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By using coincidence degree theory as well as a priori estimates and Lyapunov functional,
we study the existence and global stability of periodic solution for discrete delayed high-
order Hopfield-type neural networks. We obtain some easily verifiable sufficient condi-
tions to ensure that there exists a unique periodic solution, and all theirs solutions con-
verge to such a periodic solution.

1. Introduction

It is well known that studies on neural dynamical systems not only involve discussion of
stability property, but also involve other dynamics behaviors such as periodic oscillatory,
bifurcation and chaos. In many applications, the property of periodic oscillatory solu-
tions are of great interest. For example, the human brain has been in periodic oscillatory
or chaos state, hence it is of prime importance to study periodic oscillatory and chaos
phenomenon of neural networks. Recently, Liu and Liao [8], Zhou and Liu [15] consider
the existence and global exponential stability of periodic solutions of delayed Hopfield
neural networks and delayed cellular neural networks. Liu et al. [7] address the existence
and global exponential stability of periodic solutions of delayed BAM neural networks.
Since high-order neural networks have stronger approximation property, faster conver-
gence rate, greater storage capacity, and higher fault tolerance than lower-order neural
networks, they have attracted considerable attention (see, e.g., [1, 2, 4, 5, 10, 11, 13, 14]).
In our previous paper [12], we study the global exponential stability and existence of
periodic solutions of the following high-order Hopfield-type neural networks

dxi(t)
dt

=−ai(t)xi(t) +
m∑
j=1

bi j(t) f j
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xj(t)

)
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+
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(1.1)
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where i = 1,2, . . . ,m, t > 0, xi(t) denotes the potential (or voltage) of the cell i at time t.
ai(t) are positiveω-periodic functions, they denote the rate with which the cell i reset their
potential to the resting state when isolated from the other cells and inputs. bi j(t), ei jl(t)
are the first-and second-order connection weights of the neural network, respectively;
Ii(t) denote the ith component of an external input source introduced from outside the
network to the cell i.

In [6], Li investigates global stability and existence of periodic solutions of discrete de-
layed cellular neural networks. However, few authors have studies the dynamical behav-
iors of the discrete-time analogues of delayed high-order Hopfield-type neural networks
with variable coefficient. In this paper, we are concerned with the following discrete ana-
logue of (1.1) of the form

xi(n+ 1)= e−ai(n)hxi(n) + θi(h)
n∑
j=1

bi j(n) f j
(
xj(n)

)
+ θi(h)

n∑
j=1

b̃i j(n) f j
(
xj
(
n− τi j(n)

))
+ θi(h)

n∑
j=1

n∑
l=1

ei jl(n) f j
(
xj(n)

)
fl
(
xl(n)

)
+ θi(h)

n∑
j=1

n∑
l=1

ẽi jl(n) f j
(
xj
(
n− σi jl(n)

))
fl
(
xl
(
t− σi jl(n)

))
+ θi(h)Ii(n), i= 1,2, . . . ,m,

(1.2)

in which θi, ai, bi j , ei jl, i, j, l = 1,2, . . . ,m, will be specified in the next section.
With the help of Mawhin’s continuation theorem of coincidence degree theory and

constructing Lyapunov functional, we obtain some sufficient conditions ensure that for
the discrete networks (1.2) there exists a unique periodic solution, and all theirs solutions
converge to such a periodic solution. To the best of our knowledge, this is the first time
to study the existence and global attractivity of the periodic solution for the discrete-time
analogues of delayed high-order Hopfield-type neural networks with variable coefficient.

The tree of this paper is as follows. In Section 2, following the semi-discretization tech-
nique [6, 9], we obtain a discrete-time analogue of (1.1). In Section 3, with the help of
Mawhin’s continuation theorem of coincidence degree theory, we study the existence of
the periodic solution of (1.2). In Section 4, by constructing Lyapunov functional, we de-
rive sufficient conditions to ensure that the periodic solution of (1.2) is globally asymp-
totically stable.

2. Discrete-time analogues

There is no unique way of deriving discrete time version of dynamical equations corre-
sponding to continuous time formulation. First, following [6, 9], we reformulate system
(1.1) by an approximation of the form

dxi(t)
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=−ai
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+
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(2.1)

where h is a positive number denoting a uniform discretization step size and [t/h] denotes
the greatest integer in t/h. For convenience, we denote [t/h] = n, n ∈ Z+

0 , and ai(nh) =
ai(n), bi j(nh) = bi j(n), b̃i j(nh) = b̃i j(n), ei jl(nh) = ei jl(n), ẽi jl(nh) = ẽi jl(n), τi j(nh) = τi j ,
σi jl(nh)= σi jl, xi(nh)= xi(n), Ii(nh)= Ii. Thus (2.1) takes on the form

dxi(t)
dt

=−ai(n)xi(t) +
m∑
j=1

bi j(n) f j
(
xj(n)

)

+
m∑
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(
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fl
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))
× fl

(
xl
(
n− σi jl(n)

))
+ Ii(n), n∈ Z+

0 .

