 0.211 0.203 0.236 0.257 0.211 0.302 0.256 0.228
14 3.5 0.244 0.234 0.218 0.189 0.261 0.226 0.260 0.215 0.269 0.179 0.208 0.205
15 3.7 0.252 0.230 0.325 0.365 0.246 0.362 0.239 0.243 0.255 0.221 0.319 0.268
16 4 0.300 0.301 0.220 0.257 0.284 0.209 0.237 0.285 0.265 0.340 0.217 0.299
17 4.3 0.212 0.267 0.217 0.393 0.240 0.262 0.271 0.219 0.210 0.245 0.242 0.237
18 4.5 0.227 0.243 0.267 0.295 0.236 0.260 0.253 0.312 0.230 0.132 0.225 0.230
19 4.7 0.297 0.261 0.249 0.188 0.227 0.243 0.272 0.238 0.305 0.316 0.247 0.249
20 5 0.263 0.230 0.261 0.188 0.295 0.233 0.200 0.231 0.255 0.264 0.285 0.285
21 5.3 0.249 0.204 0.235 0.223 0.234 0.206 0.271 0.230 0.236 0.215 0.228 0.213
22 5.5 0.242 0.211 0.246 0.199 0.261 0.197 0.271 0.240 0.243 0.231 0.228 0.271
23 5.7 0.223 0.334 0.264 0.210 0.236 0.324 0.203 0.262 0.247 0.253 0.274 0.268
24 6 0.292 0.246 0.254 0.425 0.270 0.272 0.255 0.268 0.274 0.317 0.270 0.247
25 6.3 0.229 0.285 0.232 0.154 0.272 0.228 0.203 0.205 0.230 0.229 0.276 0.202
26 6.5 0.287 0.274 0.199 0.145 0.231 0.206 0.261 0.249 0.231 0.213 0.221 0.207
27 6.7 0.250 0.230 0.314 0.662 0.256 0.301 0.252 0.247 0.256 0.259 0.260 0.331
28 7 0.231 0.209 0.261 0.158 0.239 0.282 0.285 0.299 0.284 0.296 0.244 0.261
29 7.3 0.244 0.225 0.258 0.220 0.219 0.235 0.230 0.245 0.218 0.245 0.245 0.206
30 7.5 0.246 0.256 0.253 0.186 0.241 0.242 0.257 0.260 0.201 0.217 0.212 0.272
31 7.7 0.263 0.258 0.224 0.181 0.240 0.252 0.212 0.259 0.295 0.338 0.296 0.272
32 8 0.249 0.263 0.261 0.191 0.301 0.254 0.331 0.236 0.285 0.193 0.247 0.251
33 8.3 0.201 0.202 0.232 0.507 0.226 0.262 0.200 0.248 0.243 0.218 0.232 0.212
34 8.5 0.308 0.266 0.234 0.217 0.243 0.255 0.251 0.219 0.255 0.231 0.237 0.233
35 8.7 0.233 0.322 0.300 0.202 0.300 0.255 0.250 0.260 0.257 0.290 0.251 0.275
36 9 0.253 0.209 0.231 0.173 0.234 0.240 0.275 0.272 0.246 0.265 0.280 0.280
37 9.3 0.260 0.241 0.200 0.210 0.222 0.222 0.246 0.235 0.236 0.220 0.221 0.227
38 9.5 0.229 0.224 0.385 0.409 0.224 0.288 0.241 0.240 0.231 0.237 0.235 0.234
39 9.7 0.281 0.240 0.235 0.224 0.297 0.231 0.249 0.256 0.281 0.234 0.244 0.244
40 10 0.233 0.298 0.248 0.347 0.253 0.247 0.258 0.269 0.251 0.311 0.300 0.295
41 10.3 0.252 0.253 0.253 0.268 0.266 0.251 0.258 0.255 0.253 0.213 0.249 0.254
42 10.5 0.272 0.264 0.260 0.344 0.270 0.273 0.264 0.269 0.266 0.321 0.272 0.271
43 10.7 0.256 0.275 0.281 0.294 0.284 0.282 0.307 0.284 0.304 0.275 0.298 0.290
44 11 0.304 0.299 0.306 0.285 0.311 0.308 0.425 0.304 0.309 0.279 0.299 0.301
45 11.3 0.337 0.326 0.360 0.355 0.328 0.342 0.336 0.325 0.327 0.331 0.332 0.330
46 11.5 0.376 0.373 0.363 0.338 0.365 0.342 0.350 0.363 0.368 0.503 0.366 0.380
47 11.7 0.385 0.405 0.406 0.458 0.426 0.405 0.365 0.405 0.403 0.418 0.408 0.398
48 12 0.448 0.466 0.489 0.395 0.450 0.467 0.431 0.470 0.469 0.533 0.468 0.460
49 12.3 0.564 0.567 0.566 0.785 0.550 0.566 0.631 0.576 0.584 0.628 0.558 0.567
50 12.5 0.833 0.929 0.741 0.900 0.770 0.773 0.733 0.819 0.795 0.597 0.819 0.795
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Table 5.6. Comparison of departure time (xi) of each job.

