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The purpose of this paper is to assess the statistical characterization of weighted networks in terms
of the generalization of the relevant parameters, namely, average path length, degree distribution,
and clustering coefficient. Although the degree distribution and the average path length admit
straightforward generalizations, for the clustering coefficient several different definitions have been
proposed in the literature. We examined the different definitions and identified the similarities
and differences between them. In order to elucidate the significance of different definitions of the
weighted clustering coefficient, we studied their dependence on the weights of the connections.
For this purpose, we introduce the relative perturbation norm of the weights as an index to assess
the weight distribution. This study revealed new interesting statistical regularities in terms of the
relative perturbation norm useful for the statistical characterization of weighted graphs.
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1. Introduction

Complex systems may also [1] emerge from a large number of interdependent and interacting
elements. Networks have proven to be effective models of natural or man-made complex
systems, where the elements are represented by the nodes and their interactions by the links.
Typical well-known examples include communication and transportation networks, social
networks, and biological networks [2–5].

Although the statistical analysis of the underlying topological structure has been very
fruitful [2–5], it was limited due to the fact that in real networks the links may have different
capacities or intensities or flows of information or strengths. For example, weighted links
can be used for the Internet to represent the amount of data exchanged between two hosts
in the network. For scientific collaboration networks, the weight depends on the number of
coauthored papers between two authors. For airport networks, it is either the number of
available seats on direct flight connections between airports i and j or the actual number
of passengers that travel from airport i to j. For neural networks, the weight is the number
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of junctions between neurons and for transportation networks it is the Euclidean distance
between two destinations.

The diversification of the links is described in terms of weights on the links. Therefore,
the statistical analysis has to be extended from graphs to weighted complex networks. If all
links are of equal weight, the statistical parameters used for unweighted graphs are sufficient
for the statistical characterization of the network. Therefore, the statistical parameters of the
weighted graphs should reduce to the corresponding parameters of the conventional graphs if
all weights are put equal to unity.

Complex graphs are characterized by three main statistical parameters, namely, the
degree distribution, the average path length, and the clustering coefficient. We will briefly
mention the definitions for clarity and for a better understanding of the proposed extensions
of these parameters for weighted graphs.

The structure of a network with N nodes is represented by an N × N binary matrix
A = {aij}, known as adjacency matrix, whose element aij equals 1, when there is a link joining
node i to node j and 0 otherwise (i, j = 1, 2, . . . ,N).

In the case of undirected networks with no self-links (links connecting a node to itself),
the adjacency matrix is symmetric (aij = aji) and all elements of the main diagonal equal 0
(aii = 0).

The degree ki of a node i is defined as the number of its neighbors, that is, the number of
links incident to node i:

ki =
∑

j∈Π(i)

aij , (1.1)

where aij the elements of the adjacency matrix A and Π(i) the neighborhood of node i.
The degree distribution is the probability that some node has k connections to other

nodes. Many real complex networks have been found to be described by a power law degree,
P(k) ∼ k−γ , with 2 ≤ γ ≤ 3.

The characteristic path length of a network is defined as the average of the shortest path
lengths between any two nodes:

L =
2

N(N − 1)

∑

i,j

dij , (1.2)

where dij is the shortest path length between i and j, defined as the minimum number of links
traversed to get from node i to node j.

In many real networks, it is found that the existence of a link between nodes i and j and
between nodes i and k enhances the probability that node j will also be connected to node k.
This tendency of the neighbors of any node i to connect to each other is called clustering and
is quantified by the clustering coefficient Ci, which is the fraction of triangles in which node i
participates, to the maximum possible number of such triangles:

Ci =
ni

ki
(
ki − 1

) =

∑
j,kaijajkaki

ki
(
ki − 1

) , ki /= 0, 1, (1.3)

where (1/2)ni = (1/2)
∑

j,kaijajkaki is the actual number of triangles in which node i
participates, that is, the actual number of links between the neighbors of node i, and ki(ki−1)/2
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is the maximum possible number of links, when the subgraph of neighbors of node i is
completely connected.

