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The multiple-spiral medallions are beautiful decorations situated in the proximity of the small
copies of the Mandelbrot set. They are composed by an infinity of babies Mandelbrot sets that
have external arguments with known structure. In this paper we study the coupling patterns of
the external arguments of the baby Mandelbrot sets in multiple-spiral medallions, that is, how
these external arguments are grouped in pairs. Based on our experimental data, we obtain that the
canonical nonspiral medallions have a nested pairs pattern, the canonical single-spiral medallions
have an adjacent pairs pattern, and we conjecture that the canonical double, triple, quadruple-
spiral medallions have a 1-nested/adjacent pairs pattern.
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1. Introduction

The Mandelbrot set M was discovered by iterating the complex logistic map zn+1 = λzn(1−zn)
[1]. Two years later Douady and Hubbard created the external arguments theory of the M set,
starting from the complex map zn+1 = z2

n + c [2]. The M set can be defined as the set of c ∈ C
for which the sequence c, c2 + c, (c2 + c)2 + c, . . . does not tend to∞. Since the seminal paper of
Douady and Hubbard, the M set has been widely studied [3–14], also from a graphical point
of view [15–17].

Recently, Wang et al. have studied the generalized M-J sets starting from the complex
map zn+1 = zαn + c, (α > 1). They have proved the connectness of the quaternionic M set [18]
and studied the structure and the dynamics of generalized M-J sets [19, 20]. They also offer
a rendering method based on the escape-time to draw the M set [21] and research on the
structural characteristic and the fission-evolution law of additive perturbed generalized M-J
sets [22]. Finally, they modify the escape-time method and form the preperiod graphic of the
generalized M set [23] and also research on the structural characteristic of the generalized M
set perturbed by composing noise of additive and multiplicative [24, 25].
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M contains small copies of itself (babies Mandelbrot sets, BMSs) which in turn contain
smaller copies of M, and so on ad infinitum. But the M set, as is well known, is not self-similar.
Actually, every BMS has its very own pattern of external decorations. There are BMSs with
beautiful central symmetry decorations. Some of these decorations are called cauliflowers
[26] or embedded Julia sets [27]. Generalizations of the cauliflowers are the multiple-spiral
medallions [28].

There is an infinity of BMSs incrusted in the decoration of a multiple-spiral medallion.
The external arguments theory of Douady and Hubbard is a valuable tool in order to analyze
the Mandelbrot set [29–31]. In this paper, we will study the structure of the multiple-spiral
medallions starting from the external arguments of its BMSs. It was conjectured that the pair
of binary expansions of the external arguments of the external rays landing at the cusp of
the cardioid of a BMS in a multiple-spiral medallion can be written starting from the binary
expansions of the external arguments of its “parent” (.p1, .p2) and its “gene” (.g1, .g2) [28].
Each one of the binary expansions (.b1, .b2) of the central BMS of a multiple-spiral medallion
can be expressed in the form .b∗ = .p∗p∗ · · · p∗g∗,where .b∗ is .b1 or .b2, .p∗ is .p1 or .p2, and .g∗ is
.g1 or .g2. Each one of the binary expansions (.β1, .β2) of a noncentral BMS of a multiple-spiral
medallion can be expressed in the form

.β∗ = .b∗p∗p∗ · · · p∗
︸ ︷︷ ︸

j

(1.1)

where .β∗ is .β1 or .β2 and j is the level of the BMS inside the medallion. A given level j has 2j

BMSs with 2j+1 different binary expansions.
In this paper, we will study the coupling patterns of the external arguments of the

BMSs in a multiple-spiral medallion, that is, how these external arguments are grouped in
pairs. We will obtain experimentally, with the computer, the coupling patterns in a lot of
(non, single, double, triple . . .)-spiral medallions [28], up to the BMSs of the fourth level, by
computing the kneading sequences of the external arguments [9]. When this procedure fails,
because more than two external arguments have the same kneading sequence, we will draw
the medallion with its external rays in order to obtain the coupling pattern [32]. As is known,
in this case we could also use the Bruin-Schleicher algorithm [12]. Taking into account the
relatively high periods of the BMSs, the recursive Lavaurs’s algorithm [6] is not useful in this
case.

