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1. Introduction

The theory of time scales was initiated by Hilger [1] as a mean of unifying and extending
theories from differential and difference equations. The study of time scales has led to
several important applications in the study of insect population models, neural networks,
heat transfer, and epidemic models; see, for example [2–6]. Recently, the boundary value
problems with p-Laplacian operator have also been discussed extensively in the literature,
for example, see [7–15].

A time scale T is a nonempty closed subset of R. We make the blanket assumption that
0, T are points in T. By an interval (0, T), we always mean the intersection of the real interval
(0, T)with the given time scale; that is, (0, T) ∩ T.

In [16], Anderson considered the following third-order nonlinear boundary value
problem (BVP):

x′′′(t) = f(t, x(t)), t1 ≤ t ≤ t3,
x(t1) = x′(t2) = 0, γx(t3) + δx′′(t3) = 0.

(1.1)
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He used the Krasnoselskii and Leggett-Williams fixed-point theorems to prove the existence
of solutions to the nonlinear boundary value problem.

In [9, 10], He considered the existence of positive solutions of the p-Laplacian dynamic
equations on time scales

(
φp
(
uΔ
))∇

+ a(t)f(u(t)) = 0, t ∈ [0, T]T, (1.2)

satisfying the boundary conditions

u(0) − B0

(
uΔ
(
η
))

= 0, uΔ(T) = 0, (1.3)

or

uΔ(0) = 0, u(T) − B1

(
uΔ
(
η
))

= 0, (1.4)

where η ∈ (0, ρ(T)). He obtained the existence of at least double and triple positive solutions
of the problems by using a new double fixed point theorem and triple fixed point theorem,
respectively.

In [15], Zhou andMa firstly studied the existence and iteration of positive solutions for
the following third-order generalized right-focal boundary value problem with p-Laplacian
operator

(
φp
(
u′′
))′(t) = q(t)f(t, u(t)), 0 ≤ t ≤ 1,

u(0) =
m∑

i=1

αiu(ξi), u′
(
η
)
= 0, u′′(1) =

n∑

i=1

βiu
′′(θi).

(1.5)

They established a corresponding iterative scheme for the problem by using the monotone
iterative technique.

However, to the best of our knowledge, little work has been done on the existence of
positive solutions for the increasing homeomorphism and positive homomorphism operator
on time scales. So the goal of the present paper is to improve and generate p-Laplacian
operator and establish some criteria for the existence of multiple positive solutions for the
following third-orderm-point boundary value problems on time scales

(
ϕ
(
uΔ∇
))∇

+ a(t)f(u(t)) = 0, t ∈ [0, T]T,

u(0) =
m−2∑

i=1

biu(ξi), uΔ(T) = 0, ϕ
(
uΔ∇(0)

)
=

m−2∑

i=1

ciϕ
(
uΔ∇(ξi)

)
,

(1.6)

where ϕ : R → R is an increasing homeomorphism and homomorphism and ϕ(0) = 0, and
bi, ci, a, f satisfy

(H1) bi, ci ∈ [0,+∞), 0 < ξ1 < · · · < ξm−2 < ρ(T), 0 <
∑m−2

i=1 bi < 1, 0 <
∑m−2

i=1 ci < 1;
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(H2) f : [0,+∞) → R+ is continuous, a ∈ Cld([0, T]T, R
+) and there exits t0 ∈ [0, T)T such

that a(t0) > 0, where R+ = [0,+∞).

A projection ϕ : R → R is called an increasing homeomorphism and homomorphism,
if the following conditions are satisfied:

(i) if x ≤ y, then ϕ(x) ≤ ϕ(y), ∀x, y ∈ R;
(ii) ϕ is continuous bijection and its inverse mapping is also continuous;

(iii) ϕ(xy) = ϕ(x)ϕ(y), ∀x, y ∈ R.

2. Preliminaries and Lemmas

For convenience, we list the following definitions which can be found in [1–5].