The clustering coefficient Ci equals 1 if node i is the center of a fully interconnected
cluster, and equals 0 if the neighbors of node i are not connected to each other.

In order to characterize the network as a whole, we usually consider the average
clustering coefficient C over all the nodes. We may also consider the average clustering
coefficient C(k) over the node degree k.

Studies of real complex networks have shown that their connection topology is neither
completely random nor completely regular, but lies between these extreme cases. Many real
networks share features of both extreme cases. For example, the short average path length,
typical of random networks, comes along with large clustering coefficient, typical of regular
lattices. The coexistence of these attributes defines a distinct class of networks, interpolating
between regular lattices and random networks, known today as small world networks [3–
6]. Another class of networks emerges when the degree distribution is a power law (scale
free) distribution, which signifies the presence of a nonnegligible number of highly connected
nodes, known as hubs. These nodes, with very large degree k compared to the average degree
〈k〉, are critical for the network’s robustness and vulnerability. These networks are known
today as scale-free networks [2–4, 7].

The purpose of this paper is to assess the statistical characterization of weighted
networks in terms of proper generalizations of the relevant parameters, namely, average
path length, degree distribution, and clustering coefficient. After reviewing the definitions
of the weighted average path length, weighted degree distribution and weighted clustering
coefficient in Section 2, we compare them in Section 3. Although the degree distribution and
the average path length admit straightforward generalizations, for the clustering coefficient
several different definitions have been proposed. In order to elucidate the significance of
different definitions of the weighted clustering coefficient, we studied their dependence on
the weights of the connections in Section 4, where we introduce the relative perturbation norm
as an index to assess the weight distribution. This study revealed new interesting statistical
regularities in terms of the relative perturbation norm useful for the statistical characterization
of weighted graphs.

2. Statistical parameters of weighted networks

The weights of the links between nodes are described by an N × N matrix W = {wij}. The
weight wij is 0 if the nodes i and j are not linked. We will consider the case of symmetric
positive weights (wij = wji ≥ 0), with no self-links (wii = 0).

In order to compare different networks or different kinds of weights, we usually
normalize the weights in the interval [0, 1], by dividing all weights by the maximum weight.
The normalized weights are wij/max(wij).

The statistical parameters for weighted networks are defined as follows.
The node degree ki =

∑
j∈Π(i)aij , which is the number of links attached to node i, is

extended directly to the strength or weighted degree, which is the sum of the weights of all
links attached to node i:

si =
∑

j∈Π(i)

wij . (2.1)
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The strength of a node takes into account both the connectivity as well as the weights of the
links.

The degree distribution is also extended for the weighted networks to the strength
distribution P(s), which is the probability that some node’s strength equals s. Recent studies
indicate power law P(s) ∼ s−a [8–10].

There are two different generalizations of the characteristic path length in the literature,
applicable to transportation and communication networks. In the case of transportation
networks, the weighted shortest path length dij between the nodes i and j is defined as the
smallest sum of the weights of the links throughout all possible paths from node i to node j
[11, 12]:

dtr
ij = min

γ(i,j)∈Γ(i,j)

[
∑

m,n∈γ(i,j)
wmn

]
, (2.2)

where γ(i, j) is a path from node i to node j and Γ(i, j) is the class of paths from i to j.
The weight describes physical distances and/or cost usually involved in transportation

networks. The capacity, intensity, strength, or efficiency of the connection is inversely
proportional to the weight.

However, this definition is not suitable for communication networks, where the
efficiency of the communication channel between two nodes is proportional to the weight.
The shortest path length in case of communication networks is defined as the smallest sum of
the inverse weights of the links throughout all possible paths from node i to node j:

dcom
ij = min

γ(i,j)∈Γ(i,j)

[
∑

m,n∈γ(i,j)

1
wmn

]
. (2.3)

The weighted characteristic path length for both cases is the average of all shortest path lengths
and it is calculated by formula (1.2).