2. Coupling Patterns in the Multiple-Spiral Medallions

2.1. Symbolic Binary Expansions

Let us consider the period-4 hyperbolic component located at −0.1565 · · · + 1.0322 · · · i. As
is known from Douady and Hubbard [2], this hyperbolic component has the external
arguments (3/15, 4/15) in rational form and (.0011, .0100) in binary expansions form. This
hyperbolic component is the parent (.p1, .p2) = (.0011, .0100) of an infinity of multiple-spiral
medallions inserted into its filaments [28]. From here on, we will normally use the binary
expansions of the external arguments. The parent is in the wake of the gene (.g1, .g2) =
(.001, .010), which is a period-3 disc [28]. In the examples of this paper we, will use this
parent and this gene due to their low periods.
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Now, let us consider the period-27 BMS located at −0.158682143 · · · + 1.039701715 · · · i,
which is the central BMS of a double-spiral medallion near the above parent. The
binary expansions of the external arguments of the external rays landing at the cusp
of the cardioid of this central BMS are (.b1, .b2) = (.001101000011010000110011010,
.001101000011010000110100001), which can be verified by using the Jung program [15].
Note that we can write, in abbreviated form, (.b1, .b2) = (.p1p2p1p2p1p1g2, .p1p2p1p2p1p2g1) =

(.p1p2
2p2

1g2, .p1p2
3g1) that we name the symbolic binary expansions of the central BMS. In

general, as it was conjectured in [28], .b∗ = .p∗p∗ · · · p∗g∗.
The former medallion also has notorious noncentral BMSs as, for example, the

period-35 one located at −0.15867218 · · · + 1.03971266 · · · i with binary expansions (.β1, .β2) =
(.00110100001101000011001101000110100,.00110100001101000011010000101000011) and
symbolic binary expansions (.β1, .β2) = (.b1p1p2, .b1p2p1), which correspond to a second level
BMS. In general, as it was conjectured in [28],

.β∗ = .b∗p∗p∗ · · · p∗
︸ ︷︷ ︸

j

. (2.1)

2.2. Final Kneading Sequence

As is known from [9], the kneading sequence K(θ) of an external argument θ is defined as
the itinerary of the orbit of θ under angle doubling, where the itinerary is taken with respect
to the partition formed by θ/2 and (θ + 1)/2. According to [9]

nth entry of K(θ) =
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0
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,

0
1
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2

.

(2.2)

Let (θ1, θ2) be the external arguments of a hyperbolic component, where θ1 < θ2. It is
known that K(θ1) = K(θ2) with the exception of the last digits 1

0 and 0
1. For instance, when

(θ1, θ2) = (3/15, 4/15), external arguments of a period-4 hyperbolic component, we obtain

the kneading sequences K(θ1) = 110 0
1 and K(θ2) = 110 1

0, where the three first digits are the
same.

Let us consider a multiple-spiral medallion, and let (.b1, .b2) be the binary expansions
of its period-n central BMS. The first n − 1 digits of the kneading sequences of .b1 and .b2 are
the same. Let

⎛

⎜

⎝.b∗p∗p∗ · · · p∗
︸ ︷︷ ︸

j

, .b∗p∗p∗ · · · p∗
︸ ︷︷ ︸

j

⎞

⎟

⎠ (2.3)
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Figure 1: Possible coupling patterns in the first and second levels .b∗p∗ and .b∗p∗p∗ corresponding to the
noncentral BMSs in a multiple-spiral medallion.

be the symbolic binary expansions of a noncentral BMS of level j of the same medallion.
It is evident that the first n − 1 digits of the kneading sequences of the external arguments
of the noncentral BMS are the same. To compare the kneading sequences corresponding to
the BMSs of a given level in a medallion, it is not necessary to handle all the digits of the
kneading sequences because the first n − 1 digits are the same. In this paper, we will use the
final kneading sequences, that is, the kneading sequences without the first n− 1 digits, where
n is the period of the central BMS of the medallion.

