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1. Introduction

Over the past decades, Neural Networks (NNs) have attracted considerable attention
because of their extensive applications in pattern recognition, optimization solvers, model
identification, signal processing, and other engineering areas [1]. Meanwhile, time delays are
frequently encountered in various engineering, biological, and economic systems due to the
finite switching speed of amplifiers and the inherent communication time of neurons. It has
been revealed that time delay may cause instability and oscillation of the neural networks
[2, 3]. For these reasons, the stability problem of NNs with delays has been extensively
studied, for example, see [2–10]. It is well known that delay-dependent stability conditions
are generally less conservative than delay-independent conditions, especially when the size
of the delay is small. Therefore, considerable attention has been focused on the derivation
of delay-dependent stability results and many effective approaches have been provided
to reduce the conservatism of stability results for further improving the quality of delay-
dependent stability criteria.
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Most NNs studied are assumed to act in a continuous-time manner; however, in
implementing and applications of neural networks, discrete-time neural networks become
more and more important than their continuous-time counterparts [11]. So, the stability
analysis problems for discrete-time neural networks have received more and more interests,
and some stability criteria have been proposed in literature; for example, see [11–15] and the
references cited therein. Moreover, stochastic disturbance usually appears in the electrical
circuit design of neural networks; a neural network could be stabilized or destabilized
by certain stochastic inputs. The delay-dependent stability problems of stochastic neural
networks are studied in some works, such as, [16, 17] and the reference cited therein.

On the other hand, the passivity theory plays an important role in the analysis and
design of linear and nonlinear delayed systems. Recently, the passivity of linear systems with
delays [18–20] and the passivity of neural networks with delays [21–23] have been studied.
Based on the Lyapunov-Krasovskii method and LMI framework, the passivity properties
for delayed NNs were firstly studied in [21]. In [23], the problem of passivity and robust
passivity for a class of discrete-time stochastic neural networks with time-varying delays was
studied.

In this paper, by constructing a new Lyapunov-Krasovskii functional, the improved
delay-dependent passivity and robust passivity criteria of DSNNs are obtained in the
form of linear matrix inequalities (LMIs). It is shown that the obtained conditions are
less conservative and more efficiency than those in [23]. Two numerical examples are also
provided to show the effectiveness of the proposed stability criteria.

Notation. Throughout this paper, N
+ stands for the set of nonnegative integers; R

n and R
n×m

denote the n dimensional Euclidean space and the set of all n ×m real matrices, respectively.
Real symmetric matrix P > 0 (≥ 0) denotes P being a positive definite (positive semi-definite)
matrix. The notation X ≥ Y (resp., X > Y ) means that X and Y are symmetric matrices,
and that X − Y is positive semi-definite (resp., positive definite). I is used to denote an
identity matrix with proper dimension. Matrices, if not explicitly stated, are assumed to
have compatible dimensions. The symmetric terms in a symmetric matrix are denoted by
∗. The superscript “T ′′ represents the transpose. We use λmin(·) and λmax(·) to denote the
minimum and maximum eigenvalue of a real symmetric matrix, respectively. Let (Ω,F, P)
be a complete probability space with a filtration {Ft}t≥0 satisfying the usual conditions (i.e.,
it is right continuous and {F}0 contains all P -pull sets); let Lp

F0
([−τ, 0];Rn) be the family of

all F0-measurable {C([−τ, 0];Rn)}-valued random variables {ξ = ξ(θ) : −τ ≤ θ ≤ 0} such that
sup−τ≤ϑ≤0E{|ξ(θ)|}p < ∞, where E{·} stands for the mathematical expectation operator with
respect to the given probability measure P.

2. Problem Formulation and Preliminaries

Consider the uncertain DSNNs with time-varying interval delay described by

x(k + 1) = C(k)x(k) +A(k)G(x(k)) + B(k)G(x(k − τ(k))) + u(k)

+ σ(x(k), x(k − τ(k)), k)ω(k), k = 1, 2, . . . ,

y(k) = G(x(k)),

(2.1)
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where x(k) = [x1(k), . . . , xn(k)]
T ∈ R

n is the neural state vector; G(x(k)) = [g1(x1(k)), . . . ,
gn(xn(k))]