Definition 2.1. A time scale T is a nonempty closed subset of real numbersR. For t < supT and
r > infT, define the forward jump operator σ and backward jump operator ρ, respectively,
by

σ(t) = inf{τ ∈ T | τ > t} ∈ T,

ρ(r) = sup{τ ∈ Tτ < r} ∈ T,
(2.1)

for all t, r ∈ T. If σ(t) > t, t is said to be right scattered, and if ρ(r) < r, r is said to be left
scattered; if σ(t) = t, t is said to be right dense, and if ρ(r) = r, r is said to be left dense. If T
has a right scattered minimum m, define Tk = T − {m}; otherwise set Tk = T. If T has a left
scattered maximumM, define Tk = T − {M}; otherwise set Tk = T.

Definition 2.2. For f : T → R and t ∈ Tk, the delta derivative of f at the point t is defined
to be the number fΔ(t) (provided it exists) with the property that for each ε > 0, there is a
neighborhoodU of t such that

∣
∣
∣f(σ(t)) − f(s) − fΔ(t)(σ(t) − s)

∣
∣
∣ ≤ ε|σ(t) − s|, (2.2)

for all s ∈ U.
For f : T → R and t ∈ Tk, the nabla derivative of f at t, denoted by f∇(t) (provided it

exists) with the property that for each ε > 0, there is a neighborhood U of t such that

∣
∣
∣f
(
ρ(t)
) − f(s) − f∇(t)

(
ρ(t) − s)

∣
∣
∣ ≤ ε

∣
∣ρ(t) − s∣∣, (2.3)

for all s ∈ U.

Definition 2.3. A function f is left-dense continuous (i.e., ld-continuous), if f is continuous at
each left-dense point in T and its right-sided limit exists at each right-dense point in T.
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Definition 2.4. If φΔ(t) = f(t), then we define the delta integral by

∫b

a

f(t)Δt = φ(b) − φ(a). (2.4)

If F∇(t) = f(t), then we define the nabla integral by

∫b

a

f(t)∇t = F(b) − F(a). (2.5)

Definition 2.5. Let E be a real Banach space over R. A nonempty closed set P ⊂ E is said to be
a cone provided that

(i) u ∈ P , a ≥ 0 implies au ∈ P ;
(ii) u,−u ∈ P implies u = 0.

Definition 2.6. Given a cone P in a real Banach space E, a functional ψ : P → P is said to be
increasing on P , provided ψ(x) ≤ ψ(y), for all x, y ∈ P with x ≤ y.

Definition 2.7. Given a cone P in a real Banach space E, we define for each a > 0 the set

Pa = {x ∈ P | ‖x‖ < a}. (2.6)

Definition 2.8. A map α is called nonnegative continuous concave functional on a cone P of a
real Banach space X if α : P → [0,+∞) is continuous and

α
(
λx + (1 − λ)y) ≥ λα(x) + (1 − λ)α(y) (2.7)

for all x, y ∈ P and λ ∈ [0, 1]. Similarlywe say that themap β is called nonnegative continuous
concave functional on a cone P of a real Banach space X if β : P → [0,+∞) is continuous and

β
(
λx + (1 − λ)y) ≤ λβ(x) + (1 − λ)β(y) (2.8)

for all x, y ∈ P and λ ∈ [0, 1].

Let γ, θ be nonnegative continuous convex functionals on P , let α be a nonnegative
continuous concave functional on P , and let ψ be a nonnegative continuous functional on P .
For nonnegative real numbers a, b, k, and c we define the following convex set:

P
(
γ, c
)
=
{
x ∈ P : γ(x) < c

}
,

P
(
α, b; γ, c

)
=
{
x ∈ P : b ≤ α(x), γ(x) ≤ c},

R
(
ψ, a; γ, c

)
=
{
x ∈ P : a ≤ ψ(x), γ(x) ≤ c},

P
(
α, b; θ, k; γ, c

)
=
{
x ∈ P : b ≤ α(x), θ(x) ≤ k, γ(x) ≤ c}.