2.3. The Coupling Problem

We name a multiple-spiral medallion by writing the pair of symbolic binary expansions
(.b1, . b2) corresponding to its central BMS. The coupling problem consists in knowing how
the external arguments are coupled in pairs in each one of the noncentral BMSs of a multiple-
spiral medallion.

Let (.p1, .p2) be the binary expansions of the parent of the medallion and let .b1p1 <

.b1p2 < .b2p1 < .b2p2 be the four symbolic binary expansions of the first level BMSs.
We can group them in couples in the forms {(.b1p1, .b2p2), (.b1p2, .b2p1)} and {(.b1p1, .b1p2),
(.b2p1, .b2p2)} (see Figure 1). Note that the grouping {(.b1p1, .b2p1), (.b1p2, .b2p2)} is not
possible because the corresponding external rays intersect. Therefore, in the first level we
have N1 = 2 coupling patterns.

Likewise, let .b1p1p1 < .b1p1p2 < .b1p2p1 < .b1p2p2 < .b2p1p1 < .b2p1p2 < .b2p2p1 <

.b2p2p2 be the eight symbolic binary expansions of the second level BMSs of a medallion. In
Figure 1, we show the resulting N2 = 14 coupling patterns by joining the binary expansions
of each couple with a straight line.

The number of possible coupling patterns in a given level increases very rapidly with
the level. For instance, in the third level we have counted N3 = 1374 coupling patterns, and
Nl ≥Nl−1 +

∑2l
2l−1+1 3i−2 is a low limit of the number of coupling patterns corresponding to the

level l.
However, in each level three patterns with a strong symmetry can be found, which we

will call the canonical coupling patterns: the nested pairs pattern, the adjacent pairs pattern,
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Table 1: Location of canonical nonspiral medallions.

(.p1p
i
2g2, .p2p

i
1g1) Location

i = 1 −0.172595 · · · + 1.050337 · · · i
i = 2 −0.1703025 · · · + 1.0445545 · · · i
i = 3 −0.16941127 · · · + 1.04295087 · · · i
i = 11 −0.16898713353 · · · + 1.04237025723 · · · i

...

· · ·

...
. .

(a)

...

...
. .

(b)

...

...

. .

(c)

Figure 2: Canonical coupling patterns. (a) Nested pairs pattern. (b) Adjacent pairs pattern. (c) 1-nest-
ed/adjacent pairs pattern.

and the 1-nested/adjacent pairs pattern (Figure 2). In the following paragraphs, we will
locate multiple-spiral medallions with canonical coupling patterns and we will give examples
with both the symbolic binary expansions and the complex coordinates of their central BMSs.

3. Coupling Pattern of Canonical Nonspiral Medallions

Let (.p1, .p2) and (.g1, .g2) be the parent and the gene of a nonspiral medallion. As is known
from [33, 34], the order-i harmonic of the parent located at its main antenna is characterized

by the symbolic binary expansions (.p1p
i
2, .p2p

i
1), and the limit when i → ∞ is the tip of the

main antenna, which is the Misiurewicz point with preperiodic symbolic binary expansions
(.p1p2, .p2p1). As is also known, the nonspiral medallions are located near the tip and outside
of the parent [28]. We name canonical nonspiral medallions those whose central BMSs have

the symbolic binary expansions (.p1p
i
2g2, .p2p

i
1g1) with i = 1, 2 . . . . The limit of the nonspiral

medallions when i → ∞ is the tip of the parent. In Figure 3(b), we can observe the locations
of the i = 1, 2, 3, 11 canonical nonspiral medallions corresponding to the parent and the gene
of Figure 3(a). The locations of the noncentral BMSs of the nonspiral medallion i = 11, up to
third level, can be seen in Figure 3(c).

Obviously, a nonspiral medallion has no spiral. However, we include them in the
family of multiple-spiral medallions for two reasons. First, because they are located in the
filaments of the parent, as the rest of the multiple-spiral medallions; and second, because the
symbolic binary expansions of their central BMSs can be obtained in the same manner as the
rest of the medallions (see [28, Figure 8]).