(2.2)

Integrate it over the interval [nh, t] for t < (n+ 1)h to obtain

xi(t)eai(n)t − xi(n)eai(n)nh

= eai(n)t − eai(n)nh

ai(n)
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+
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)
fl
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(
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)
fl
(
xl(n)

)
fl
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+ Ii(n)

}
, i= 1,2, . . . ,m.

(2.3)
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We let t→ (n+ 1)h and obtain

xi(n+ 1)= xi(n)e−ai(n)h + θi(h)
m∑
j=1

bi j(n) f j
(
xj(n)

)

+ θi(h)
m∑
j=1

b̃i j(n) f j
(
xj
(
n− τi j(n)

))

+ θi(h)
m∑
j=1

m∑
l=1

ei jl(n) f j
(
xj(n)

)
fl
(
xl(n)

)

+ θi(h)
m∑
j=1

m∑
l=1

ẽi jl(n) f j
(
xj
(
n− σi jl(n)

))
fl
(
xl
(
n− σi jl(n)

))
+ θi(h)Ii(n), i= 1,2, . . . ,m, n∈ Z+

0 ,

(2.4)

where

θi(h)= 1− e−ai(n)h

ai(n)
, i= 1,2, . . . ,m, n∈ Z+

0 . (2.5)

It is not difficult to verify that θi(h) > 0 if ai,h > 0 and θi(h) ≈ h+ o(h2) for small h > 0.
Also, one can see that (1.2) converges towards (1.1) when h→ 0+. The system (1.2) is
supplemented with initial values given by

xi(s)= ϕi(s), s∈ (− τ∗,0
)
Z , τ∗ = max

1≤i, j,l≤m

(
max
n∈Z

(
τi j(n),σi jl(n)

))
. (2.6)

In this paper, we assume that
(H1) ai : Z → (0,∞), bi j , b̃i j , ei jl, ẽi jl, Ii ∈ Z → R, τi j , σi jl : Z → Z+

0 , i, j, l = 1,2, . . . ,m,
h∈ (0,∞).

(H2) f j are Lipschitzian with Lipschitz constants Lj > 0,

∣∣ f j(x)− f j(y)
∣∣≤ Lj|x− y| (2.7)

for any x, y ∈ R, ( j ∈ {1, . . . ,m}).
(H3) There exist positive constants Nj > 0, j ∈ {1, . . . ,m} such that

∣∣ f j(x)
∣∣≤Nj , j ∈ {1, . . . ,m}. (2.8)

For convenience, we will introduce the notation:

Iω = {0,1, . . . ,ω− 1}, u= 1
ω

ω−1∑
k=0

u(k), (2.9)
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where u(k) an ω-perodic sequence of real numbers defined for k ∈ Z and notations:

ai =min
n∈Iω

(
ai(n)

)
, i= 1,2, . . . ,m,

IM =max
n∈Iω

{∣∣Ii(n)
∣∣, i= 1,2, . . . ,m

}
, M = sup

u∈R

{∣∣ f j(u)
∣∣, j = 1,2, . . . ,m

}
,

bMi j =max
n∈Iω

{∣∣bi j(n)
∣∣}, b̃Mi j =max

n∈Iω

{∣∣b̃i j(n)
∣∣}

eMi jl =max
n∈Iω

{∣∣ei jl(n)
∣∣}, ẽMi jl =max

n∈Iω

{∣∣ẽi jl(n)
∣∣}.

(2.10)

3. Existence of periodic solution

In this section, based on the Mawhin’s continuation theorem and Lyapunov functional,
we will study the existence of periodic solutions of discrete-time high-order Hopfield-
type neural networks (1.2).

First, we will make some preparations.
Let X and Z be two Banach spaces. Consider an operator equation

Lx = λNx, λ∈ (0,1), (3.1)

where L : DomL∩X → Z is a linear operator and λ is a parameter. Let P and Q denote
two projectors such that

P : X ∩DomL−→ KerL, Q : Z −→ Z

Im
L. (3.2)

Denote by H : ImQ→ KerL is an isomorphism of ImQ onto KerL. In the sequel, we will
use the following result of Mawhin [3, page 40].