We found in the literature seven proposals for the definitions of the weighted clustering
coefficient, which we will review.

(i) Zhang and Horvath’s [13] definition is as follows:

CZ
w,i =

∑
j

∑
kwijwjkwki

(∑
jwij

)2 −∑
jw

2
ij

. (2.4)

The weights in this definition are normalized. The idea of the generalization is the substitution
of the elements of the adjacency matrix by the weights in the nominator of formula (1.3); as
for the denominator, the upper limit of the nominator is obtained in order to normalize the
coefficient between 0 and 1. The definition originated from gene coexpression networks.

As shown by Kalna and Higham [14], an alternative formula that may apply for this
definition is

CK
w,i =

∑
j

∑
kwijwjkwki

∑
j

∑
k/=jwijwik

. (2.5)
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(ii) Lopez-Fernandez et al.’s [15] definition is

CL
w,i =

∑

j,k∈Π(i)

wjk

ki
(
ki − 1

) . (2.6)

The weights in this definition are not normalized. The idea of the generalization is the
substitution of the number of links that exist between the neighbors of node i in formula (1.3)
by the weight of the link between the neighbors j and k. The definition originated from an
affiliation network for committers (or modules) of free, open source software projects.

(iii) Onnela et al.’s [16] definition is

CO
w,i =

∑
j,k

(
wijwjkwki

)1/3

ki
(
ki − 1

) . (2.7)

The weights in this definition are normalized. The quantity I(g) = (wijwjkwki)
1/3 is called

“intensity” of the triangle ijk. The concept for this generalization is to substitute the total
number of the triangles in which node i participates by the intensity of the triangle, which
is geometric mean of the links’ weights.

(iv) Barrat et al.’s [8] definition is

CB
w,i =

1
si
(
ki − 1

)
∑

j,k

wij +wik

2
aijajkaki. (2.8)

The weights in this definition are not normalized. The idea of the generalization is the
substitution of the elements of the adjacency matrix in formula (1.3), by the average of the
weights of the links between node i and its neighbors j and k with respect to normalization
factor si(ki − 1) which ensures that 0 ≤ CB

w,i ≤ 1. This definition was used for airport and
scientific collaboration networks.

(v) Serrano et al.’s [17] definition is

CS
w,i =

∑
j

∑
kwijwikakj

s2
i

(
1 − Yi

) , (2.9)

where Yi =
∑

j(wij/si)
2 has been named “disparity.”

The weights in this definition are not normalized. This formula is used for the
generalization of the average clustering coefficient with degree k, which has a probabilistic
interpretation just as the unweighted clustering coefficient.

(vi) Holme et al.’s [18] definition is

CH
w,i =

∑
j

∑
kwijwjkwki

max
(
wij

)∑
j

∑
k/=jwijwik

. (2.10)

The only difference between formulas (2.4) and (2.10) is that (2.10) is divided by max(wij).
We will not discuss this definition in the comparison because the essence of the

comparison is already addressed by definition (2.4).
(vii) Li et al.’s [19] definition of the weighted clustering coefficient is another version of

the Lopez-Fernandez proposal (2.6).
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3. The relation between the different weighted clustering coefficients

(1) All definitions reduce to the clustering coefficient (1.3), when the weights wij are replaced
by the adjacency matrix elements.

(2) All weighted clustering coefficients reduce to 0 when there are no links between the
neighbors of node i, that is, when ajk = wjk = 0.

(3) In the other extreme, all weighted clustering coefficients take the value 1 when all
neighbors of node i are connected to each other. Formulas (2.4) and (2.6) take the value 1 if the
weights between the neighbors of the node i are 1, independently of the weights of the other
links. Formula (2.7) takes the value 1, if and only if all the weights are equal to 1. Formulas
(2.8) and (2.9) take the value 1 for all fully connected graphs, independently of all the weights.