In Table 1 the complex coordinates of some canonical nonspiral medallions are given.
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Figure 3: Canonical nonspiral medallions. (a) External rays of the parent and the gene. (b) Graphical
location of the medallions i = 1, 2, 3 and 11. (c) Detail of the medallion i = 11, where the BMSs up to third
level are pointed out.

We have experimentally obtained the coupling patterns of the canonical nonspiral
medallions of Table 1, starting from the final kneading sequences up to fourth level BMSs.
All of these coupling patterns are the nested pairs pattern of Figure 4.

4. Coupling Pattern of Canonical Single-Spiral Medallions

The single-spiral medallions are known as “cauliflowers” [14, 26, 33]. Let (.p1, .p2) and
(.g1, .g2) be the parent and the gene of a single-spiral medallion. As is known from [33, 34],

the order-(i − 1) antiharmonic of the parent has the binary expansions (.pi1, .p
i
2). We will call

canonical single-spiral medallions to those whose central BMSs have the symbolic binary

expansions (.pi1g1, .p
i
2g2) with i = 1, 2 . . . . These medallions are inserted in the filament of

the cusp of the parent, and its limit when i = ∞ is this cusp. In Figure 5(b), we can see the
locations of the i = 1, 2, 3 canonical single-spiral medallions corresponding to the parent and
the gene of Figure 5(a). The locations of the noncentral BMSs in the single-spiral medallion
i = 14, up to third level, are shown in Figure 5(c).

In Table 2, the complex coordinates of some canonical single-spiral medallions are
given.

The coupling pattern of a single-spiral medallion cannot be obtained by using the
final kneading sequences since the kneading sequences of more than two of its noncentral
BMSs are the same. However, we have two new options. First, we can use the Bruin and
Schleicher algorithm to find conjugate external arguments [12]. Second, we can draw the
single-spiral medallion with its external rays (in each level j, we have 2j+1 external rays and
2j+1 symbolic binary expansions) and later to assign the correct symbolic binary expansion to



Discrete Dynamics in Nature and Society 7

Table 2: Location of canonical single-spiral medallions.

(.pi1g1, .p
i
2g2) Location

i = 1 −0.12749 · · · + 0.98746 · · · i
i = 2 −0.143322 · · · + 1.018962 · · · i
i = 3 −0.1488893 · · · + 1.0259091 · · · i
i = 8 −0.15375614 · · · + 1.03038322 · · · i
i = 14 −0.1543869391 · · · + 1.0308295094 · · · i
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Figure 4: Coupling pattern of the external arguments of the BMSs up to fourth level in a canonical nonspiral
medallion. The corresponding final kneading sequences are shown.
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Figure 5: Canonical single-spiral medallions. (a) External rays of the parent and the gene. (b) Graphical
location of the medallions i = 1, 2 and 3. (c) Detail of the medallion i = 14 where the BMSs up to third level
are pointed out.

each external ray by simple ordering [32]. We have chosen the last option since the drawing
of the i = 8 canonical single-spiral medallion was already performed in a previous paper
(see [32, Figure 7]). Starting from this figure, the coupling pattern of a canonical single-spiral
medallion corresponds to the adjacent pairs pattern of Figure 6.

5. Coupling Pattern of Canonical Double-Spiral Medallions

Let us consider the gene (.g1, .g2) and the period-n parent (.p1, .p2) of a double-spiral
medallion. As is known from the tuning algorithm [3], the external rays landing at the
tangent point of the cardioid of the parent with its period-2n disc have the symbolic binary
expansions (.p1p2, .p2p1). The double-spiral medallions are inserted in the filaments near these
external rays, and the structures .p1p2 and .p2p1 appear in the symbolic binary expansions of
the central BMS of a double-spiral medallion. We name canonical double-spiral medallions

those whose central BMS have the symbolic binary expansions (.p1p2
ip2

1g2, .p1p2
i+1g1) and

(.p2p1
i+1g2, .p2p1

ip2
2g1). In Figure 7(b) we can see the locations of the i = 1, 2 canonical double-

spiral medallions corresponding to the parent and the gene of Figure 7(a). The locations of

the noncentral BMSs in the double-spiral medallion (.p1p2
16p2

1g2, .p1p2
17g1), up to third level,

are shown in Figure 7(c). In Table 3 the complex coordinates of some canonical double-spiral
medallions are given.