Lemma 3.1. Let X and Z be two Banach spaces and L a Fredholm mapping of index zero.
Assume that N : Ω→ Z is L-compact on Ω with Ω open bounded in X . Furthermore assume:

(a) for each λ∈ (0,1), y ∈ ∂Ω∩DomL,

Lx �= λNx; (3.3)

(b) for each x ∈ ∂Ω∩KerL,

QNx �= 0, deg{HQNx,Ω∩KerL,0} �= 0. (3.4)

Then the equation Lx =Nx has at least one solution in domL∩Ω.
Recall that a linear mapping L : DomL ∩ x → Z with KerL = L−1(0) and ImL =

L(DomL), will be called a Fredholm mapping if the following two conditions hold:
(i) KerL has a finite dimension;
(ii) ImL is closed and has a finite codimension.
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Recall also that the codimension of ImL is the dimension of Z/ ImL, that is, the di-
mension of the cokernel coker L of L.

When L is a Fredholm mapping, its index is the integer IndL= dimkerL-codimImL.
We will say that a mapping N is L-compact on Ω if the mapping QN : Ω→ Z is contin-

uous, QN(Ω) is bounded, and Kp(I −Q)N : Ω→ Y is compact, that is, it is continuous
and Kp(I −Q)N(Ω) is relatively compact, where Kp : ImL→ DomL∩KerP is a inverse
of the restriction Lp of L to DomL∩KerP, so that LKp = I and KpL= I −P.

Next, we will state and prove the existence of periodic solutions of system (1.2).

Theorem 3.2. Assume that the condition (H1), (H2), and (H3) are satisfied. Furthermore,
assume that

(H4) ai, bi j , b̃i j , ei jl, ẽi jl, Ii, i, j, l = 1,2, . . . ,m, are all ω-periodic functions.
Then system (1.2) has at least one ω-periodic solution.

Proof. Similar to that of [6], we define

lm =
{
x = {x(k)

}
: x(k)∈ Rm, k ∈ Z

}
. (3.5)

Let lω ⊂ lm denote the subspace of allω periodic sequences equipped with the usual supre-
mum norm ‖ · ‖, that is,

‖x‖ =
∥∥∥(x1(k), . . . ,xm(k)

)T∥∥∥
=

m∑
i=1

max
k∈Iω

∣∣xi(k)
∣∣, for any x = {(x1(k), . . . ,xm(k)

)
: k ∈ Z

}∈ lω.
(3.6)

It is not difficult to show that lω is a finite-dimensional Banach space.
Let

lω0 =
{
x = {x(k)

}∈ lω :
ω−1∑
k=0

x(k)= 0

}
,

lωc =
{
x = {x(k)

}∈ lω : x(k)= h∈ Rm, k ∈ Z
}

,

(3.7)

then it follows that lω0 and lωc are both closed linear subspaces of lω and

lω = lω0 ⊕ lωc , dim lωc =m. (3.8)
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In order to use Lemma 3.1 to system (1.2), we take X = Y = lω, (Lx)(k)= x(k+ 1)− x(k),
and let

Nx(n)=



x1(n)
(
e−a1(n)h− 1

)
+ θ1(h)

m∑
j=1

b1 j(n) f j
(
xj(n)

)
+

...

xm(n)
(
e−am(n)h− 1

)
+ θm(h)

m∑
j=1

bmj(n) f j
(
xj(n)

)
+

θ1(h)
m∑
j=1

b̃1 j(n) f j
(
xj
(
n− τ1 j(n)

))
+ θ1(h)I1(n)

...

θm(h)
m∑
j=1

b̃mj(n) f j
(
xj
(
n− τmj(n)

))
+ θm(h)Im(n)

+θ1(h)
m∑
j=1

m∑
l=1

e1 jl(n) f j
(
xj(n)

)
fl
(
xl(n)

)
+

...

+θm(h)
m∑
j=1

m∑
l=1

emjl(n) f j
(
xj(n)

)
fl
(
xl(n)

)
+

θ1(h)
n∑
j=1

n∑
l=1

ẽ1 jl(n) f j
(
xj
(
n− σ1 jl(n)

))
fl
(
xl
(
t− σ1 jl(n)

))
...

θm(h)
n∑
j=1

n∑
l=1

ẽmjl(n) f j
(
xj
(
n− σmjl(n)

))
fl
(
xl
(
t− σmjl(n)

))


.

