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We study the following third-order p-Laplacian m-point boundary value problems on time scales:
(φp(uΔ∇))∇ + a(t)f(t, u(t)) = 0, t ∈ [0, T]T, βu(0) − γuΔ(0) = 0, u(T) =

∑m−2
i=1 aiu(ξi), φp(uΔ∇(0)) =

∑m−2
i=1 biφp(uΔ∇(ξi)), where φp(s) is p-Laplacian operator, that is, φp(s) = |s|p−2s, p > 1, φ−1

p = φq,
1/p + 1/q = 1, 0 < ξ1 < · · · < ξm−2 < ρ(T). We obtain the existence of positive solutions by using
fixed-point theorem in cones. The conclusions in this paper essentially extend and improve the
known results.
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1. Introduction

The theory of time scales was initiated by Hilger [1] as a means of unifying and extending
theories from differential and difference equations. The study of time scales has lead to
several important applications in the study of insect population models, neural networks,
heat transfer, and epidemic models, see, for example [2–6]. Recently, the boundary value
problems with p-Laplacian operator have also been discussed extensively in the literature,
for example, see [7–13].

A time scale T is a nonempty closed subset of R.Wemake the blanket assumption that
0, T are points in T. By an interval (0, T), we always mean the intersection of the real interval
(0, T) with the given time scale; that is (0, T)∩T.

In [14], Anderson considered the the following third-order nonlinear boundary value
problem (BVP):

x′′′(t) = f
(
t, x(t)

)
, t1 ≤ t ≤ t3,

x
(
t1
)
= x′(t2

)
= 0, γx

(
t3
)
+ δx′′(t3

)
= 0.

(1.1)
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Author studied the existence of solutions for the nonlinear boundary value problem by
using the Krasnoselskii’s fixed point theorem and Leggett and Williams fixed point theorem,
respectively.

In [8, 9], He considered the existence of positive solutions of the p-Laplacian dynamic
equations on time scales

(
φp

(
uΔ))∇ + a(t)f

(
u(t)
)
= 0, t ∈ [0, T]T, (1.2)

satisfying the boundary conditions

u(0) − B0
(
uΔ(η)

)
= 0, uΔ(T) = 0, (1.3)

or

uΔ(0) = 0, u(T) − B1
(
uΔ(η)

)
= 0, (1.4)

where η ∈ (0, ρ(T)). He obtained the existence of at least double and triple positive solutions
of the boundary value problems by using a new double fixed point theorem and triple fixed
point theorem, respectively.

In [13], Zhou andMa firstly studied the existence and iteration of positive solutions for
the following third-order generalized right-focal boundary value problem with p-Laplacian
operator:

(
φp(u′′)

)′(t) = q(t)f
(
t, u(t)

)
, 0 ≤ t ≤ 1,

u(0) =
m∑

i=1

αiu
(
ξi
)
, u′(η) = 0, u′′(1) =

n∑

i=1

βiu
′′(θi
)
.

(1.5)

They established a corresponding iterative scheme for the problem by using the monotone
iterative technique.

However, to the best of our knowledge, little work has been done on the existence
of positive solutions for third-order p-Laplacian m-point boundary value problems on time
scales. This paper attempts to fill this gap in the literature.

In this paper, by using different method, we are concerned with the existence
of positive solutions for the following third-order p-Laplacian m-point boundary value
problems on time scales:

(
φp

(
uΔ∇))∇ + a(t)f

(
t, u(t)

)
= 0, t ∈ [0, T]T,

βu(0) − γuΔ(0) = 0, u(T) =
m−2∑

i=1

aiu
(
ξi
)
, φp

(
uΔ∇(0)

)
=

m−2∑

i=1

biφp

(
uΔ∇(ξi

))
,

(1.6)

where φp(s) is p-Laplacian operator, that is, φp(s) = |s|p−2s, p > 1, φ−1
p = φq, (1/p)+(1/q) = 1,
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and ai, bi, a, f satisfy

(H1) β, γ ≥ 0, β + γ > 0, ai ∈ [0,+∞), i = 1, 2, . . . , m − 3, am−2 > 0, 0 < ξ1 < · · · < ξm−2 <
ρ(T), 0 <

∑m−2
i=1 bi < 1, 0 <

∑m−2
i=1 aiξi < T , d = β(T −∑m−2

i=1 aiξi) + γ(1 −∑m−2
i=1 ai) > 0;

(H2) f : [0, T]T × [0,+∞) → R+ is continuous, a ∈ Cld((0, T)T,R
+) and there exists

t0 ∈ [ξm−2, T)T such that a(t0) > 0, where R
+ = [0,+∞).