Discrete Dynamics in Nature and Society 9

.b1

.b2

.b1p1

.b1p2

.b2p1

.b2p2

.b1p1p1

.b1p1p2

.b1p2p1

.b1p2p2

.b2p1p1

.b2p1p2

.b2p2p1

.b2p2p2

.b1p1p1p1

.b1p1p1p2

.b1p1p2p1

.b1p1p2p2

.b1p2p1p1

.b1p2p1p2

.b1p2p2p1

.b1p2p2p2

.b2p1p1p1

.b2p1p1p2

.b2p1p2p1

.b2p1p2p2

.b2p2p1p1

.b2p2p1p2

.b2p2p2p1

.b2p2p2p2

.b1p1p1p1p1

.b1p1p1p1p2

.b1p1p1p2p1

.b1p1p1p2p2

.b1p1p2p1p1

.b1p1p2p1p2

.b1p1p2p2p1

.b1p1p2p2p2

.b1p2p1p1p1

.b1p2p1p1p2

.b1p2p1p2p1

.b1p2p1p2p2

.b1p2p2p1p1

.b1p2p2p1p2

.b1p2p2p2p1

.b1p2p2p2p2

.b2p1p1p1p1

.b2p1p1p1p2

.b2p1p1p2p1

.b2p1p1p2p2

.b2p1p2p1p1

.b2p1p2p1p2

.b2p1p2p2p1

.b2p1p2p2p2

.b2p2p1p1p1

.b2p2p1p1p2

.b2p2p1p2p1

.b2p2p1p2p2

.b2p2p2p1p1

.b2p2p2p1p2

.b2p2p2p2p1

.b2p2p2p2p2

Pa
tt

er
n Symbolic

binary
expansion Pa

tt
er

n Symbolic
binary

expansion

Figure 6: Coupling pattern of the external arguments of the BMSs up to fourth level in a canonical single-
spiral medallion.

The coupling pattern of the canonical double-spiral medallions can be obtained from
the final kneading sequences. The result is the 1-nested/adjacent pairs pattern which can be
seen in Figure 8.

6. Coupling Pattern of Canonical High-Order-Spiral Medallions

Let us consider the gene (.g1, .g2) and the period-n parent (.p1, .p2) of a triple-spiral medallion.
As is known from the tuning algorithm [3], the external rays landing at the tangent point of

the cardioid of the parent with its period-3n discs have the binary expansions (.p2
1p2, .p1p2p1)

and (.p2p1p2, .p
2
2p1). These structures appear in the symbolic binary expansions of the central
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Table 3: Location of canonical double-spiral medallions.

(.p1p2
ip2

1g2, .p1p2
i+1g1) Location

i = 1 −0.1566489 · · · + 1.0417901 · · · i
i = 2 −0.15868214 · · · + 1.03970171 · · · i
i = 3 −0.159450890 · · · + 1.038682639 · · · i
i = 16 −0.16090253699 · · · + 1.03660106997 · · · i
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Figure 7: Canonical double-spiral medallions. (a) External rays of the parent and the gene. (b) Graphical

location of the medallions i = 1 and 2. (c) Detail of the medallion (.p1p2
16p2

1g2, .p1p2
17g1) where the BMSs

up to third level are pointed out.

BMS of a triple-spiral medallion. In Figure 9(b) we can observe the locations of the i =

1, 2 canonical triple-spiral medallions (.p2
1p2

i
p3

1g2, .p
2
1p2

i+1
g1) and (.p1p2p1

i+1g2, .p1p2p1
ip1p

2
2g1)

corresponding to the parent and the gene of Figure 9(a). The situations of the noncentral

BMSs in the canonical triple-spiral medallion (.p2
1p2

11
p3

1g2, .p
2
1p2

12
g1), up to third level, are

pointed out in Figure 9(c). In Table 4 the complex coordinates of some canonical triple-spiral
medallions are given.