(3.9)

It is trivial to see that L is a bounded linear operator and

KerL= lωc , ImL= lω0 , (3.10)

as well as

dimKerL=m= codimImL; (3.11)

then it follows that L is a Fredholm mapping of index zero.
Define

Px = 1
ω

ω−1∑
s=0

x(s), x ∈ X , Qz = 1
ω

ω−1∑
s=0

z(s), z ∈ Y. (3.12)

It is not difficult to show that P and Q are continuous projectors such that

ImP = KerL, ImL= KerQ = Im(I −Q). (3.13)
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Furthermore, the generalized inverse (to L) Kp : ImL→ KerP∩domL has the form

Kp(z)=
k−1∑
s=0

z(s)− 1
ω

ω−1∑
s=0

(ω− s)z(s). (3.14)

Clearly, QN and Kp(I −Q)N are continuous. Since X is a finite-dimensional Banach
space, using the Arzela-Ascoli theorem, it is not difficult to show that QN(Ω), Kp(I −
Q)N(Ω) are relatively compact for any open bounded set Ω⊂ X . Hence, N is L-compact
on Ω, here Ω is any open bounded set in X .

Now we reach the position to search for an appropriate open, bounded subset Ω for
the application of the Lemma 3.1. Corresponding to the operator equation Lx = λNx,
λ∈ (0,1), we have

xi(n+ 1)− xi(n)= λ

(
xi(n)

(
e−ai(n)h− 1

)
+ θi(h)

m∑
j=1

bi j(n) f j
(
xj(n)

)

+ θi(h)
m∑
j=1

b̃i j(n) f j
(
xj
(
n− τi j(n)

))

+ θi(h)
m∑
j=1

m∑
l=1

ei jl(n) f j
(
xj(n)

)
fl
(
xl(n)

)

+ θi(h)
m∑
j=1

m∑
l=1

ẽi jl(n) f j
(
xj
(
n− σi jl(n)

))
fl
(
xl
(
n− σi jl(n)

))

+ θi(h)Ii(n)

)
, i= 1,2, . . . ,m.

(3.15)

Assume that x(n) = (x1(n), . . . ,xm(n)) ∈ X is a solution of system (3.15) for some λ ∈
(0,1), from (3.15), we obtain

max
n∈Iω

∣∣xi(n)
∣∣=max

n∈Iω

∣∣xi(n+ 1)
∣∣

≤
(

1 + λ
(
e−ai(n)h− 1

)∣∣xi(n)
∣∣+ λθi(h)

m∑
j=1

∣∣bi j(n)
∣∣∣∣ f j(xj(n))∣∣

+ λθi(h)
m∑
j=1

b̃i j(n) f j
(
xj
(
n− τi j(n)

))

+ λθi(h)
m∑
j=1

m∑
l=1

ei jl(n) f j
(
xj(n)

)
fl
(
xl(n)

)

+ λθi(h)
m∑
j=1

m∑
l=1

ẽi jl(n) f j
(
xj
(
n− σi jl(n)

))
fl
(
xl
(
n− σi jl(n)

))
+ λθi(h)Ii(n)

)
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≤ (1 + λ
(
e−ai(n)h− 1

))
max
n∈Iω

∣∣xi(n)
∣∣+ λθi(h)mbM + λθi(h)mb̃M

+ λθi(h)m2eM2 + λθi(h)m2ẽM2 + λθi(h)IM , i= 1,2, . . . ,m.

(3.16)

Hence,(
1− e−ai(n)h

)
max
n∈Iω

∣∣xi(n)
∣∣

≤ θi(h)
(
mbM +mb̃M +m2eM2 +m2ẽM2 + IM

)
, i= 1,2, . . . ,m.

(3.17)

That is

max
n∈Iω

∣∣xi(n)
∣∣≤ θi(h)

(
mbM +mb̃M +m2eM2 +m2ẽM2 + IM

)
1− e−ai(n)h :=Ai. (3.18)

Denote A =∑m
i=1Ai + E, where E is taken sufficiently large such that ‖x‖ < A, clearly, A

is independent of λ. Now, we take Ω = {u ∈ X : ‖x‖ < A}. It is clear that Ω satisfies the
requirement (a) in Lemma 3.1.

When x ∈ ∂Ω∩KerL, x is a constant vector in Rm with ‖x‖ = A. Furthermore, take
H : ImQ→ KerL, r → r. we can let A be greater such that

(
x1, . . . ,xm

)
HQN


x1
...
xm


=

n∑
i=1

(
− x2

i

ω−1∑
s=0

(
e−ai(s)h− 1

ω

)
+ θi(h)xi

m∑
j=1

bi j f j
(
xj
)
xi

+ θi(h)xi
m∑
j=1

b̃i j f j
(
xj
)
xi + θi(h)

m∑
j=1

m∑
l=1

ei jl f j
(
xj
)
fl
(
xl
)
xi

+ θi(h)
m∑
j=1

m∑
l=1

ẽi jl f j
(
xj
)
fl
(
xl
)
xi + θi(h)Iixi

)
< 0.