2. Preliminaries and lemmas

For convenience, we list the following definitions which can be found in [1–5].

Definition 2.1. A time scale T is a nonempty closed subset of real numbers R. For t < supT and
r > infT, define the forward jump operator σ and backward jump operator ρ, respectively,
by

σ(t) = inf{τ ∈ T | τ > t} ∈ T,

ρ(r) = sup{τ ∈ T | τ < r} ∈ T,
(2.1)

for all t, r ∈ T. If σ(t) > t, t is said to be right scattered; if ρ(r) < r, r is said to be left scattered;
if σ(t) = t, t is said to be right dense; if ρ(r) = r, r is said to be left dense. If T has a right
scattered minimum m, define Tk = T − {m}, otherwise set Tk = T. If T has a left scattered
maximum M, define Tk = T − {M}, otherwise set Tk = T.

Definition 2.2. For f : T → R and t ∈ Tk, the delta derivative of f at the point t is defined
to be the number fΔ(t), (provided it exists), with the property that for each ε > 0, there is a
neighborhood U of t such that

∣
∣f
(
σ(t)
) − f(s) − fΔ(t)

(
σ(t) − s

)∣
∣ ≤ ε

∣
∣σ(t) − s

∣
∣, (2.2)

for all s ∈ U.
For f : T → R and t ∈ Tk, the nabla derivative of f at t, denoted by f∇(t) (provided it

exists), with the property that for each ε > 0, there is a neighborhood U of t such that

∣
∣f
(
ρ(t)
) − f(s) − f∇(t)

(
ρ(t) − s

)∣
∣ ≤ ε

∣
∣ρ(t) − s

∣
∣, (2.3)

for all s ∈ U.

Definition 2.3. A function f is left-dense continuous (i.e., ld-continuous), if f is continuous at
each left-dense point in T and its right-sided limit exists at each right-dense point in T.

Definition 2.4. If φΔ(t) = f(t), then one defines the delta integral by

∫b

a

f(t)Δt = φ(b) − φ(a). (2.4)
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If F∇(t) = f(t), then one defines the nabla integral by

∫b

a

f(t)∇t = F(b) − F(a). (2.5)

Lemma 2.5. If d = β(T −∑m−2
i=1 aiξi) + γ(1 −∑m−2

i=1 ai) > 0, then for h ∈ Cld[0, T]T, the boundary
value problem (BVP)

uΔ∇ + h(t) = 0, t ∈ [0, T]T,

βu(0) − γuΔ(0) = 0, u(T) =
m−2∑

i=1

aiu
(
ξi
) (2.6)

has the unique solution

u(t) = −
∫ t

0
(t − s)h(s)∇s +

βt + γ

d

∫T

0
(T − s)h(s)∇s

− βt + γ

d

m−2∑

i=1

ai

∫ ξi

0

(
ξi − s

)
h(s)∇s.

(2.7)

Proof. By direct computation, we can easily get (2.7). So, we omit it.

Lemma 2.6. If 0 <
∑m−2

i=1 bi < 1, 0 <
∑m−2

i=1 aiξi < T , d = β(T −∑m−2
i=1 aiξi)+ γ(1−

∑m−2
i=1 ai) > 0, then

for h ∈ Cld[0, T]T, the boundary value problem (BVP)

(
φp

(
uΔ∇))∇ + h(t) = 0, t ∈ [0, T]T,

βu(0) − γuΔ(0) = 0, u(T) =
m−2∑

i=1

aiu
(
ξi
)
, φp

(
uΔ∇(0)

)
=

m−2∑

i=1

biφp

(
uΔ∇(ξi

)) (2.8)

has the unique solution

u(t) = −
∫ t

0
(t − s)φq

(∫ s

0
h(r)∇r + B

)

∇s +
βt + γ

d

∫T

0
(T − s)φq

(∫ s

0
h(r)∇r + B

)

∇s

− βt + γ

d

m−2∑

i=1

ai

∫ ξi

0

(
ξi − s

)
φq

(∫s

0
h(r)∇r + B

)

∇s,

(2.9)

where B =
∑m−2

i=1 bi
∫ ξi
0 h(r)∇r/(1 −∑m−2

i=1 bi).