These calculations are presented in Appendix A.
(4) We calculated the values of the weighted clustering coefficients of node i

participating in a fully connected triangle. Formulas (2.4) and (2.6) take the value wjk of the
weight of the link between neighbors j and k of node i. Formula (2.7) becomes equal to the
intensity of the triangle CO

w,i = (wijwjkwki)
1/3 for all nodes of the triangle. Formulas (2.8) and

(2.9) take the value 1 for all fully connected graphs, independently of all weights.
These calculations are presented in Appendix B.

4. The dependence of the weighted clustering coefficients on the weights

In order to understand the meaning of the different proposals or definitions (2.4), (2.6), (2.7),
(2.8), and (2.9) of the weighted clustering coefficient, we will examine their dependence on
the weights, without alteration of the topology of the graph. We simply examine the values of
these definitions for different distributions of weights, substituting the nonzero elements of the
adjacency matrix A by weights normalized between 0 and 1.

A way to distinguish and compare different weight distributions over the same graph
is in terms of the relative perturbation norm ‖A −W‖/‖A‖, which gives the percentage of the
perturbation of the adjacency matrix introduced by the weights. For simplicity, we considered
the L2 norm.

Although the weight distributions of certain real weighted networks have been found
to be inhomogeneous like the exponential [8–10, 12, 19], we will examine the dependence
of the weighted clustering coefficient with respect to the relative perturbation norms for the
exponential as well as for the uniform and normal distributions, for different graphs.

We have examined many networks from 20 up to 300 nodes with different topologies that
were generated by the networks software PAJEK [20]. The weights examined are randomly
generated numbers following uniform, normal, or exponential distributions with several
parameter values, so that the percentages of the perturbations scale from 0–90% increasing
by 10% at each perturbation. All simulations gave rise to the same results, Figures 3 and 4,
representing the typical trends of random and scale free networks, Figures 1 and 2. The related
statistical trend analysis is reported in Appendix C.

Observations on the dependence of the weighted clustering coefficients on the relative
perturbation norm are defined as follows.

(1) For the weighted clustering coefficients (2.4), (2.6), and (2.7), there is a clear linear
dependence of their values, in terms of the relative perturbation norm of the weighted network.
It is remarkable that no dependence is observed on the values of weights on specific links.
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Figure 1: The random network (Erdos-Renyi model) examined consists of 100 nodes and was generated
by the networks software PAJEK [20]. The clustering coefficient for the unweighted network is 0.3615.

Figure 2: The scale-free network (Barabasi-Albert extended model) examined consists of 100 nodes and
was generated by the networks software PAJEK [20]. The clustering coefficient for the unweighted network
is 0.6561.
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Figure 3: The values of all five weighted clustering coefficients Zhang and HorvathCZ
w,i (�), Lopez-

Fernandez et al. CL
w,i (�), Onnela et al. CO

w,i (�), Barrat et al. CB
w,i (�), and Serrano et al. CS

w,i (�), in terms
of the relative perturbation norm for the random network (Erdos-Renyi model) with 100 nodes. (a) The
weights are randomly generated numbers following the uniform distribution; (b) the weights are randomly
generated numbers following the normal distribution; (c) the weights are randomly generated numbers
following the exponential distribution.

The Zhang and Horvath (2.4), Lopez-Fernandez et al. (2.6), and Onnela et al. (2.7) weighted
clustering coefficients follow the same trend, decaying smoothly as the relative perturbation
norm increases. More specifically the trends of Zhang and Horvath (2.4) and Lopez-Fernandez
et al. (2.6) almost coincide, as expected (Section 3), while the trend of Onnela et al. (2.8) varies
slightly from the other two.