(3.19)

So for any x ∈ ∂Ω∩KerL, QNx �= 0. Furthermore, let Ψ(r;u) = −rx + (1− r)JQNx,
then for any x ∈ ∂Ω∩KerL, xTΨ(r;x) < 0, we get

deg{HQNx,Ω∩KerL,0} = deg{−x,Ω∩KerL,0} �= 0. (3.20)

Condition (b) of Lemma 3.1 is also satisfied. By now we have prove that Ω satisfies all
the requirements in Lemma 3.1. Hence, system (1.2) has at least one ω-periodic solution.
The proof is complete. �

4. Global stability of the periodic solution

In this section, we will obtain sufficient conditions for the global asymptotic stability and
global exponential stability of the periodic solution of discrete high-order Hopfield-type
networks (1.2).
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Theorem 4.1. Assume that condition (H1), (H2), (H3), and (H4) are satisfied. Further-
more, assume that τi j(n)= τi j ∈ Z+, σi jl(n)= σi jl ∈ Z+, and

(H5) There exists a positive real number sequence αi such that

λi = αi
(
1− eai

)−Li

m∑
j=1

αjθj(h)bMji −Li

m∑
j=1

αjθj(h)b̃Mji −Li

m∑
j=1

m∑
l=1

αjθj(h)eMjilM

−Li

m∑
j=1

m∑
l=1

αjθj(h)ẽMjilM−Li

m∑
j=1

m∑
l=1

αjθj(h)eMjliM

−Li

m∑
j=1

m∑
l=1

αjθj(h)ẽMjliM > 0, i= 1,2, . . . ,m.

(4.1)

Then the ω-periodic solution of (1.2) is unique and all other solutions of (1.2) converges to
its unique ω-periodic solutions.

Proof. According to Theorem 3.2, we know that (1.2) has a ω-periodic solution x∗(n)=
(x∗1 (n),x∗2 (n), . . . ,x∗m(n))T . Obviously, if this periodic solution is globally attractivity, then
it is unique. Let x(n)= (x1(n),x2(n), . . . ,xm(n))T is an arbitrary solution of (1.2) and let

xi(n+ 1)− x∗i (n+ 1)=−eai(n)h
(
xi(n)− x∗i (n)

)
+ θi(h)

m∑
j=1

bi j(n)
(
f j
(
xj(n)

)− f j
(
x∗j (n)

))

+ θi(h)
m∑
j=1

b̃i j(n)
(
f j
(
xj
(
n− τi j

))− f j
(
x∗j
(
n− τi j

)))

+ θi(h)
m∑
j=1

m∑
l=1

ei jl(n)
(
f j
(
xj(n)

)
fl
(
xl(n)

)− f j
(
x∗j (n)

)
fl
(
x∗l (n)

))

+ θi(h)
m∑
j=1

m∑
l=1

ẽi jl(n)
(
f j
(
xj
(
n− σi jl

))
fl
(
xl
(
n− σi jl

))
+ f j

(
x∗j
(
n− σi jl

))
fl
(
x∗l
(
n− σi jl

)))
, i= 1,2, . . . ,m.

(4.2)

Hence,

∣∣xi(n+ 1)− x∗i (n+ 1)
∣∣

≤−eai∣∣xi(n)− x∗i (n)
∣∣

+ θi(h)
m∑
j=1

bMi j Lj

∣∣xj(n)− x∗j (n)
∣∣

+ θi(h)
m∑
j=1

b̃Mi j Lj

∣∣xj(n− τi j
)− x∗j

(
n− τi j

)∣∣
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+ θi(h)
m∑
j=1

m∑
l=1

eMi jlM
(
Lj

∣∣xj(n)− x∗j (n)
∣∣+Ll

∣∣xl(n)− x∗l (n)
∣∣)

+ θi(h)
m∑
j=1

m∑
l=1

ẽMi jlM
(
Lj

∣∣xj(n− σi jl
)− x∗j

(
n− σi jl

)∣∣
+Ll

∣∣xl(n− σi jl
)− x∗l

(
n− σi jl

)∣∣), i=1,2, . . . ,m.