Proof. Integrating both sides of (1.6) on [0, t], we have

φp

(
uΔ∇(t)

)
= φp

(
uΔ∇(0)

) −
∫ t

0
h(r)∇r. (2.10)
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So

φp

(
uΔ∇(ξi

))
= φp

(
uΔ∇(0)

) −
∫ ξi

0
h(r)∇r. (2.11)

By boundary value condition φp(uΔ∇(0)) =
∑m−2

i=1 biφp(uΔ∇(ξi)), we have

φp

(
uΔ∇(0)

)
= −
∑m−2

i=1 bi
∫ ξi
0 h(r)∇r

1 −∑m−2
i=1 bi

. (2.12)

By (2.10) and (2.12), we know

uΔ∇(t) = −φq

(∑m−2
i=1 bi

∫ ξi
0 h(r)∇r

1 −∑m−2
i=1 bi

+
∫ t

0
h(r)∇r

)

. (2.13)

This together with Lemma 2.5 implies that

u(t) = −
∫ t

0
(t − s)φq

(∫ s

0
h(r)∇r + B

)

∇s +
βt + γ

d

∫T

0
(T − s)φq

(∫s

0
h(r)∇r + B

)

∇s

− βt + γ

d

m−2∑

i=1

ai

∫ ξi

0

(
ξi − s

)
φq

(∫ s

0
h(r)∇r + B

)

∇s,

(2.14)

where B =
∑m−2

i=1 bi
∫ ξi
0 h(r)∇r/(1 −∑m−2

i=1 bi). The proof is complete.

Lemma 2.7. Let 0 <
∑m−2

i=1 aiξi < 1, d > 0. If h ∈ Cld[0, T]T and h(t) ≥ 0, then the unique solution
u of (2.8) satisfies

u(t) ≥ 0. (2.15)

Proof. By uΔ∇(t) = −φq(
∑m−2

i=1 bi
∫ ξi
0 h(r)∇r/(1−∑m−2

i=1 bi)) +
∫ t
0h(r)∇r) ≤ 0, we can know that the

graph of u(t) is concave down on (0, T)T. So we only prove u(0) ≥ 0, u(T) ≥ 0.
Firstly, we will prove u(0) ≥ 0 by the following two perspectives.

(i) If 0 <
∑m−2

i=1 ai ≤ 1, we have

u(0) =
γ

d

[∫T

0
(T − s)φq

(∫s

0
h(r)∇r + B

)

∇s −
m−2∑

i=1

ai

∫ ξi

0

(
ξi − s

)
φq

(∫s

0
h(r)∇r + B

)

∇s

]

≥ γ

d

[∫T

0
(T − s)φq

(∫s

0
h(r)∇r + B

)

∇s −
m−2∑

i=1

ai

∫T

0
(T − s)φq

(∫s

0
h(r)∇r + B

)

∇s

]

=
γ

d

(

1 −
m−2∑

i=1

ai

)∫T

0
(T − s)φq

(∫ s

0
h(r)∇r + B

)

∇s ≥ 0.

(2.16)



6 Discrete Dynamics in Nature and Society

(ii) If
∑m−2

i=1 ai > 1, by (2.8), we have

u(0) =
γ

d

[∫T

0
(T − s)φq

(∫s

0
h(r)∇r + B

)

∇s −
m−2∑

i=1

ai

∫ ξi

0

(
ξi − s

)
φq

(∫s

0
h(r)∇r + B

)

∇s

]

≥ γ

d

[∫T

0
(T − s)φq

(∫s

0
h(r)∇r + B

)

∇s −
m−2∑

i=1

ai

∫T

0

(
ξi − s

)
φq

(∫s

0
h(r)∇r + B

)

∇s

]

=
γ

d

∫T

0

[(

T −
m−2∑

i=1

aiξi

)

+

(
m−2∑

i=1

ai − 1

)

s

]

φq

(∫ s

0
h(r)∇r + B

)

∇s ≥ 0.

(2.17)

On the other hand, we have

u(T) = −
∫T

0
(T − s)φq

(∫s

0
h(r)∇r + B

)

∇s +
β + γ

d

∫T

0
(T − s)φq

(∫ s

0
h(r)∇r + B

)

∇s

− β + γ

d

m−2∑

i=1

ai

∫ ξi

0

(
ξi − s

)
φq

(∫s

0
h(r)∇r + B

)

∇s

≥ β

d

[
m−2∑

i=1

ai

∫ ξi

0

(
ξi(T − s) − T

(
ξi − s

))
φq

(∫s

0
h(r)∇r + B

)

∇s

+
m−2∑

i=1

aiξi

∫T

ξi

(T − s)φq

(∫s

0
h(r)∇r + B

)

∇s

]

+
γ

d

m−2∑

i=1

ai

[∫T

0
(T − s)φq

(∫s

0
h(r)∇r + B

)

∇s −
∫T

0

(
ξi − s

)
φq

(∫ s

0
h(r)∇r + B

)

∇s

]

=
β

d

m−2∑

i=1

ai

[∫ ξi

0

(
T − ξi

)
sφq

(∫s

0
h(r)∇r + B

)

∇s + ξi

∫T

ξi

(T − s)φq

(∫ s

0
h(r)∇r + B

)

∇s

]

+
γ

d

m−2∑

i=1

ai

[∫T

0

(
T − ξi

)
φq

(∫s

0
h(r)∇r + B

)

∇s

]

≥ 0.