(2) The resulting linear models indicate that the values of the weighted clustering
coefficients decrease by 10% of the value of the unweighted clustering coefficient, as the relative
perturbation norm increases by 10%.
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Figure 4: The values of all five weighted clustering coefficients Zhang and HorvathCZ
w,i (�), Lopez-

Fernandez et al.CL
w,i (�), Onnela et al.CO

w,i (�), Barrat et al.CB
w,i (�), and Serrano et al.CS

w,i (�), in terms of
the relative perturbation norm for the scale-free network (Barabasi-Albert extended model) with 100 nodes.
(a) The weights are randomly generated numbers following the uniform distribution; (b) the weights are
randomly generated numbers following the normal distribution; (c) the weights are randomly generated
numbers following the exponential distribution.

(3) The dependence of the weighted clustering coefficients (2.8) and (2.9) on the weights
is not significant. The weighted clustering coefficients of Barrat et al. (2.8) and Serrano et al.
(2.9) do not change (variations appear after the first two decimal digits), regardless of the size
of the network or the distribution of the weights. As mentioned in Section 3, these coefficients
are independent of the weights when the graph is completely connected. We observe here
that the weighted clustering coefficients (2.8) and (2.9) are independent of the weights for
graphs that are not completely connected. We conjecture therefore that this is a general
fact.
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5. Concluding remarks

(1) From the observed dependence of the values of all five weighted clustering coefficients on
the relative perturbation norm, we conjecture that the proposed relative perturbation norm is
a reliable index of the weight distribution. The meaning of the decaying trend of weighted
clustering coefficients defined by Zhang and Horvath (2.4), Lopez-Fernandez et al. (2.6), and
Onnela et al. (2.7), with respect to the increase of the relative perturbation norm, is quite
natural. The clustering decreases almost linearly as the weights “decrease.”

(2) We presented in Appendices A and B the calculations demonstrating that all
definitions reduce to the clustering coefficient (1.3), when the weights wij are replaced by
the adjacency matrix elements. The values of the weighted clustering coefficients of node i
participating in a fully connected triangle are presented for completeness because we did not
found them in the literature.

Appendices

A. Calculations on the weighted clustering coefficient

The definitions (2.4)–(2.9) reduce to the clustering coefficient (1.3), when the weights wij are
replaced by the adjacency matrix elements.

(1) Zhang and Horvath’s is [13]

CZ
w,i =

∑
j

∑
kwijwjkwki

(∑
jwij

)2 −∑
jw

2
ij

. (A.1)

The proof is presented by the authors.
For example, for a fully connected network with four nodes,

CZ
w,1 =

∑4
j/=1

∑4
k/=1w1jwjkwk1

(∑4
j/=1w1j

)2 −∑4
j/=1w

2
1j

=

∑4
j/=1w1j

(
wj2w21 +wj3w31 +wj4w41

)

(
w12 +w13 +w14

)2 −w2
12 −w2

13 −w2
14

=
w12w23w31 +w12w24w41 +w13w32w21 +w13w34w41 +w14w42w21 +w14w43w31

2
(
w12w13 +w13w14 +w12w14

)

=
w12w23w31 +w13w34w41 +w12w24w41

w12w13 +w13w14 +w12w14
,

CZ
w,1 = 1 when w23 = w34 = w24 = 1.

(A.2)

(2) Lopez-Fernandez et al.’s is [15]

CL
w,i =

∑

j,k∈Π(i)

wjk

ki
(
ki − 1

) ; (A.3)
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this formula can be expressed as

CL
w,i =

∑
j,kwjkaijaik

ki
(
ki − 1

) . (A.4)

It is obvious that the formula reduces to the unweighted (1.3), when wjk are substituted by ajk.
(3) Onnela et al.’s [16]

CO
w,i =

∑
j,k

(
wijwjkwki

)1/3

ki
(
ki − 1

) (A.5)

reduces to the unweighted definition (1.3), when wjk are substituted by ajk:

(
aij

)1/3 = aij , hence
(
wijwjkwki

)1/3 =
(
aijajkaki

)1/3 = aijajkaki,

CO
w,i =

∑
j

∑
k

(
aijajkaki

)1/3

ki
(
ki − 1

) =

∑
j

∑
kaijajkaki

ki
(
ki − 1

) .