(4.3)

Define a Lyapunov functional V(·) by

V(n)=
m∑
i=1

(
αi
∣∣xi(n)− x∗i (n)

∣∣
+αiθi(h)

m∑
j=1

b̃Mi j Lj

n+τi j−1∑
k=n

∣∣xj(k− τi j
)− x∗j

(
k− τi j

)∣∣
+αiθi(h)

m∑
j=1

m∑
l=1

ẽMi jlM

(
Lj

n+σi jl−1∑
k=n

∣∣xj(k− τi j
)− x∗j

(
k− τi j

)∣∣
+Ll

n+σi jl−1∑
k=n

∣∣xl(k− τi j
)− x∗l

(
k− τi j

)∣∣)).

(4.4)

Then

∆V(n)≤
m∑
i=1

(
αi
(
eai − 1

)∣∣xi(n)− x∗i (n)
∣∣+αiθi(h)

m∑
j=1

bMi j Lj

∣∣xj(n)− x∗j (n)
∣∣

+αiθi(h)
m∑
j=1

b̃Mi j Lj

∣∣xj(n)− x∗j (n)
∣∣

+αiθi(h)
m∑
j=1

m∑
l=1

eMi jlM
(
Lj

∣∣xj(n)− x∗j (n)
∣∣+Ll

∣∣xl(n)− x∗l (n)
∣∣)

+αiθi(h)
m∑
j=1

m∑
l=1

ẽMi jlM
(
Lj

∣∣xj(n)− x∗j (n)
∣∣+Ll

∣∣xl(n)− x∗l (n)
∣∣))

≤
m∑
i=1

(
αi
(
eai − 1

)
+Li

m∑
j=1

αjθj(h)bMji +Li

m∑
j=1

αjθj(h)b̃Mji

+Li

m∑
j=1

m∑
l=1

αjθj(h)eMjilM +Li

m∑
j=1

m∑
l=1

αjθj(h)ẽMjilM

+Li

m∑
j=1

m∑
l=1

αjθj(h)eMjliM +Li

m∑
j=1

m∑
l=1

αjθj(h)ẽMjliM

)∣∣xi(n)− x∗i (n)
∣∣

≤−
m∑
i=1

λi
∣∣xi(n)− x∗i (n)

∣∣≤ 0.

(4.5)
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Summing both sides of (4.5) from 0 to n− 1, we get

V(n) +
n−1∑
k=0

( m∑
i=1

λi
∣∣xi(k)− x∗i (k)

∣∣)≤V(0), (4.6)

which yields

∞∑
k=0

m∑
i=1

λi
∣∣xi(k)− x∗i (k)

∣∣≤V(0) <∞. (4.7)

Therefore, we have

lim
n→∞

(
xi(n)− x∗i (n)

)
= 0 (4.8)

and we can conclude that the ω-periodic solution of (1.2) is globally attractivity and this
completes the proof of the theorem. �

Next, we will study global exponential stability of the periodic solution of discrete
high-order Hopfield-type networks (1.2).

Theorem 4.2. Assume that condition (H1), (H2), (H3), and (H4) are satisfied. Further-
more, assume that τi j(n)= τi j ∈ Z+, σi jl(n)= σi jl ∈ Z+, and

(H5)

ai > Li

m∑
j=1

bMji +Li

m∑
j=1

b̃Mji +Li

m∑
j=1

m∑
l=1

eMjilMLi +Li

m∑
j=1

m∑
l=1

eMl jiM

+Li

m∑
j=1

m∑
l=1

ẽMjilM +Li

m∑
j=1

m∑
l=1

ẽMl jiM, i= 1,2, . . . ,m.

(4.9)

Then the ω-periodic solution of (1.2) is unique and is globally exponentially stable.

Proof. According to Theorem 3.2, we know that (1.2) has a ω-periodic solution x∗(n)=
(x∗1 (n),x∗2 (n), . . . ,x∗m(n))T . Let x(n)= (x1(n),x2(n), . . . ,xm(n))T is an arbitrary solution of
(1.2), then

∣∣xi(n+ 1)− x∗i (n+ 1)
∣∣

≤−eai∣∣xi(n)− x∗i (n)
∣∣+ θi(h)

m∑
j=1

bMi j Lj

∣∣xj(n)− x∗j (n)
∣∣

+ θi(h)
m∑
j=1

b̃Mi j Lj

∣∣xj(n− τi j
)− x∗j

(
n− τi j

)∣∣
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+ θi(h)
m∑
j=1

m∑
l=1

eMi jlM
(
Lj

∣∣xj(n)− x∗j (n)
∣∣+Ll

∣∣xl(n)− x∗l (n)
∣∣)

+ θi(h)
m∑
j=1

m∑
l=1

ẽMi jlM
(
Lj

∣∣xj(n− σi jl
)− x∗j

(
n− σi jl

)∣∣
+Ll

∣∣xl(n− σi jl
)− x∗l

(
n− σi jl

)∣∣), i=,1,2, . . . ,m.