(2.18)

The proof is completed.

Lemma 2.8. Let ai ≥ 0, i = 1, . . . , m − 2, 0 <
∑m−2

i=1 aiξi < T, d > 0. If h ∈ Cld[0, T]T and h(t) ≥ 0,
then the unique positive solution u(t) of (BVP) (2.8) satisfies

inf
t∈[ξm−2,T]T

u(t) ≥ σ||u||, (2.19)

where σ = min{am−2(T − ξm−2)/(T − am−2ξm−2), am−2ξm−2/T, ξm−2/T}, ||u|| = supt∈[0,T]T |u(t)|.
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Proof. Let u(t) = maxt∈[0,T]T u(t) = ||u||, we shall discuss it from the following two
perspectives.

Case 1. If 0 <
∑m−2

i=1 ai < 1.
Firstly, assume t < ξm−2 < T , then mint∈[ξm−2,T]T u(t) = u(T). By u(T) =

∑m−2
i=1 aiu(ξi) ≥

am−2u(ξm−2),we have

u(t) ≤ u(T) +
u(T) − u

(
ξm−2

)

T − ξm−2
(0 − T) = u(T) − T

T − ξm−2
u(T) +

T

T − ξm−2
u
(
ξm−2

)

≤ u(T)
(

1 − T

T − ξm−2
+

T

am−2
(
T − ξm−2

)

)

= u(T)
T − am−2ξm−2
am−2

(
T − ξm−2

) .

(2.20)

So

min
t∈[ξm−2,T]T

u(t) ≥ am−2
(
T − ξm−2

)

T − am−2ξm−2
||u||. (2.21)

Secondly, assume ξm−2 < t < T , then mint∈[ξm−2,T]T u(t) = u(T). Otherwise, we have
mint∈[ξm−2,T]T u(t) = u(ξm−2), then t ∈ [ξm−2, T]T, u(ξm−2) ≥ u(ξm−1) ≥ · · · ≥ u(ξ2) ≥ u(ξ1).
By 0 <

∑m−2
i=1 ai < 1, we have

u(T) =
m−2∑

i=1

aiu
(
ξi
) ≤

m−2∑

i=1

aiu
(
ξm−2

)
< u
(
ξm−2

) ≤ u(T), (2.22)

a contradiction.
By concave of u(t), we get u(ξm−2)/ξm−2 ≥ u(t)/t ≥ u(t)/T . In fact, since u(T) ≥

am−2u(ξm−2), then u(T)/am−2ξm−2 ≥ u(t)/T , which implies

min
t∈[ξm−2,T]T

u(t) ≥ am−2ξm−2
T

||u||. (2.23)

Case 2. If
∑m−2

i=1 ai > 1.
Firstly, assume u(ξm−2) ≤ u(T), then mint∈[ξm−2,T]Tu(t) = u(ξm−2). By concave of u(t),we

have t ∈ [ξm−2, t]T, which implies u(ξm−2)/ξm−2 ≥ u(t)/t ≥ u(t)/T , then

min
t∈[ξm−2,T]T

u(t) ≥ ξm−2
T

||u||. (2.24)

Secondly, assume u(ξm−2) > u(t), then mint∈[ξm−2,T]Tu(t) = u(T), and t ∈ [ξ1, T]T. If not,
t ∈ [0, ξ1), then u(ξ1) ≥ · · · ≥ u(ξm−2) > u(T). So, we have

u(T) =
m−2∑

i=1

aiu
(
ξi
)
> u(T)

m−2∑

i=1

ai ≥ u(T), (2.25)
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a contradiction. By
∑m−2

i=1 ai > 1, there exists ξ ∈ {ξ1, ξ2, . . . , ξm−2} such that u(ξ) ≤ u(T), then
u(ξ1) ≤ u(ξ2) ≤ · · · ≤ u(ξm−2) ≤ u(1). By concave of u(t),we have u(1)/ξ1 ≥ u(ξ1)/ξ1 ≥ u(t)/t ≥
u(t)/T , then

min
t∈[ξm−2,T]T

u(t) ≥ ξ1||u||. (2.26)

Therefore, by (2.21)–(2.26), we have

inf
t∈[ξm−2,T]T

u(t) ≥ σ||u||, (2.27)

where σ = min{am−2(T − ξm−2)/(T − am−2ξm−2), am−2ξm−2/T, ξm−2/T}. The proof is complete.