The coupling pattern of the canonical triple-spiral medallions can be obtained from
the final kneading sequences. The result is again the 1-nested/adjacent pairs pattern which
can be seen in Figure 8, as in the case of the double-spiral medallions.

We have found canonical high order-spiral medallions in order to see their coupling
patterns. In Tables 5, 6, and 7 the complex coordinates of some of these medallions are given.

The coupling patterns of canonical quadruple, quintuple and 20.tuple-spiral medal-
lions correspond once again to the 1-nested/adjacent pairs pattern of Figure 8, similarly to
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Figure 8: Coupling pattern of the external arguments of the BMSs up to fourth level in a canonical double-
spiral medallion.

the cases of the double and triple-spiral medallions. Therefore, we can conjecture that the
canonical n.tuple-spiral medallions (n ≥ 2) have a 1-nested/adjacent pairs pattern.

7. Conclusions

The coupling patterns of the canonical multiple-spiral medallions have been experimentally
studied. Two experimental methods have been used to find the coupling patterns: the first
one by using the kneading sequences, and the second one by using the handmade drawing
of external rays and the later ordering of their external arguments.
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Table 4: Location of canonical triple-spiral medallions.

(.p1p2p1
i+1g2, .p1p2p1

ip1p
2
2g1) Location

i = 1 −0.1562143 · · · + 1.0397508 · · · i
i = 2 −0.15553568 · · · + 1.03854489 · · · i
i = 3 −0.155244096 · · · + 1.038069528 · · · i
i = 11 −0.1546766523 · · · + 1.0373581018 · · · i

Table 5: Location of canonical quadruple-spiral medallions.

(.p2
1p2p1

i+1
g2, .p

2
1p2p1

i
p2

1p
2
2g1) Location

i = 1 −0.152235840 · · · + 1.036053596 · · · i
i = 2 −0.1524782284 · · · + 1.0354175710 · · · i
i = 3 −0.15255235393 · · · + 1.03515698018 · · · i
i = 8 −0.152602024868 · · · + 1.034789268092 · · · i

Table 6: Location of canonical quintuple-spiral medallions.

(.p3
1p2p1

i+1
g2, .p

3
1p2p1

i
p3

1p
2
2g1) Location

i = 1 −0.15200993 · · · + 1.03357269 · · · i
i = 2 −0.152295958 · · · + 1.033337933 · · · i
i = 3 −0.1523987430 · · · + 1.0332321714 · · · i
i = 6 −0.152493713878 · · · + 1.033103509887 · · · i

n

7n

3n

5n .p2
1p2

.p2
1p2

3
g1

.p2
1p2

2
p3

1g2

.p2
1p2

2
g1

.p2
1p2p

3
1g2

.p
1p

2p
11 p

1p
2 2
g

1

.p
1p

2p
12 g

2

.p
1p

2p
12 p

1p
2 2
g

1

.p
1p

2p
13 g

2

.p
1p

2p
1

.p1.p2.g2 .g1

Central bMs
2nd level

3rd level
1st level

1st level

3rd level
2nd level 3rd level

2nd level

3rd level

3rd level

3rd level

2nd level3rd level

3rd level

(a) (b)

(c)

Figure 9: Canonical triple-spiral medallions (.p2
1p2

i
p3

1g2, .p
2
1p2

i+1
g1). (a) External rays of the parent and the

gene. (b) Graphical location of the medallions i = 1 and 2. (c) Detail of the medallion i = 11 where the
BMSs up to third level are pointed out.
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Table 7: Location of canonical 20.tuple-spiral medallions.