(4.10)

Let Fi(·,·), i∈ {1, . . . ,m} be defined by

Fi
(
υi,n

)= 1− υie
−aih−Liθi(h)υi

m∑
j=1

bMji −Liθi(h)
m∑
j=1

b̃Mji υ
τi j+1
i

− υiLiθi(h)
m∑
j=1

m∑
l=1

eMjil − υiLiθi(h)
m∑
j=1

m∑
l=1

eMl jiM

−Liθi(h)
m∑
j=1

m∑
l=1

ẽMjilMυ
σl ji+1
i −Liθi(h)

m∑
j=1

m∑
l=1

ẽMl jiυ
σl ji+1
i M,

(4.11)

where υi ∈ [1,∞), n∈ Iω, i∈ {1, . . . ,m}. Since

Fi(1,n)= 1− e−aih−Liθi(h)
m∑
j=1

bMji −Liθi(h)
m∑
j=1

b̃Mji

−Liθi(h)
m∑
j=1

m∑
l=1

eMjilM−Liθi(h)
m∑
j=1

m∑
l=1

eMl jiM

−Liθi(h)
m∑
j=1

m∑
l=1

ẽMjilM−Liθi(h)
m∑
j=1

m∑
l=1

ẽMl jiM

= θi(h)

(
ai−Li

m∑
j=1

bMji −Li

m∑
j=1

b̃Mji −Li

m∑
j=1

m∑
l=1

eMjilMLi

−Li

m∑
j=1

m∑
l=1

eMl jiM−Li

m∑
j=1

m∑
l=1

ẽMjilM−Li

m∑
j=1

m∑
l=1

ẽMl jiM

)

≥ min
1≤i≤m

(
θi(h)

)
γ > 0, i= 1,2, . . . ,m,

(4.12)

where

γ = ai−Li

m∑
j=1

bMji −Li

m∑
j=1

b̃Mji −Li

m∑
j=1

m∑
l=1

eMjilMLi

−Li

m∑
j=1

m∑
l=1

eMl jiM−Li

m∑
j=1

m∑
l=1

ẽMjilM−Li

m∑
j=1

m∑
l=1

ẽMl jiM,

(4.13)
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using the continuity of Fi(υi,n) on [1,∞) with respect to υi and the fact that Fi(υi,n)→
−∞ as υi →∞ uniformly in n ∈ Iω, i = 1,2, . . . ,m, we see that there exist υ∗i (n) ∈ (1,∞)
such that Fi(υ∗i (n),n)= 0 for n∈ Iω, i= 1,2, . . . ,m. By choosing λ=min{υ∗1 ,υ∗2 , . . . ,υ∗m},
where λ > 1, we obtain Fi(λ,n)≥ 0 for n∈ Iω, i= 1,2, . . . ,m, then

λe−ai(n)h + θi(h)Liλ
m∑
j=1

bMji + θi(h)Li
m∑
j=1

b̃Mji λ
τji+1

+ θi(h)Liλ
m∑
j=1

m∑
l=1

eMjilMLi + θi(h)Li
m∑
j=1

m∑
l=1

ẽMl jiMλσijl+1 ≤ 1.

(4.14)

Now let us consider

ui(n)= λn
∣∣xi(n)− x∗i (n)

∣∣
θi(h)

, n∈ (−τ,∞)Z , i= 1,2, . . . ,m, (4.15)

where λ > 1. Then it follows from (1.2) and (4.15) that

ui(n+ 1)≤ λe−aihui(n) + λ
m∑
j=1

bMi j Ljθj(h)uj(n)

+
m∑
j=1

b̃Mi j Ljθj(h)λτi j+1uj
(
n− τi j

)

+ λ
m∑
j=1

m∑
l=1

eMi jlM
(
Ljθj(h)uj(n) +Llθl(h)ul(n)

)

+
m∑
j=1

m∑
l=1

ẽMi jlM
(
Ljθj(h)λσijl+1uj

(
n− σi jl

)
+Llθl(h)λσijl+1ul

(
n− σi jl

))
.