Let E = Cld[0, T]T be endowed with the ordering x ≤ y if x(t) ≤ y(t), for all t ∈ [0, T]T,
and ‖u‖ = maxt∈[0,T]T |u(t)| is defined as usual by maximum norm. Clearly, it follows that
(E, ‖u‖) is a Banach space.

We define a cone by

K =
{
u : u ∈ E, u(t) is concave, nonnegative on [0, T]T, inf

t∈[ξm−2,T]T
u(t) ≥ σ||u||

}
. (2.28)

Define an operator S : K → E by setting

Su(t) = −
∫ t

0
(t − s)φq

(∫s

0
a(r)f

(
r, u(r)

)∇r +A

)

∇s

+
βt + γ

d

∫T

0
(T − s)φq

(∫ s

0
a(r)f

(
r, u(r)

)∇r +A

)

∇s

− βt + γ

d

m−2∑

i=1

ai

∫ ξi

0

(
ξi − s

)
φq

(∫ s

0
a(r)f

(
r, u(r)

)∇r +A

)

∇s,

(2.29)

where A =
∑m−2

i=1 bi
∫ ξi
0 a(r)f(r, u(r))∇r/(1 −∑m−2

i=1 bi). Obviously, u is a solution of boundary
value problem (1.6) if and only if u is a fixed point of operator S.

Lemma 2.9. S : K → K is completely continuous.

Proof. By (H2) and Lemmas 2.7-2.8, we easily get SK ⊂ K. By Arzela-Ascoli theorem and
Lebesgue dominated convergence theorem, we can easily prove S is completely continuous.

Lemma 2.10 (see [15]). LetK be a cone in a Banach space X. LetD be an open bounded subset of X
with DK = D ∩K/=∅ and DK /=K. Assume that A : DK → K is a compact map such that x /=Ax
for x ∈ ∂DK. Then the following results hold.
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(1) If ‖Ax‖ ≤ ‖x‖, x ∈ ∂DK, then iK(A,DK) = 1.

(2) If there exists x0 ∈ K \ {0} such that x /=Ax + λx0, for all x ∈ ∂DK and all λ > 0, then
iK(A,DK) = 0.

(3) LetU be open in X such thatU ⊂ DK. If iK(A,DK) = 1 and iK(A,UK) = 0, thenA has a
fixed point inDK \UK. The same result holds if iK(A,DK) = 0 and iK(A,UK) = 1, where
iK(A,DK) denotes fixed point index.

One defines

Kρ =
{
u(t) ∈ K : ‖u‖ < ρ

}
, Ωρ =

{
u(t) ∈ K : min

ξm−2≤t≤T
x(t) < σρ

}
. (2.30)

Lemma 2.11 (see [15]). Ωρ defined above has the following properties:

(a) Kσρ ⊂ Ωρ ⊂ Kρ;

(b) Ωρ is open relative to K;

(c) x ∈ ∂Ωρ if and only if minξm−2≤t≤Tx(t) = σρ;

(d) if x ∈ ∂Ωρ, then σρ ≤ x(t) ≤ ρ, for t ∈ [ξm−2, T]T.

For the convenience, we introduce the following notations:

f
ρ
σρ = min

{

min
ξm−2≤t≤T

f(t, u)
φp(ρ)

: u ∈ [σρ, ρ]
}

, f
ρ

0 = max
{

max
0≤t≤T

f(t, u)
φp(ρ)

: u ∈ [0, ρ]
}

,

fα = lim
u→α

supmax
0≤t≤T

f(t, u)
φp(u)

, fα = lim
u→α

inf max
ξm−2≤t≤T

f(t, u)
φp(u)

(α := ∞ or 0+),

1
m

=
(βT + γ)

d

∫T

0
(T − s)∇sφq

(∫T

0
a(r)∇r +

∑m−2
i=1 bi

∫ ξi
0 a(r)∇r

1 −∑m−2
i=1 bi

)

,

1
M

=
1
d

∫T

ξm−2
(T−s)φq

(∫s

ξm−2
a(r)∇r

)

∇smin

{

βξm−2+γ, βmax

{
m−2∑

i=1

aiξ1, am−2ξm−2

}

+γ
m−2∑

i=1

ai

}

.