(A.6)

(4) Barrat et al.’s [8]

CB
w,i =

1
si
(
ki − 1

)
∑

j,k

wij +wik

2
aijajkaki (A.7)

reduces to the unweighted definition (1.3), when wij and wik are substituted by the adjacency
matrix elements:

si =
∑

j∈Π(i)

wij =
∑

j∈Π(i)

aij = ki, a2
ij = aij ,

CB
w,i =

1
ki
(
ki − 1

)
∑

j,k

aij + aik
2

aijajkaki =
1

ki
(
ki − 1

)
∑

j,k

aijaijajkaki + aikaijajkaki
2

=
1

ki
(
ki − 1

)
∑

j,k

a2
ijajkaki + aijajka

2
ki

2
=

1
ki
(
ki − 1

)
∑

j,k

aijajkaki + aijajkaki
2

=
1

ki
(
ki − 1

)
∑

j,k

aijajkaki.

(A.8)

(5) Serrano et al.’s [17] formula can be expressed as

CS
w,i =

∑
j

∑
kwijwikakj

s2
i

(
1 − Yi

) =

∑
j

∑
kwijwikakj

s2
i

(
1 −∑

j

(
wij/si

)2) =

∑
j

∑
kwijwikakj

s2
i

(
1 − (

1/s2
i

)∑
jw

2
ij

)

=

∑
j

∑
kwijwikakj

s2
i −

∑
jw

2
ij

=

∑
j

∑
kwijwikakj

(∑
jwij

)2 −∑
jw

2
ij

.

(A.9)

It is obvious that the formula reduces to the unweighted (1.3), when wjk are substituted by ajk.
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B. The values of the weighted clustering coefficients of some node i participating
in a fully connected triangle

We calculate the weighted clustering coefficient of node 1.
(1) Zhang and Horvath’s is [13]

CZ
w,1 =

∑3
j/=1

∑3
k/=1w1jwjkwk1

(∑3
j/=1w1j

)2 −∑3
j/=1w

2
1j

=

∑3
j/=1w1j

(
wj2w21 +wj3w31

)

(
w12 +w13

)2 −w2
12 −w2

13

=
w12w23w31 +w13w32w21

2w12w13
=

2w12w23w31

2w12w13
= w23.

(B.1)

(2) Lopez-Fernandez et al.’s is [15]

CL
w,1 =

∑3
k/=1

∑3
j/=1wjk

k1
(
k1 − 1

) =

∑3
k/=1

(
w2k +w3k

)

2(2 − 1)
=
w23 +w32

2
= w23. (B.2)

(3) Onnela et al.’s is [16]

CO
w,1 =

∑
j

∑
k

(
w1jwjkwk1

)1/3

k1
(
k1 − 1

) =

∑
j

(
w1j

)1/3∑
k

(
wjkwk1

)1/3

2(2 − 1)

=
1
2

∑

j

(
w1j

)1/3((
wj2w21

)1/3 +
(
wj3w31

)1/3)

=
1
2
[(
w12

)1/3(
w23w31

)1/3 +
(
w13

)1/3(
w32w21

)1/3]

=
1
2
[(
w12w23w31

)1/3 +
(
w13w32w21

)1/3] =
(
w12w23w31

)1/3 ≤ 1,

CO
w,1 = CO

w,2 = CO
w,3 = (w12w23w31)

1/3 ≤ 1.