(.p18
1 p2p1

i+1
g2, .p

18
1 p2p1

i
p18

1 p
2
2g1) Location

i = 1 −0.15450307968 · · · + 1.03099364735 · · · i
i = 2 −0.154507245205 · · · + 1.030998040742 · · · i
i = 3 −0.1545092214233 · · · + 1.0309995721981 · · · i

Based on the former experimental methods, three coupling patterns are found. The
canonical nonspiral medallions have a nested pairs pattern, the canonical single-spiral
medallions have an adjacent pairs pattern, and the canonical (double, triple, quadruple,
quintuple and 20.tuple)-spiral medallions have a 1-nested/adjacent pairs pattern. Taking into
account this last thirst case, we conjecture that any canonical n.tuple-spiral medallion (n ≥ 2)
has a 1-nested/adjacent pairs pattern.
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[16] A. Chéritat, “Dynamique holomorphe,” http://www.math.univ-toulouse.fr/∼cheritat/e index.html.
[17] M. Misiurewicz, “Fragments of the Mandelbrot set,” http://www.math.iupui.edu/∼mmisiure/.
[18] X. Wang and Y. Sun, “The general quaternionic M–J sets on the mapping z← zα+c(α ∈ N),” Computers

& Mathematics with Applications, vol. 53, no. 11, pp. 1718–1732, 2007.
[19] X. Wang and L. Gu, “Research fractal structures of generalized M–J sets using three algorithms,”

Fractals, vol. 16, no. 1, pp. 79–88, 2008.
[20] X. Wang, X. Zhang, Y. Sun, and F. Li, “Dynamics of the generalized M set on escape-line diagram,”

Applied Mathematics and Computation, vol. 206, no. 1, pp. 474–484, 2008.
[21] X. Wang and X. Zhang, “The divisor periodic point of escape-time N of the Mandelbrot set,” Applied

Mathematics and Computation, vol. 187, no. 2, pp. 1552–1556, 2007.
[22] X. Wang, P. Chang, and N. Gu, “Additive perturbed generalized Mandelbrot-Julia sets,” Applied

Mathematics and Computation, vol. 189, no. 1, pp. 754–765, 2007.
[23] X. Wang and R. Jia, “Rendering of the inside structure of the generalized M set period bulbs based on

the pre-period,” Fractals, vol. 16, no. 4, pp. 351–359, 2008.
[24] X. Wang, R. Jia, and Z. Zhang, “The generalized Mandelbrot set perturbed by composing noise of

additive and multiplicative,” Applied Mathematics and Computation, vol. 210, no. 1, pp. 107–118, 2009.
[25] X. Wang, Z. Wang, Y. Lang, and Z. Zhang, “Noise perturbed generalized Mandelbrot sets,” Journal of

Mathematical Analysis and Applications, vol. 347, no. 1, pp. 179–187, 2008.
[26] A. Douady, X. Buff, R. L. Devaney, and P. Sentenac, “Baby Mandelbrot sets are born in cauliflowers,”

in The Mandelbrot Set, Theme and Variations, T. Lei, Ed., vol. 274 of London Mathematical Society Lecture
Note Series, pp. 19–36, Cambridge University Press, Cambridge, UK, 2000.

[27] R. P. Munafo, “Embedded Julia sets,” http://www.mrob.com/pub/muency/embeddedjuliaset.html.
[28] M. Romera, G. Pastor, G. Alvarez, and F. Montoya, “External arguments in the multiple-spiral

medallions of the Mandelbrot set,” Computers and Graphics, vol. 30, no. 3, pp. 461–470, 2006.
[29] G. Pastor, M. Romera, G. Alvarez, J. Nunez, D. Arroyo, and F. Montoya, “Operating with external

arguments of Douady and Hubbard,” Discrete Dynamics in Nature and Society, vol. 2007, Article ID
45920, 17 pages, 2007.

[30] G. Pastor, M. Romera, G. Alvarez, et al., “Algorithm for external arguments calculation of the nodes
of a shrub in the Mandelbrot set,” Fractals, vol. 16, no. 2, pp. 159–168, 2008.

[31] G. Pastor, M. Romera, G. Alvarez, et al., “A general view of pseudoharmonics and pseudoan-
tiharmonics to calculate external arguments of Douady and Hubbard,” Applied Mathematics and
Computation, vol. 213, no. 2, pp. 484–497, 2009.

[32] M. Romera, G. Alvarez, D. Arroyo, A. B. Orue, V. Fernandez, and G. Pastor, “Drawing and computing
external rays in the multiple-spiral medallions of the Mandelbrot set,” Computers and Graphics, vol. 32,
no. 5, pp. 597–610, 2008.
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