Arrival W X Y Z
a(i) A B C A B C A B C A B C

1 0.3 0.541 0.533 0.513 0.534 0.559 0.530 0.521 0.549 0.511 0.571 0.532 0.513
2 0.5 0.756 0.779 0.720 0.806 0.799 0.897 0.778 0.840 0.737 0.814 0.748 0.713
3 0.7 1.141 1.061 1.007 1.021 1.048 1.110 1.012 1.054 1.002 1.066 1.005 1.060
4 1 1.342 1.338 1.304 1.268 1.302 1.301 1.306 1.300 1.300 1.341 1.300 1.300
5 1.3 1.567 1.515 1.553 1.571 1.506 1.545 1.545 1.551 1.559 1.689 1.558 1.548
6 1.5 1.836 1.761 1.783 1.754 1.747 1.751 1.780 1.798 1.824 1.836 1.801 1.801
7 1.7 2.053 2.022 2.014 2.098 2.020 2.042 2.066 2.067 2.034 2.085 2.066 2.070
8 2 2.304 2.293 2.301 2.397 2.315 2.313 2.301 2.301 2.300 2.328 2.313 2.300
9 2.3 2.556 2.521 2.605 2.621 2.601 2.515 2.541 2.538 2.589 2.593 2.569 2.519

10 2.5 2.781 2.745 2.821 2.916 2.831 2.821 2.860 2.810 2.838 2.852 2.783 2.748
11 2.7 3.068 3.026 3.024 3.060 3.066 3.076 3.088 3.075 3.073 3.042 3.082 3.032
12 3 3.312 3.305 3.299 3.318 3.300 3.300 3.320 3.300 3.300 3.304 3.300 3.301
13 3.3 3.504 3.535 3.543 3.508 3.511 3.504 3.556 3.557 3.511 3.606 3.556 3.529
14 3.5 3.748 3.769 3.761 3.698 3.771 3.730 3.816 3.772 3.780 3.785 3.764 3.733
15 3.7 4.000 3.999 4.086 4.065 4.018 4.092 4.055 4.015 4.035 4.005 4.083 4.001
16 4 4.300 4.301 4.306 4.322 4.301 4.301 4.291 4.300 4.300 4.345 4.300 4.300
17 4.3 4.513 4.568 4.523 4.715 4.542 4.564 4.571 4.519 4.510 4.590 4.543 4.538
18 4.5 4.740 4.811 4.789 5.010 4.778 4.824 4.824 4.831 4.740 4.722 4.768 4.767
19 4.7 5.037 5.072 5.038 5.198 5.005 5.067 5.096 5.069 5.045 5.038 5.015 5.017
20 5 5.299 5.302 5.299 5.386 5.300 5.300 5.296 5.300 5.300 5.302 5.300 5.302
21 5.3 5.549 5.506 5.535 5.609 5.534 5.506 5.571 5.531 5.536 5.517 5.528 5.514
22 5.5 5.791 5.718 5.782 5.808 5.795 5.703 5.842 5.771 5.778 5.748 5.756 5.785
23 5.7 6.014 6.052 6.046 6.018 6.031 6.028 6.045 6.032 6.026 6.002 6.031 6.053
24 6 6.306 6.297 6.300 6.442 6.301 6.300 6.300 6.300 6.300 6.318 6.300 6.300
25 6.3 6.535 6.585 6.532 6.596 6.573 6.528 6.503 6.505 6.530 6.547 6.576 6.502
26 6.5 6.822 6.859 6.732 6.741 6.804 6.734 6.765 6.754 6.761 6.760 6.796 6.708
27 6.7 7.071 7.089 7.045 7.403 7.060 7.035 7.016 7.001 7.018 7.019 7.056 7.039
28 7 7.302 7.299 7.307 7.561 7.299 7.317 7.301 7.300 7.301 7.315 7.300 7.300
29 7.3 7.546 7.525 7.564 7.781 7.519 7.552 7.531 7.545 7.520 7.561 7.545 7.506
30 7.5 7.792 7.781 7.817 7.967 7.760 7.793 7.788 7.805 7.720 7.778 7.757 7.778
31 7.7 8.056 8.039 8.042 8.148 8.000 8.046 8.001 8.064 8.015 8.116 8.053 8.049
32 8 8.305 8.302 8.303 8.338 8.301 8.300 8.332 8.300 8.300 8.309 8.300 8.300
33 8.3 8.506 8.503 8.535 8.845 8.527 8.562 8.531 8.548 8.543 8.527 8.532 8.512