(B.3)

(4) Barrat et al.’s is [8]

CB
w,i =

1
si(ki − 1)

∑

j,k

wij +wik

2
aijajkaki. (B.4)

Degree of node 1: k1 =
∑

j∈Π(1)a1j = 2.
Strength of node 1: s1 =

∑
j∈Π(1)w1j = w12 +w13;

CB
w,1 =

1
s1(k1 − 1)

∑

j,k

w1j +w1k

2
a1jajkak1

=
1

s1(2 − 1)

∑

j

(
w1j +w12

2
a1jaj2a21 +

w1j +w13

2
a1jaj3a31

)

=
1
s1

(
w13 +w12

2
a13a32a21 +

w12 +w13

2
a12a23a31

)

=
1

w12 +w13

(
w12 +w13

)
a12a23a31 = a12a23a31 = 1,

(B.5)

since a12 = a23 = a31 = 1.
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We also prove that Barrat et al.’s definition for the weighted clustering coefficient is
independent of all weights for all fully connected networks;

CB
w,i =

1
si
(
ki − 1

)
∑

j,h

wij +wih

2
aijajhahi =

1
si
(
ki − 1

)
ki∑

j

ki∑

h

wij +wih

2
aijajhahi

=
1

si
(
ki − 1

)
ki∑

h

(
wi1 +wih

2
ai1a1hahi +

wi2 +wih

2
ai2a2hahi + · · · + wiki +wih

2
aikiakihahi

)

=
1

si
(
ki − 1

)
[(

wi1 +wi1

2
ai1a11a1i +

wi2 +wi1

2
ai2a21a1i + · · · + wiki +wi1

2
aikiaki1a1i

)

+
(
wi1+wi2

2
ai1a12a2i+

wi2+wi2

2
ai2a22a2i+· · ·+

wiki+wi2

2
aikiaki2a2i

)
+· · ·

+
(
wi1+wiki

2
ai1a1kiakii+

wi2+wiki

2
ai2a2kiakii+· · ·+

wiki+wiki

2
aikiakikiakii

)]
.

(B.6)

For a fully connected network: aij = 1, ∀ i, j = 1, 2, . . . , ki and aii = 0, so

CB
w,i =

1
si
(
ki − 1

)
[(

0 +
wi2 +wi1

2
+ · · · + wiki +wi1

2

)

+
(
wi1 +wi2

2
+ 0 + · · · + wiki +wi2

2

)
+ · · ·

+
(
wi1 +wiki

2
+
wi2 +wiki

2
+ · · · + 0

)]

=
1

si
(
ki − 1

)
[(

wi1 +wi2 + · · · +wiki

2
+
(
ki − 2

)wi1

2

)

+
(
wi1 +wi2 + · · · +wiki

2
+
(
ki − 2

)wi2

2

)
+ · · ·

+
(
wi1 +wi2 + · · · +wiki

2
+
(
ki − 2

)wiki

2

)]

=
1

si
(
ki − 1

)
(
ki
wi1 +wi2 + · · · +wiki

2
+
(
ki − 2

)wi1 +wi2 + · · · +wiki

2

)

=
1

si
(
ki − 1

)
(
2ki − 2

)wi1 +wi2 + · · · +wiki

2
=
wi1 +wi2 + · · · +wiki

si
= 1,

(B.7)

since si = wi1 +wi2 + · · · +wiki .
(5) Serrano et al.’s is [17]

CS
w,1 =

∑3
j/=1

∑3
k/=1w1jajkwk1

(∑3
j/=1w1j

)2 −∑3
j/=1w

2
1j

=

∑3
j/=1w1j

(
aj2w21 + aj3w31

)

(
w12 +w13

)2 −w2
12 −w2

13

=
w12a23w31 +w13a32w21

2w12w13
=

2w12a23w31

2w12w13
= 1.

(B.8)
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C. Trend analysis. Linear regression

The trend analysis was performed with SPSS [21], using the least squares method. We also
tried quadratic and cubic fitting but the nonlinear regression gave zero for the coefficients
corresponding to the quadratic and cubic terms for all cases of networks and weighted
clustering coefficients.

We observe the presence of decreasing linear correlation between the weighted
clustering coefficients and the relative perturbation norm for all distributions (homogeneous
and symmetric (uniform, normal) and inhomogeneous and nonsymmetric (exponential)).
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