(2.9)
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Theorem 2.9 ([17]). Let P be a cone in a real Banach spaceX. Let γ and θ be nonnegative continuous
convex functionals on P , let α be a nonnegative continuous concave functional on P , and let ψ be a
nonnegative continuous functional on P satisfying ψ(λx) ≤ λψ(x) for 0 ≤ λ ≤ 1, such that for
some positive numbers M and c, α(x) ≤ ψ(x) and ‖x‖ ≤ Mγ(x) for all x ∈ P(γ, c). Suppose that
Φ : P(γ, c) → P(γ, c) is a completely continuous operator and there exist nonnegative numbers a, b,
and k with 0 < a < b such that

(i) {x ∈ P(α, b; θ, k; γ, c) : α(x) > b}/= ∅ and α(Φ(x)) > b for x ∈ P(α, b; θ, k; γ, c);
(ii) α(Φ(x)) > b for x ∈ P(α, b; γ, c) with θ(Φ(x)) > k;

(iii) 0∈R(ψ, a; γ, c) and ψ(Φ(x)) < a for x ∈ R(ψ, a; γ, c) with ψ(x) = a.
Then Φ has at least three fixed points x1, x2, x3 ∈ P(γ, c) satisfying

γ(xi) ≤ c, i = 1, 2, 3,

b < α(x1), α(x2) < b, a < ψ(x2), ψ(x3) < a.
(2.10)

Theorem 2.10 ([18]). Let A be a bounded closed convex subset of a Banach space E. Assume that
A1, A2 are disjoint closed convex subsets of A and U1, U2 are nonempty open subsets of A with
U1 ⊂ A1 and U2 ⊂ A2. Suppose that Φ : A → A is completely continuous and the following
conditions hold:

(i) Φ(A1) ⊂ A1, Φ(A2) ⊂ A2;

(ii) Φ has no fixed points in (A1 \U1) ∪ (A2 \U2).

Then Φ has at least three points x1, x2, x3 such that x1 ∈ U1, x2 ∈ U2, and x3 ∈ A \ (A1 ∪A2).

Lemma 2.11. If condition (H1) holds, then for h ∈ Cld[0, T]T, the boundary value problem (BVP)

uΔ∇ + h(t) = 0, t ∈ (0, T),

u(0) =
m−2∑

i=1

biu(ξi), uΔ(T) = 0
(2.11)

has the unique solution

u(t) =
∫ t

0
(T − s)h(s)∇s +

∑m−2
i=1 bi

∫ ξi
0 (T − s)h(s)∇s

1 −∑m−2
i=1 bi

. (2.12)

Proof. By caculating, we can easily get (2.12). So we omit it.

Lemma 2.12. If condition (H1) holds, then for h ∈ Cld[0, T]T, the boundary value problem (BVP)

(
ϕ
(
uΔ∇
))∇

+ h(t) = 0, t ∈ (0, T),

u(0) =
m−2∑

i=1

biu(ξi), uΔ(T) = 0, ϕ
(
uΔ∇(0)

)
=

m−2∑

i=1

ciϕ
(
uΔ∇(ξi)

) (2.13)
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has the unique solution

u(t) =
∫ t

0
(T − s)ϕ−1

(∫s

0
h(r)∇r + C

)

∇s +
∑m−2

i=1 bi
∫ ξi
0 (T − s)ϕ−1(∫s

0h(r)∇r + C
)∇s

1 −∑m−2
i=1 bi

, (2.14)

where C =
∑m−2

i=1 ci
∫ ξi
0 h(r)∇r/(1 −

∑m−2
i=1 ci), ϕ−1(s) is the inverse function to ϕ(s).