34 8.5 8.814 8.770 8.769 9.062 8.770 8.817 8.782 8.768 8.798 8.758 8.769 8.745
35 8.7 9.047 9.092 9.069 9.264 9.070 9.072 9.033 9.028 9.055 9.047 9.020 9.020
36 9 9.300 9.301 9.300 9.437 9.305 9.312 9.308 9.300 9.301 9.312 9.300 9.300
37 9.3 9.560 9.542 9.500 9.647 9.526 9.534 9.553 9.535 9.536 9.532 9.521 9.527
38 9.5 9.789 9.767 9.885 10.056 9.751 9.821 9.794 9.775 9.768 9.769 9.756 9.761
39 9.7 10.071 10.007 10.120 10.280 10.047 10.053 10.044 10.031 10.049 10.003 10.000 10.005
40 10 10.303 10.305 10.368 10.627 10.300 10.300 10.301 10.300 10.300 10.314 10.300 10.300
41 10.3 10.555 10.558 10.620 10.895 10.566 10.551 10.559 10.555 10.553 10.527 10.549 10.554
42 10.5 10.827 10.822 10.881 11.239 10.836 10.824 10.823 10.823 10.819 10.848 10.821 10.825
43 10.7 11.083 11.097 11.162 11.533 11.120 11.106 11.130 11.108 11.122 11.123 11.119 11.115
44 11 11.387 11.396 11.468 11.819 11.431 11.413 11.556 11.412 11.431 11.402 11.419 11.415
45 11.3 11.724 11.722 11.829 12.174 11.759 11.755 11.892 11.737 11.758 11.733 11.751 11.745
46 11.5 12.100 12.095 12.191 12.512 12.124 12.097 12.242 12.100 12.126 12.236 12.116 12.124
47 11.7 12.484 12.500 12.598 12.971 12.550 12.501 12.606 12.506 12.529 12.654 12.524 12.522
48 12 12.933 12.966 13.086 13.366 12.999 12.969 13.037 12.976 12.998 13.187 12.992 12.982
49 12.3 13.497 13.533 13.652 14.151 13.549 13.534 13.668 13.552 13.583 13.815 13.550 13.549
50 12.5 14.330 14.462 14.393 15.050 14.319 14.307 14.401 14.371 14.378 14.412 14.369 14.344
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Figure 5.1. Three-dimensional plot of the comparison between methods. (a) WA, XA, YA, and ZA;
(b) WB, XB, YB, and ZB; (c) WC, XC, YC, and ZC.
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Figure 5.2. Three-dimensional plot of the comparison between methods. (a) WA, WB, and WC; (b)
XA, XB, and XC; (c) YA, YB, and YC; (d) ZA, ZB, and ZC.

6. Discussions and conclusion

In this paper, new variants to the inertia weight and velocity equations are considered
and they are classified into 12 methods. In order to compare the validity and useful-
ness of the proposed velocity equations in PSO methods with the existing standard PSO
(method WA), all the methods are simulated 1000 times at different periods of time, and
1000 simulated results for each method are taken at different timings. The performance
of different algorithms is compared with respect to the solution accuracy in the fitness,
the standard deviations, co-efficient variance, average deviation, ANOVA t-test, and the
percentage of deviation in the fitness from the proposed best method.