(2.31)

Lemma 2.12. If f satisfies the following condition:

f
ρ

0 ≤ φp(m), u /=Su, u ∈ ∂Kρ, (2.32)

then

iK
(
S,Kρ

)
= 1. (2.33)
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Proof. For u ∈ ∂Kρ, then from (2.32), we have

∫s

0
a(r)f

(
r, u(r)

)∇r +A =
∫ s

0
a(r)f

(
r, u(r)

)∇r +

∑m−2
i=1 bi

∫ ξi
0 a(r)f(r, u(r))∇r

1 −∑m−2
i=1 bi

≤
∫T

0
a(r)f

(
r, u(r)

)∇r +

∑m−2
i=1 bi

∫ ξi
0 a(r)f(r, u(r))∇r

1 −∑m−2
i=1 bi

≤ φp(mρ)
(∫T

0
a(r)∇r +

∑m−2
i=1 bi

∫ ξi
0 a(r)∇r

1 −∑m−2
i=1 bi

)

.

(2.34)

So that

φq

(∫s

0
a(r)f

(
r, u(r)

)∇r +A

)

≤ mρφq

(∫T

0
a(r)∇r +

∑m−2
i=1 bi

∫ ξi
0 a(r)∇r

1 −∑m−2
i=1 bi

)

. (2.35)

Therefore,

Su(t) ≤ βt + γ

d

∫T

0
(T − s)φq

(∫s

0
a(r)f

(
r, u(r)

)∇r +A

)

∇s

≤ (βT + γ)mρ

d

∫T

0
(T − s)∇sφq

(∫T

0
a(r)∇r +

∑m−2
i=1 bi

∫ ξi
0 a(r)∇r

1 −∑m−2
i=1 bi

)

= ρ.

(2.36)

This implies that ||Su|| ≤ ||u|| for u ∈ ∂Kρ. Hence, by Lemma 2.10(1) it follows that
iK(S,Kρ) = 1.

Lemma 2.13. If f satisfies the following condition:

f
ρ
σρ ≥ φp(Mσ), u /=Su, u ∈ ∂Ωρ, (2.37)

then

iK
(
S,Ωρ

)
= 0. (2.38)

Proof. Let e(t) ≡ 1 for t ∈ [0, T]T. Then e ∈ ∂K1. We claim that

u/=Su + λe, u ∈ ∂Ωρ, λ > 0. (2.39)
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In fact, if not, there exist u0 ∈ ∂Ωρ and λ0 > 0 such that u0 = Su0 + λ0e. By f
ρ
σρ ≥ φp(Mσ), we

have

∫s

0
a(r)f

(
r, u0(r)

)∇r +A =
∫ s

0
a(r)f

(
r, u0(r)

)∇r +

∑m−2
i=1 bi

∫ ξi
0 a(r)f(r, u0(r))∇r

1 −∑m−2
i=1 bi

≥
∫ s

ξm−2
a(r)f+(r, u(r)

)∇r

≥ φp(Mσρ)
(∫ s

ξm−2
a(r)∇r

)

.

(2.40)

So that

φq

(∫s

0
a(r)f

(
r, u(r)

)∇r +A

)

≥ Mσρφq

(∫s

ξm−2
a(r)∇r

)

. (2.41)

By [16, Theorem 2.2(iv)], for t > 0,we have

(∫ t
0(t − s)φq

(∫s
0a(r)f(r, u0(r))∇r +A

)∇s

t

)Δ

=

∫ t
0sφq

(∫s
0a(r)f(r, u0(r))∇r +A

)∇s

tσ(t)
≥ 0.

(2.42)

So, for i = 1, 2, . . . , m − 2, we have

∫ ξm−2
0

(
ξm−2 − s

)
φq

(∫s
0a(r)f(r, u0(r))∇r +A

)∇s

ξm−2
≥
∫ ξi
0

(
ξi − s

)
φq

(∫s
0a(r)f(r, u0(r))∇r +A

)∇s

ξi
.