T , and G(x(k − τ(k))) = [g1(x1(k − τ(k))), . . . , gn(xn(k − τ(k)))]T denote the
neuron activation functions; y(k) = G(x(k)) is the output of the neural network; u(k) =
(u1(k), u2(k), . . . , un(k))

T is the input vector; τ(k) denotes the time-varying delay satisfying

0 ≤ τm ≤ τ(k) ≤ τM, (2.2)

and τm, τM are known positive integers. C(k) = C + ΔC(k), A(k) = A + ΔA(k), and B(k) =
B + ΔB(k), where C = diag(c1, c2, . . . , cn) with |ci| < 1 describing the rate with which the
ith neuron will reset its potential to the resting state in isolation when disconnected from
the networks and external inputs, A = (aij)n×n is the connection weight matrix, and B =
(bij)n×n is the delayed connection weight matrix. ΔC(k),ΔA(k), and ΔB(k) represent the
time-varying parameter uncertainties and are assumed to satisfy the following admissible
condition:

[
ΔC ΔA ΔB

]
= EF(k)

[
GC GA GB

]
, (2.3)

where E,GC,GA, and GB are known real constant matrices of appropriate dimensions; F(k)
is the unknown time-varying matrix-valued function satisfying

F(k)TF(k) ≤ I, ∀k ∈ N
+. (2.4)

In system (2.1), ω(k) is a scalar Wiener process (Brownian Motion) on (Ω,F, P)with

E[ω(k)] = 0, E

[
ω2(k)

]
= 1, E

[
ω(i)ω

(
j
)]

= 0
(
i /= j
)
, (2.5)

and there exist two positive constants that ρ1 and ρ2 such that

σT (x(k), x(k − τ(k)), k)σ(x(k), x(k − τ(k)), k)

≤ ρ1x(k)
Tx(k) + ρ2x(k − τ(k))Tx(k − τ(k)),

(2.6)

The initial condition of system (2.1) is given by

x(s) = ϕ(s), s ∈ [−τM, 0]. (2.7)

The activation functions in (2.1) satisfy the following assumption.

Assumption 2.1. Activation functions gi(·) in (2.1) are bounded and satisfy gi(0) = 0:

σ−
i ≤ gi(x) − gi

(
y
)

x − y
≤ σ+

i , ∀x, y ∈ R, x /=y, i = 1, 2, . . . , n, (2.8)
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where σ+
i , σ

−
i are constants. Denote Γ = diag(σ−

1 , . . . , σ
−
n ), and

Σ1 = diag
(
σ+
1 σ

−
1 , . . . , σ

+
nσ

−
n

)
, Σ2 = diag

(
σ+
1 + σ−

1

2
, . . . ,

σ+
n + σ−

n

2

)

. (2.9)

Remark 2.2. As pointed out in [11], the constants σ+
i , σ

−
i in Assumption 2.1 are allowed to be

positive, negative, or zero. So the assumption is weaker in comparison with those made in
[2, 13], and so forth.

Definition 2.3. The delayed DSNNs (2.1) are said passive if there exists a scalar γ > 0 such that

2
k0∑

j=0

E

{
yT(j

)
u
(
j
)} ≥ −γ

k0∑

j=0

E

{
uT(j

)
u
(
j
)}

, ∀k0 ∈ N. (2.10)

The purpose of this paper is to find the maximum allowed delay bound τM for the
given lower bound τm such that the system described by (2.1) with uncertainties (2.3) is
robust passivity.

In obtaining the main results of this paper, the following lemma will be useful for the
proofs.

Lemma 2.4 (see [3]). Given constant matrices P,Q, and R, where PT = P,QT = Q, then the LMI[ P R

RT −Q

]
< 0 is equivalent to the following condition: Q > 0, P + RQ−1RT < 0.

Lemma 2.5 (see [11]). Given matrices P,Q, and R with P = PT , then

P +QF(k)R + (QF(k)R)T < 0 (2.11)

holds for all F(k) satisfying FT (k)F(k) ≤ I if and only if there exists a scalar ε > 0 such that

P + ε−1QQT + εRRT < 0. (2.12)