From the results stated in Table 5.1–5.4, it is obvious that the method 8 (YB) is the
best followed by method 9 (YC). This clearly establishes the fact that method Y with B
and C yields better solutions. This is the most significant outcome of the experiments
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Figure 5.3. ANOVA t-test analysis of fitness values over 2000 generations for all 12 methods.

performed. These combinations have been shown to work efficiently with regard to an
optimal control problem here but it is believed that these might be equally efficient with
regard to all other problems where PSO can be used. All the 12 methods are sorted on
the average fitness value, and their rankings are as follows: YB, YC, ZB, ZC, XB, XC, WB,
WC, YA, WA, ZA, and XA. From the above rankings, it is very obvious that the methods
comprise of Y and B always provide better results compared to other methods. It is also
observed that except methods ZA and XA all other methods are better than the standard
PSO, which is known here as method WA.

By analyzing the PSO parameters, it is observed that normally the cognitive (c1) and
social (c2) parameters are set to 2 for a better convergence. This is proved in the proposed
methods. In method X, these two constants (c1 and c2) are always greater than or equal to
2 whereas they (c1 and c2) are always less than or equal to 2 in method Z, since pbesti ≥
gbest, for i= 1,2, . . . ,50. In method Y, they (c1 and c2) are always equal to 2. PSO algorithm
with method Y always yields better result followed by those comprise of method Z with
respect to the optimal fitness solution. It is also observed from the Table 5.1–5.4, method
Z is always yielding the optimal solution with less standard deviation, which proves this
method’s accuracy and consistency. So from consistency point of view, PSO algorithm
with method Z is a better choice than the one with method Y.

From the hypothesis ANOVA t-test that is shown in Figure 5.3, it can be easily con-
cluded that method YB (refers to method 8 in the figure) is better than any other methods
considered in this paper. This box plot representation provides an excellent visual sum-
mary of many important aspects of a distribution of fitness value over 2000 generations.
The graphical view clearly shows the effectiveness of the proposed algorithms and their
fitness distribution.



M. S. Arumugam and M. V. C. Rao 273

0 5 10 15

Time

0
0.5

1

1.5

2

2.5

3

3.5

4
Q

u
eu

e
le

n
gt

h

0 5 10 15

Time

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

Q
u

eu
e

le
n

gt
h

0 5 10 15

Time

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

Q
u

eu
e

le
n

gt
h

0 2 4 6 8 10 12 14 16

Time

0

1

2

3

4

5

6

Q
u

eu
e

le
n

gt
h

0 2 4 6 8 10 12 14 16

Time

0

1

2

3

4

5

6

Q
u

eu
e

le
n

gt
h

0 5 10 15

Time

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

Q
u

eu
e

le
n

gt
h

Figure 5.4. Queue length versus arrival time for methods WA, WB, WC, XA, XB, XC, YA, YB, YC,
ZA, ZB, and ZC, respectively.

Figure 5.4 provides the information about the queue length in the server at the arrival
time of each job. The queue lengths obtained through methods YB, YC, ZB, and ZC are
more or less the same and proves their superiority among the other methods.

Figure 5.5 presents the dynamic behavior of each particle in the search space for each
method, which is taken over 2000 generations. The particle positions for the methods
with W and A are moving away form the equilibrium point (the position where the
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Figure 5.4. Continued.

optimal solution is obtained) often and takes a lot of generations to settle whereas in
methods with Y, Z, and B (sometimes C), the particle positions are always in a closer
range of the equilibrium point and converge faster. It is very obvious that the particle po-
sitions in methods YB, YC, ZB, and ZC are in a very narrow range, which implies how fast
they are reaching the equilibrium point to obtain the optimal solution. This again proves
the effectiveness and faster convergence capability of the methods YB, YC, ZB, and ZC.

The most important aspect of simulation program is its execution time. Any algo-
rithm, which runs at less execution time compared to other algorithms, is considered
as best method. From Table 5.8 and Figure 5.6, it is clearly identified that among the 12



M. S. Arumugam and M. V. C. Rao 275

0 5 10 15 20 25
×102

Generations

0.5

0.6

0.7

0.8

0.9

1

Po
si

ti
on

s

WA
WB
WC

(a)

0 5 10 15 20 25
×102

Generations

0.5

0.6

0.7

0.8

0.9

1

Po
si

ti
on

s

XA
XB
XC

(b)

0 5 10 15 20 25
×102

Generations

0.5

0.6

0.7

0.8

0.9

1

Po
si

ti
on

s

YA
YB
YC

(c)

Figure 5.5. Comparison of the particle’s best position for methods. (a) WA, WB, and WC; (b) XA,
XB, and XC; (c) YA, YB, and YC; (d) ZA, ZB, and ZC; (e) WA, XA, YA, and ZA; (f) WB, XB, YB, and
ZB; (g) WC, XC, YC, and ZC.
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Figure 5.5. Continued.
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Figure 5.5. Continued.