(2.43)

Therefore,

Su0
(
ξm−2

) ≥ β

d

[

ξm−2

∫T

0
(t − s)φq

(∫s

0
a(r)f

(
r, u0(r)

)∇r +A

)

∇s

− T

∫ ξm−2

0

(
ξm−2 − s

)
φq

(∫ s

0
a(r)f

(
r, u0(r)

)∇r +A

)

∇s

]

+
γ

d

[∫T

0
(t − s)φq

(∫s

0
a(r)f

(
r, u0(r)

)∇r +A

)

∇s

−
∫ ξm−2

0

(
ξm−2 − s

)
φq

(∫s

0
a(r)f

(
r, u0(r)

)∇r +A

)

∇s

]
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≥ βξm−2 + γ

d

∫T

ξm−2
(T − s)φq

(∫ s

0
a(r)f

(
r, u0(r)

)∇r +A

)

∇s

≥ (βξm−2 + γ)Mσρ

d

∫T

ξm−2
(T − s)φq

(∫s

ξm−2
a(r)∇r

)

∇s,

(2.44)

Su0(T) ≥
β

d

m−2∑

i=1

ai

[∫ ξi

0

(
t − ξi

)
sφq

(∫ s

0
a(r)f

(
r, u0(r)

)∇r +A

)

∇s

+ ξi

∫T

ξi

(T − s)φq

(∫s

0
a(r)f

(
r, u0(r)

)∇r +A

)

∇s

]

+
γ

d

m−2∑

i=1

[∫T

0
(t − s)φq

(∫s

0
a(r)f

(
r, u0(r)

)∇r +A

)

∇s

−
∫ ξi

0
(T − s)φq

(∫s

0
a(r)f

(
r, u0(r)

)∇r +A

)

∇s

]

≥ β

d

m−2∑

i=1

aiξi

∫T

ξi

(t − s)φq

(∫s

0
a(r)f

(
r, u0(r)

)∇r +A

)

∇s

+
γ

d

m−2∑

i=1

∫T

ξi

(t − s)φq

(∫s

0
a(r)f

(
r, u0(r)

)∇r +A

)

∇s

≥ Mσρ

d

(

βmax

{
m−2∑

i=1

aiξ1, am−2ξm−2

}

+ γ
m−2∑

i=1

)∫T

ξm−2
(T − s)φq

(∫s

ξm−2
a(r)∇r

)

∇s.

(2.45)

Obviously, we can know

min
t∈[ξm−2,T]T

Su0(t) = min
{
Su0
(
ξm−2

)
, Su0(T)

}

≥ Mσρ

d

∫T

ξm−2
(T − s)φq

(∫s

ξm−2
a(r)∇r

)

∇s

×min

{

βξm−2 + γ, βmax

{
m−2∑

i=1

aiξ1, am−2ξm−2

}

+ γ
m−2∑

i=1

}

≥ σρ.

(2.46)

For t ∈ [ξm−2, T]T, then

u0(t) = Su0(t) + λ0e(t) ≥ min
t∈[ξm−2,T]

Su0(t) + λ0

= min
{
Su0
(
ξm−2

)
, Su0(T)

}
+ λ0 ≥ σρ + λ0.

(2.47)
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This together with Lemma 2.11(c) implies that

σρ ≥ σρ + λ0, (2.48)

a contradiction. Hence, by Lemma 2.10(2), it follows that iK(S,Ωρ) = 0.

3. Main results

We now give our results on the existence of positive solutions of BVP (1.6).

Theorem 3.1. Suppose conditions (H1) and (H2) hold, and assume that one of the following
conditions holds.

(H3) There exist ρ1, ρ2 ∈ (0,+∞) with ρ1 < σρ2 such that f
ρ1
0 ≤ φp(m), fρ2

σρ2 ≥ φp(Mσ).

(H4) There exist ρ1, ρ2 ∈ (0,+∞) with ρ1 < ρ2 such that f
ρ2
0 ≤ φp(m), fρ1

σρ1 ≥ φp(Mσ).

Then, the boundary value problem (1.6) has at least one positive solution.

Proof. Assume that (H3) holds, we show that S has a fixed point u1 inΩρ2\Kρ1 . By f
ρ1
0 ≤ φp(m)

and Lemma 2.12, we have that

iK
(
S,Kρ1

)
= 1. (3.1)

By f
ρ2
σρ2 ≥ φp(Mσ) and Lemma 2.13, we have that

iK
(
S,Kρ2

)
= 0. (3.2)

By Lemma 2.11(a) and ρ1 < σρ2, we have Kρ1 ⊂ Kσρ2 ⊂ Ωρ2 . It follows from Lemma 2.10(3)
that S has a fixed point u1 inΩρ2 \Kρ1 . When condition (H4) holds, the proof is similar to the
above, so we omit it here.

As a special case of Theorem 3.1, we obtain the following result.

Corollary 3.2. Suppose conditions (H1) and (H2) hold, and assume that one of the following
conditions holds.

(H5) 0 ≤ f0 < φp(m) and φp(M) < f∞ ≤ ∞.

(H6) 0 ≤ f∞ < φp(m) and φp(M) < f0 ≤ ∞.

Then, the boundary value problem (1.6) has at least one positive solution.