Proof. Integrating both sides of equation in (2.13) on [0, t], we have

ϕ
(
uΔ∇(t)

)
= ϕ
(
uΔ∇(0)

)
−
∫ t

0
h(r)∇r. (2.15)

So,

ϕ
(
uΔ∇(ξi)

)
= ϕ
(
uΔ∇(0)

)
−
∫ ξi

0
h(r)∇r. (2.16)

By boundary value condition ϕ(uΔ∇(0)) =
∑m−2

i=1 ciϕ(uΔ∇(ξi)), we have

ϕ
(
uΔ∇(0)

)
= −
∑m−2

i=1 ci
∫ ξi
0 h(r)∇r

1 −∑m−2
i=1 ci

. (2.17)

By (2.15) and (2.17)we know

uΔ∇(t) = −ϕ−1

⎛

⎝

∑m−2
i=1 ci

∫ ξi
0 h(r)∇r

1 −∑m−2
i=1 ci

+
∫ t

0
h(r)∇r

⎞

⎠. (2.18)

This together with Lemma 2.11 implies that

u(t) =
∫ t

0
(T − s)ϕ−1

(∫s

0
h(r)∇r + C

)

∇s +
∑m−2

i=1 bi
∫ ξi
0 (T − s)ϕ−1(∫s

0h(r)∇r + C
)∇s

1 −∑m−2
i=1 bi

, (2.19)

where C =
∑m−2

i=1 ci
∫ ξi
0 h(r)∇r/(1 −

∑m−2
i=1 ci). The proof is complete.

Lemma 2.13. Let condition (H1) hold. If h ∈ Cld[0, T]T and h(t) ≥ 0, then the unique solution u(t)
of (2.13) satisfies

u(t) ≥ 0, t ∈ [0, T]T. (2.20)

Proof. By uΔ∇(t) = −ϕ−1((
∑m−2

i=1 ci
∫ ξi
0 h(r)∇r/(1 − ∑m−2

i=1 ci)) +
∫ t
0h(r)∇r) ≤ 0, we can know

that the graph of u(t) is concave down on (0, T)T and uΔ(t) is nonincreasing on [0, T]T. This



Discrete Dynamics in Nature and Society 7

together with the assumption that the boundary condition is uΔ(T) = 0 implies that uΔ(t) ≥ 0
for t ∈ [0, T]T. This implies that

‖u‖ = u(T), min
t∈[0,T]T

u(t) = u(0). (2.21)

So we only prove u(0) ≥ 0. By condition (H1)we have

u(0) =

∑m−2
i=1 bi

∫ ξi
0 (T − s)ϕ−1(∫s

0h(r)∇r + C
)∇s

1 −∑m−2
i=1 bi

≥ 0.

(2.22)

The proof is completed.

3. Triple Positive Solutions

In this section, some existence results of positive solutions to BVP (1.6) are established by
imposing some conditions on f and defining a suitable Banach space and a cone.

Let E = Cld[0, T]T be endowed with the ordering x ≤ y if x(t) ≤ y(t) for all t ∈ [0, T]T,
and ‖u‖ = maxt∈[0,T]T |u(t)| is defined as usual by maximum norm. Clearly, it follows that
(E, ‖u‖) is a Banach space.

We define a cone by

P =
{
u : u ∈ E, u(t) is concave, nondecreasing, and nonnegative on [0, T]T, u

Δ(T) = 0
}
.

(3.1)

Let

η = max
{

t ∈ T : t ≥ T

2

}

, (3.2)

and fix l ∈ T such that

0 < η < l < T, (3.3)

and define the nonnegative continuous convex functionals γ and θ, the nonnegative
continuous concave functional α, and the nonnegative continuous functional ψ on the cone P
by

γ(u) = θ(u) = max
t∈[0,l]T

u(t) = u(l),

α(u) = min
t∈[η,T]T

u(t) = u
(
η
)
, ψ(u) = max

t∈[0,η]T
= u
(
η
)
.