(4.16)

Define a Lyapunov functional V(·) by

V(n)=
m∑
i=1

(
ui(n) +

m∑
j=1

b̃Mi j Ljθj(h)λτi j+1
n−1∑

s=n−τi j
u j(s)

+
m∑
j=1

m∑
l=1

ẽMi jlθ j(h)λσijl+1M

(
Lj

n−1∑
s=n−σi jl

u j(s) +Ll

n−1∑
s=n−σi jl

ul(s)ds

)) (4.17)
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then calculating the ∆V(n)=V(n+ 1)−V(n) along (4.16), we have

∆V(n)

=
m∑
i=1

(
ui(n+ 1)−ui(n) +

m∑
j=1

b̃Mi j Ljθj(h)λτi j+1(uj(n)−uj
(
n− τi j

))

×
m∑
j=1

m∑
l=1

ẽMi jlθ j(h)λσijl+1M
(
Lj
(
uj(n)−uj

(
n−σi jl

))
+Ll

(
ul(n)−ul

(
n− σi jl

))))

≤
m∑
i=1

((
λe−aih− 1

)
ui(n) + λ

m∑
j=1

bMi j Ljθj(h)uj(n) +
m∑
j=1

b̃Mi j Ljθj(h)λτi j+1uj(n)

+ λ
m∑
j=1

m∑
l=1

eMi jlM
(
Ljθj(h)uj(n) +Llθl(h)ul(n)

)

+
m∑
j=1

m∑
l=1

ẽMi jlλ
σi jl+1M

(
Ljθj(h)uj(n) +Llθl(h)ul(n)

))

≤−
m∑
i=1

(
1− λe−aih−Liθi(h)λ

m∑
j=1

bMji −Liθi(h)
m∑
j=1

b̃Mji λ
τji+1

−Liθi(h)
m∑
j=1

m∑
l=1

eMjilM−Liθi(h)
m∑
j=1

m∑
l=1

eMl jiM

−Liθi(h)
m∑
j=1

m∑
l=1

ẽMjilλ
σjil+1M−Liθi(h)

m∑
j=1

m∑
l=1

ẽMl jiλ
σl ji+1M

)
ui(n)≤ 0, t > 0

(4.18)

and hence from (4.17) we have

m∑
i=1

ui(n)≤V(n)≤V(0), for n∈ Z+. (4.19)

Thus

m∑
i=1

ui(n)= λn
m∑
i=1

∣∣xi(n)− x∗i (n)
∣∣

θi(h)

≤
m∑
i=1

(
ui(0) +

m∑
j=1

b̃Mi j Ljθj(h)λτi j+1
−1∑

s=−τi j
u j(s)

+
m∑
j=1

m∑
l=1

ẽMi jlθ j(h)λσijl+1M

(
Lj

−1∑
s=−σi jl

u j(s) +Ll

−1∑
s=−σi jl

ul(s)ds

))
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≤
m∑
i=1

(
1 +Liθi(h)

m∑
j=1

bMji λ
τji+1τji +Liθi(h)

m∑
j=1

m∑
l=1

eMi jlλ
σi jl+1Mσjil

+Liθi(h)
m∑
j=1

m∑
l=1

eMl jiλ
σl ji+1Mσl ji

)
sup

s∈[−τ∗,0]

∣∣ui(s)−u∗i (s)
∣∣

≤ Υ

( m∑
i=1

sup
s∈[−τ∗,0]

∣∣ui(s)−u∗i (s)
∣∣),

(4.20)

where

Υ= max
1≤i≤m

(
1 +

m∑
j=1

bMi j Lje
ετi j τi j +

m∑
j=1

m∑
l=1

eMi jle
εσi jlMσi jl

(
Lj +Ll

))≥ 1, (4.21)

then

m∑
i=1

∣∣xi(n)− x∗i (n)
∣∣≤ max1≤i≤m

(
θi(h)

)
min1≤i≤m

(
θi(h)

)Υ(1
λ

)n( m∑
i=1

sup
s∈[−τ∗,0]

∣∣xi(s)− x∗i (s)
∣∣)

≤ δ
(

1
λ

)n( m∑
i=1

sup
s∈[−τ∗,0]

∣∣xi(s)− x∗i (s)
∣∣),

(4.22)

where

δ = max1≤i≤m
(
θi(h)

)
min1≤i≤m

(
θi(h)

)Υ≥ 1 (4.23)

and we can conclude that the ω-periodic solution of (1.2) is globally exponentially stable
and this completes the proof of the theorem. �

Remark 4.3. If we let ei jl(t)= ẽi jl(t)= 0, then system (1.2) reduces to the discrete cellular
neural networks, and our Theorems 3.2, 4.1, and 4.2 are [6, Theorem 3.1, Theorem 4.1,
and Theorem 4.2], respectively. So our results generalized the main results of [6].
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