Theorem 3.3. Assume conditions (H1) and (H2) hold, and suppose that one of the following
conditions holds.

(H7) There exist ρ1, ρ2, and ρ3 ∈ (0,+∞) with ρ1 < σρ2 and ρ2 < ρ3 such that

f
ρ1
0 ≤ φp(m), f

ρ2
σρ2 ≥ φp(Mσ), u /=Su, ∀u ∈ ∂Ωρ2 , f

ρ3
0 ≤ φp(m). (3.3)
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(H8) There exist ρ1, ρ2, and ρ3 ∈ (0,+∞) with ρ1 < ρ2 < σρ3 such that

f
ρ2
0 ≤ φp(m), f

ρ1
σρ1 ≥ φp(Mσ), u /=Su, ∀u ∈ ∂Kρ2 , f

ρ3
σρ3 ≥ φp(Mσ). (3.4)

Then, the boundary value problem (1.6) has at least two positive solutions. Moreover, if in (H7) f
ρ1
0 ≤

φp(m) is replaced by fρ1
0 < φp(m), then the BVP (1.6) has a third positive solution u3 ∈ Kρ1 .

Proof. Assume that condition (H7) holds, we show that either S has a fixed point u1 in ∂Kρ1

or Ωρ2 \Kρ1 . If u/=Su for u ∈ ∂Kρ1 ∪ ∂Kρ3 . By Lemma 2.12 and Lemma 2.13, we have that

iK
(
S, Kρ1

)
= 1,

iK
(
S,Kρ3

)
= 1,

iK
(
S, Kρ2

)
= 0.

(3.5)

By Lemma 2.11(a) and ρ1 < σρ2, we have Kρ1 ⊂ Kσρ2 ⊂ Ωρ2 . It follows from Lemma 2.10(3)
that S has a fixed point u1 in Ωρ2 \ Kρ1 . Similarly, S has a fixed point u2 in Kρ3 \ Ωρ2 . When
condition (H8) holds, the proof is similar to the above, so we omit it here.

As a special case of Theorem 3.3, we obtain the following result.

Corollary 3.4. Assume conditions (H1) and (H2) hold, if there exists ρ > 0 such that one of the
following conditions holds.

(H9) 0 ≤ f0 < φp(m), fρ
σρ ≥ φp(Mσ), u /=Su, ∀u ∈ ∂Ωρ and 0 ≤ f∞ < φp(m).

(H10) φp(M) < f0 ≤ ∞, f
ρ

0 ≤ φp(m), u /=Su, ∀u ∈ ∂Kρ and φp(M) < f∞ ≤ ∞.

Then, the boundary value problem (1.6) has at least two positive solutions.

4. Some examples

In this section, we present some simple examples to explain our results. We only study the
case T = R, (0, T)T = (0, 1).

Example 4.1. Consider the following three-point boundary value problem with p-Laplacian:

(
φp

(
u′′))′ + a(t)f(t, u) = 0, 0 < t < 1,

u′(0) = 0, u(1) =
1
2
u

(
1
3

)

,
(
φp

(
u′′)(0)

)
=

1
4

(

φp

(
u′′)
(
1
3

))

,
(4.1)

where β = 0, γ = 1, a1 = 1/2, b1 = 1/4, ξ1 = 1/3, a(t) = 1, p = q = 2. By computing, we can
know σ = 1/6,M = 819/16, m = 9/10. Let ρ1 = 1, ρ2 = 208, then σρ1 < ρ1 < σρ2 < ρ2. We
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define a nonlinearity f as follows:

f(t, u) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

9t3

10

(
1
6
− u

)3

, 0 < t < 1, u ∈
[

0,
1
6

]

,

9t3

10
sin
(
6
5
π

2
u − 1

5
π

2

)

, 0 < t < 1, u ∈
[
1
6
, 1
]

,

9t3

10

(
208
202

− 6
202

u

)

+
819
96

(
6
202

u − 6
202

)

, 0 < t < 1, u ∈
[

1,
208
6

]

,

819
96

+ t3
(

u − 208
6

)2

, 0 < t < 1, u ∈
[
208
6

, 208
]

,

819
96

+ t3
(

208 − 208
6

)2[
1 + (u − 208)

]
, 0 < t < 1, u ∈

[

208,+∞
]

.

(4.2)

Then, by the definition of f , we have

(i) fρ1
0 ≤ φp(m) = 9/10;

(ii) fρ2
σρ2 ≥ φp(Mσ) = 819/19968.

So condition (H3) holds, by Theorem 3.1, boundary value problem (4.1) has at least
one positive solution.
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