(3.4)
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For notational convenience, denote

Ĉ =

∑m−2
i=1 ci

∫ ξi
0 a(r)∇r

1 −∑m−2
i=1 ci

,

mη =
∫η

0
(T − s)ϕ−1

(∫ s

0
a(r)∇r + Ĉ

)

∇s, m =

∑m−2
i=1 bi

∫ ξi
0 (T − s)ϕ−1

(∫s
0a(r)∇r + Ĉ

)
∇s

1 −∑m−2
i=1 bi

,

Ml =
∫ l

0
(T − s)ϕ−1

(∫s

0
a(r)∇r + Ĉ

)

∇s +
∑m−2

i=1 bi
∫ ξi
0 (T − s)ϕ−1

(∫s
0a(r)∇r + Ĉ

)
∇s

1 −∑m−2
i=1 bi

,

Mη =
∫η

0
(T − s)ϕ−1

(∫s

0
a(r)∇r + Ĉ

)

∇s +
∑m−2

i=1 bi
∫ ξi
0 (T − s)ϕ−1

(∫s
0a(r)∇r + Ĉ

)
∇s

1 −∑m−2
i=1 bi

,

M =
∫T

0
(T − s)ϕ−1

(∫ s

0
a(r)∇r + Ĉ

)

∇s +
∑m−2

i=1 bi
∫ ξi
0 (T − s)ϕ−1

(∫s
0a(r)∇r + Ĉ

)
∇s

1 −∑m−2
i=1 bi

.

(3.5)

Lemma 3.1 ([9]). If u ∈ P , then

(1) u(t) ≥ (t/T)||u|| for all t ∈ [0, T]T;

(2) u(s)/s ≥ u(t)/t for t, s ∈ [0, T]T with s ≤ t.

Define an operator Φ : P → E by

(Φu)(t) =
∫ t

0
(T − s)ϕ−1

(∫s

0
a(r)f(u(r))∇r + C̃

)

∇s

+

∑m−2
i=1 bi

∫ ξi
0 (T − s)ϕ−1

(∫s
0a(r)f(u(r))∇r + C̃

)
∇s

1 −∑m−2
i=1 bi

,

(3.6)

where C̃ =
∑m−2

i=1 ci
∫ ξi
0 a(r)f(u(r))∇r/(1−

∑m−2
i=1 ci). Then, u is a solution of boundary value problem

(1.6) if and only if u is a fixed point of operator Φ. Obviously, for u ∈ P one has (Φu)(t) ≥ 0 for
t ∈ [0, T]T. In addition, (Φu)Δ∇(t) ≤ 0 for t ∈ [0, T]T and (Φu)Δ(T) = 0, this impliesΦP ⊂ P . With
standard argument one may show that Φ : P → P is completely continuous.

Theorem 3.2. Suppose conditions (H1) and (H2) hold, and there exist positive numbers a <
(η/T)b < b < (l/T)c, Mlb < mc such that

(B1) f(u) ≤ ϕ(c/Ml), u ∈ [0, Tc/l];

(B2) f(u) > ϕ(b/mη), u ∈ [b, T2b/l2];

(B3) f(u) < ϕ(a/Mη), u ∈ [0, Ta/η].
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Then, the BVP (1.6) has at least three positive solutions u1, u2, u3 ∈ P(γ, c) satisfying

γ(ui) ≤ c, i = 1, 2, 3,

b < α(u1), α(u2) < b, a < ψ(u2), ψ(u3) < a.
(3.7)

Proof. Based on Lemma 3.1, it is clear that for u ∈ P and λ ∈ [0, 1], there are α(u) =
ψ(u), ψ(λu) = λψ(u) and ‖u‖ ≤ (T/l)u(l) = (T/l)γ(u). Furthermore, ψ(0) = 0 < a and
therefore 0∈R(ψ, a; γ, c).