Table 5.7. Dynamic behavior of particles best position in each generation.

Gener- W X Y Z

ation A B C A B C A B C A B C

100 0.8436 0.6335 0.5923 0.9359 0.7232 0.5864 0.8051 0.6480 0.6134 0.8576 0.7049 0.6132

200 0.9486 0.7343 0.7352 0.8787 0.6903 0.6064 0.7900 0.6432 0.6239 0.9131 0.7205 0.6343

300 0.8468 0.7452 0.7288 0.8049 0.6329 0.6262 0.9354 0.7285 0.6689 0.9022 0.7307 0.6931

400 0.7087 0.7218 0.7558 0.8257 0.6425 0.6756 0.7291 0.7470 0.7318 0.8378 0.7296 0.7233

500 0.6632 0.7795 0.7164 0.8899 0.6376 0.6901 0.7647 0.7589 0.7172 0.7805 0.7437 0.7767

600 0.6151 0.7946 0.7706 0.8803 0.6553 0.6207 0.7895 0.8030 0.7573 0.8050 0.7825 0.7918

700 0.6686 0.8427 0.7666 0.8139 0.7558 0.6506 0.8586 0.8021 0.7799 0.7918 0.7822 0.8016

800 0.7559 0.7813 0.8959 0.6729 0.7099 0.6915 0.7169 0.7847 0.7801 0.6869 0.7910 0.8037

900 0.6929 0.7935 0.7956 0.6442 0.7234 0.6673 0.6550 0.7971 0.7837 0.6709 0.8051 0.8120

1000 0.6236 0.7797 0.8266 0.7236 0.7357 0.6758 0.6649 0.8031 0.7932 0.7128 0.8045 0.8086

1100 0.6437 0.7848 0.7723 0.6670 0.7940 0.7102 0.6577 0.8036 0.7964 0.6327 0.8265 0.8077

1200 0.6469 0.7875 0.7971 0.6768 0.8190 0.7418 0.5704 0.7973 0.8023 0.6793 0.8175 0.8183

1300 0.7263 0.8211 0.7648 0.7893 0.7856 0.7521 0.5959 0.8064 0.8089 0.6248 0.8160 0.8173

1400 0.6646 0.7860 0.7702 0.7747 0.8018 0.7555 0.6643 0.8106 0.8175 0.6225 0.8376 0.8406

1500 0.6918 0.7839 0.7967 0.6650 0.8101 0.7791 0.6767 0.8144 0.8289 0.5890 0.8266 0.8096

1600 0.6970 0.7733 0.7459 0.6431 0.8001 0.7922 0.6459 0.8133 0.8176 0.6504 0.8198 0.8284

1700 0.7356 0.7896 0.7868 0.5862 0.8050 0.8067 0.7444 0.8106 0.8145 0.6328 0.8199 0.8171

1800 0.7424 0.8095 0.7819 0.5883 0.8042 0.7887 0.7080 0.8125 0.7998 0.6448 0.8341 0.8258

1900 0.7491 0.7927 0.7636 0.5809 0.8370 0.8066 0.7327 0.8130 0.8066 0.6591 0.8154 0.7967

2000 0.7688 0.8268 0.7605 0.6180 0.8141 0.8025 0.7502 0.8127 0.8137 0.7421 0.8127 0.8128
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Table 5.8. Execution time for simulation of various PSO methods.

Method WA WB WC XA XB XC YA YB YC ZA ZB ZC

Execution time
7.35 7.3 7.33 6.89 6.74 6.77 6.52 6.37 6.4 6.71 6.58 6.67

(in seconds)

WA WB WC XA XB XC YA YB YC ZA ZB ZC

Various PSO methods

5.7

6

6.3

6.6

6.9

7.2

7.5

E
xe

cu
ti

on
ti

m
e

(s
)

Figure 5.6. The average execution time of various PSO methods.

methods considered, three methods those comprise of method Y are having less execu-
tion time. This proves the superior capability of method Y. Algorithms with method Z
are in the second rank, which are better than the methods X and W.

In summary, it is proven in so many aspects that the proposed methods, those with
Y and also Z are much better than the existing methods and other proposed methods.
Hence it can be concluded that the PSO algorithms with method Y is the superior among
others and in particular it is more effective with the inertia weight which given in method
B in computing the optimal control and fitness solution of the single-stage hybrid system.
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