Take u ∈ P(γ, c), then 0 ≤ u ≤ ‖u‖ ≤ (T/l)γ(u) ≤ (T/l)c. By means of (B1) one derives

γ(Φu) = Φu(l)

=
∫ l

0
(T − s)ϕ−1

(∫s

0
a(r)f(u(r))∇r + C̃

)

∇s

+

∑m−2
i=1 bi

∫ ξi
0 (T − s)ϕ−1

(∫s
0a(r)f(u(r))∇r + C̃

)
∇s

1 −∑m−2
i=1 bi

≤ c

Ml

⎛

⎜
⎝

∫ l

0
(T − s)ϕ−1

(∫ s

0
a(r)∇r + Ĉ

)

∇s +
∑m−2

i=1 bi
∫ ξi
0 (T − s)ϕ−1

(∫s
0a(r)∇r + Ĉ

)
∇s

1 −∑m−2
i=1 bi

⎞

⎟
⎠

= c.
(3.8)

Thus Φ : P(γ, c) → P(γ, c).
Set u ≡ Tb/l and k = Tb/l, it follows that

α(u) = u
(
η
)
=
Tb

l
> b, θ(u) = u(l) =

Tb

l
, γ(u) =

Tb

l
< c, (3.9)

which means {u ∈ P(α, b; θ, Tb/l; γ, c) : α(u) > b}/= ∅.
For u ∈ P(α, b; θ, Tb/l; γ, c), we have b ≤ u(t) ≤ T2b/l2 for t ∈ [η, T]T. By condition (B2)

we have

α(Φu) = Φu
(
η
)

=
∫η

0
(T − s)ϕ−1

(∫ s

0
a(r)f(u(r))∇r + C̃

)

∇s

+

∑m−2
i=1 bi

∫ ξi
0 (T − s)ϕ−1

(∫s
0a(r)f(u(r))∇r + C̃

)
∇s

1 −∑m−2
i=1 bi

≥ b

mη

∫η

0
(T − s)ϕ−1

(∫ s

0
a(r)∇r + Ĉ

)

∇s

= b.

(3.10)

So, (i) of Theorem 2.9 is fulfilled.
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If u ∈ P(α, b; γ, c) and θ(Φu) > c, then due to (2) of Lemma 3.1

α(Φu) = Φu
(
η
) ≥ η

l
(Φu)(l) =

η

l
θ(Φu) >

ηc

l
>
Tηb

l2
> b. (3.11)

Therefore, (ii) of Theorem 2.9 is fulfilled.
Take u ∈ R(ψ, a; γ, c) and ψ(u) = a, then 0 ≤ u ≤ ‖u‖ ≤ (T/η)u(η) = (T/η)ψ(u) = Ta/η,

it then follows from (B3) that

ψ(Φu) = Φu
(
η
)

=
∫η

0
(T − s)ϕ−1

(∫s

0
a(r)f(u(r))∇r + C̃

)

∇s

+

∑m−2
i=1 bi

∫ ξi
0 (T − s)ϕ−1

(∫s
0a(r)f(u(r))∇r + C̃

)
∇s

1 −∑m−2
i=1 bi

≤ a

Mη

⎛

⎜
⎝

∫η

0
(T − s)ϕ−1

(∫s

0
a(r)∇r + Ĉ

)

∇s +
∑m−2

i=1 bi
∫ ξi
0 (T − s)ϕ−1

(∫s
0a(r)∇r + Ĉ

)
∇s

1 −∑m−2
i=1 bi

⎞

⎟
⎠

= a.
(3.12)

As a result, all the conditions of Theorem 2.9 are verified. This completes the proof.

Theorem 3.3. Suppose that conditions (H1) and (H2) hold. Let 0 < a < b < c, Mb < mc and
assume that the following conditions are satisfied:

(C1) f(u) < ϕ(a/M), u ∈ [0, a];

(C2) there exists a number d > c such that f(u) < ϕ(d/M), u ∈ [0, d];

(C3) ϕ(b/m) < f(u) < ϕ(c/M), u ∈ [b, c].

Then, the BVP (1.6) has at least three positive solutions u1, u2, and u3 such that

b < u1(t) < c, ‖u2‖ < a,
‖u3‖ > a.

(3.13)

Where for real number b, φb : [0, T]T → [0,+∞) is continuous, φb(t) = b, for t ∈ [0, T]T.
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Proof. We first show that A(Pa) ⊆ Pa ⊂ Pa if condition (C1) holds. If u ∈ Pa, then 0 ≤ u ≤
‖u‖ ≤ a, which implies f(u) < ϕ(a/M). We have

‖Φu‖ = (Φu)(T)

≤
∫T

0
(T − s)ϕ−1

(∫s

0
a(r)f(u(r))∇r + C̃

)

∇s

+

∑m−2
i=1 bi

∫ ξi
0 (T − s)ϕ−1

(∫s
0a(r)f(u(r))∇r + C̃

)
∇s

1 −∑m−2
i=1 bi

<
a

M

⎛

⎜
⎝

∫T

0
(T − s)ϕ−1

(∫s

0
a(r)∇r + Ĉ

)

∇s +
∑m−2

i=1 bi
∫ ξi
0 (T − s)ϕ−1

(∫s
0a(r)∇r + Ĉ

)
∇s

1 −∑m−2
i=1 bi

⎞

⎟
⎠

= a.
(3.14)

This implies that Φ(Pa) ⊆ Pa ⊂ Pa.
Next, condition (C2) indicates that there exists d > c such that Φ(Pd) ⊂ Pd. Now we

let

A = Pd, A1 =
[
ϕb, ϕc

]
, U1 = int(A1), A2 = Pa, U2 = Pa, (3.15)

where int(A1) is the interior of A1. Then we have Φ(A) ⊂ A, Φ(A2) ⊂ A2. Moreover, Φ(Pa) ⊆
Pa ⊂ Pa means Φ(A2) ⊆ U2 ⊂ A2. Thus Φ has no fixed point in (A2 \U2).

To show Φ(A1) ⊂ A1 and Φ has no fixed point in (A1 \U1), set u ∈ A1, following the
definition of ϕb, we can know b ≤ u(t) ≤ c, for t ∈ [0, T]T. Condition (C3) then gives rise to
ϕ(b/m) < f(u) < ϕ(c/M), which in turn produces

(Φu)(t) ≥ (Φu)(0)

=

∑m−2
i=1 bi

∫ ξi
0 (T − s)ϕ−1

(∫s
0a(r)f(u(r))∇r + C̃

)
∇s

1 −∑m−2
i=1 bi

>
b

m

∑m−2
i=1 bi

∫ ξi
0 (T − s)ϕ−1

(∫s
0a(r)∇r + Ĉ

)
∇s

1 −∑m−2
i=1 bi

= b, (3.16)
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(Φu)(t) ≤ (Φu)(T)2

≤
∫T

0
(T − s)ϕ−1

(∫s

0
a(r)f(u(r))∇r + C̃

)

∇s

+

∑m−2
i=1 bi

∫ ξi
0 (T − s)ϕ−1

(∫s
0a(r)f(u(r))∇r + C̃

)
∇s

1 −∑m−2
i=1 bi

<
c

M

⎛

⎜
⎝

∫T

0
(T − s)ϕ−1

(∫s

0
a(r)∇r + Ĉ

)

∇s +
∑m−2

i=1 bi
∫ ξi
0 (T − s)ϕ−1

(∫s
0a(r)∇r + Ĉ

)
∇s

1 −∑m−2
i=1 bi

⎞

⎟
⎠

= c.

(3.17)

Combining the above two inequalities one achieves φb(t) = b < (Φu)(t) < c = φc(t), for
t ∈ [0, T]T. That is, Φu ∈ U1. So Φ(A1) ⊆ U1 ⊂ A1 and Φ has no fixed point in (A1 \ U1).
Therefore, all conditions of Theorem 2.10 are fulfilled, and the BVP (1.6) has at least three
positive solutions u1, u2, and u3 such that

b < u1(t) < c, ‖u2‖ < a, ‖u3‖ > a. (3.18)

4. Some Examples

In the section, we present some simple examples to explain our results. We only study the
case T = R, (0, T)T = (0, 1).

Example 4.1. Consider the following third-order three-point boundary value problem:

(
ϕ
(
u′′
))′ + a(t)f(u) = 0, 0 < t < 1,

u(0) =
1
3
u

(
1
2

)

, u′(1) = 0, ϕ
(
u′′(0)

)
=

1
4
ϕ

(

u′′
(
1
2

))

,
(4.1)

where ϕ(x) = x, a(t) ≡ 1, b1 = 1/3, c1 = 1/4, ξ1 = 1/2.

We choose η = 1/2, by computing we can know mη = 11/24, Ml = 351/256, Mη =
33/48. Let a = 100, b = 245, c = 770, l = 7/8, then a < ηb < b < lc. Obviously,Mlb < mc. We
define a nonlinearity f as follows:

f(u) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

140, u ∈ [0, 200],

140 +
410
45

(u − 200), u ∈ [200, 245],

550, u ∈ [245, 320],

550 +
5
560

(u − 320), u ∈ [320,+∞).

(4.2)
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Then, by the definition of f , we have

(i) f(u) ≤ ϕ(c/Ml) ≈ 557.2, u ∈ [0, 880];

(ii) f(u) > ϕ(b/mη) ≈ 534.5, u ∈ [245, 320];

(iii) f(u) < ϕ(a/Mη) ≈ 145.4, u ∈ [0, 200].

By Theorem 3.2, BVP (4.1) has at least three positive solutions.

Example 4.2. Consider the following third-order three-point boundary value problem:

(
ϕ
(
u′′
))′ + a(t)f(u) = 0, 0 < t < 1,

u(0) =
1
3
u

(
1
2

)

, u′(1) = 0, ϕ
(
u′′(0)

)
=

1
4
ϕ

(

u′′
(
1
2

))

,
(4.3)

where ϕ(x) = x, a(t) ≡ 1, b1 = 1/3, c1 = 1/4, ξ1 = 1/2, η = 1/2.

By computing, we can know m = 11/48, M = 83/48. Let a = 7, b = 12, c = 336, l =
7/8, then a < b < c. Obviously,Mb < mc. We define a nonlinearity f as follows:

f(u) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

3, u ∈ [0, 7],

3 +
97
25

(u − 7)2, u ∈ [7, 12],

100, u ∈ [12, 336],

100 +
1100
1764

(u − 336), u ∈ [336,+∞).

(4.4)

Then, by the definition of f , we have

(i) f(u) < ϕ(a/M) ≈ 4.2, u ∈ [0, 7];

(ii) and there exists d = 2100 > c such that f(u) ≤ ϕ(d/M) ≈ 1214.4, u ∈ [0, 2100];

(iii) ϕ(b/m) ≈ 52.4 < f(u) < ϕ(c/M) ≈ 194.3, u ∈ [12, 336].

By Theorem 3.3, BVP (4.3) has at least three positive solutions.

Remark 4.3. Consider following nonlinear m-point boundary value problem:

(
ϕ
(
uΔ∇
))∇

+ a(t)f(u(t)) = 0, 0 < t < T,

u(0) =
m−2∑

i=1

biu(ξi),

uΔ(T) = 0, ϕ
(
uΔ∇(0)

)
=

m−2∑

i=1

ciϕ
(
uΔ∇(ξi)

)
,

(4.5)
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where

ϕ(u) =

⎧
⎨

⎩

u3, u ≤ 0,

u2, u > 0,
(4.6)

f and a satisfy the conditions (H1) and (H2). It is clear that ϕ : R → R is an increasing
homeomorphism and homomorphism and ϕ(0) = 0. Because p-Laplacian operators are odd,
they do not apply to our example. Hence we generalize boundary value problem with p-
Laplacian operator, and the results [8–11, 13–15] do not apply to the example.

Remark 4.4. In a similar way, we can get the corresponding results for the following boundary
value problem:

(
ϕ
(
uΔ∇
))∇

+ a(t)f(u(t)) = 0, t ∈ (0, T)T,

u(T) =
m−2∑

i=1

aiu(ξi), uΔ(0) = 0, ϕ
(
uΔ∇(0)

)
=

m−2∑

i=1

ciϕ
(
uΔ∇(ξi)

)
.

(4.7)
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