3. Main Results

In this section, we present a delay-dependent criterion guaranteeing the passivity of DSNNs
with time-varying delay:

x(k + 1) = Cx(k) +AG(x(k)) + BG(x(k − τ(k))) + u(k) + σ(x(k), x(k − τ(k)), k)ω(k).
(3.1)
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Theorem 3.1. Under Assumption 2.1 given two scalars τm > 0 and τM > 0, for any delay τ(k)
satisfying (2.2), system (3.1) is passive in the sense of Definition 2.3 if there exist two scalars
γ > 0, λ∗ > 0, five positive definite matrices P,Q1, Q2, Q3, Z > 0, three diagonal matrices K >
0, U1 > 0, U2 > 0, and six matrices L1, L2,M1,M2,N1,N2 with appropriate dimensions, such that
the following LMIs hold:

τMZ + P < λ∗I, (3.2)

Ψ =

[
Ψ1 Ψ2

∗ Ψ3

]

< 0, (3.3)

where

Ψ1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Ψ11 Ψ12 Ψ13 Ψ14 Ψ15 M1 −N1 −L1

∗ Ψ22 Ψ23 Ψ24 0 0 0

∗ ∗ Ψ33 Ψ34 Ψ35 0 0

∗ ∗ ∗ Ψ44 0 0 0

∗ ∗ ∗ ∗ Ψ55 M2 −N2 −L2

∗ ∗ ∗ ∗ ∗ −Q1 0

∗ ∗ ∗ ∗ ∗ ∗ −Q3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

Ψ2 =
[√

τM − τmL
√
τM − τmM

√
τMN

]
,

Ψ3 = diag {−Z,−Z,−Z},

(3.4)

with

Ψ11 = −P +Q1 + τQ2 +Q3 − τ
(
ΓTK +KTΓ

)
+N1 +NT

1

+ CTPC −U1Σ1 + ρ1λ
∗ + τM(C − I)TZ(C − I),

Ψ12 = τK + Σ2U1 + CTPA + τM(C − I)TZA,

Ψ13 = τMCTZB + CTPB,

Ψ14 = τM(C − I)TZ + CTP,

Ψ15 = L1 +NT
2 −M1,

Ψ22 = −U1 + τMATZA +ATPA,

Ψ23 = τMATZB +ATPB,

Ψ24 = τMATZ +ATP − I,
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Ψ33 = −U2 + τMBTZB + BTPB,

Ψ34 = τMBTZ + BTP,

Ψ35 = −K +U2Σ2,

Ψ44 = τMZ + P − γI,

Ψ55 = −Q2 −U2Σ1 + L2 + LT
2 −M2 −MT

2 + ρ2λ
∗ + ΓTK +KTΓ,

τ = τM − τm + 1,

L =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

L1

0

0

0

L2

0

0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, M =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

M1

0

0

0

M2

0

0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, N =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

N1

0

0

0

N2

0

0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

.

(3.5)

Proof. Choose a new Lyapunov-Krasovskii functional candidate as follows:

V (k) = V1(k) + V2(k) + V3(k) + V4(k) + V5(k), (3.6)

where

V1(k) = xT (k)Px(k),

V2(k) =
k−1∑

i=k−τm
xT (i)Q1x(i) +

k−1∑

i=k−τM
xT (i)Q3x(i),

V3(k) =
k−1∑

i=k−τ(k)
xT (i)Q2x(i) +

k−τm∑

j=k−τM+1

k−1∑

i=j

xT (i)Q2x(i),

V4(k) =
k−1∑

j=k−τM

k−1∑

i=j

ηT (i)Zη(i),

V5(k) = 2
k−1∑

i=k−τ(k)
[G(x(i)) − Γx(i)]TKx(i) + 2

k−τm∑

i=k−τM+1

k−1∑

j=i

[
G
(
x
(
j
)) − Γx

(
j
)]T

Kx
(
j
)
,

η(i) = x(i + 1) − x(i).

(3.7)



Discrete Dynamics in Nature and Society 7

Defining ΔV (k) = V (k + 1)−V (k), calculating the difference of V (k) along the system
(3.1), and taking the mathematical expectation, we have

E{ΔV (k)} = E{ΔV1(k)} + E{ΔV2(k)} + E{ΔV3(k)} + E{ΔV4(k)} + E{ΔV5(k)}, (3.8)

where,

E{ΔV1(k)} = E

{
[Cx(k) +AG(x(k)) + BG(x(k − τ(k))) + u(k)]TP

× [Cx(k) +AG(x(k)) + BG(x(k − τ(k))) + u(k)]

+σT (x(k), x(k − τ(k)), k)Pσ(x(k), x(k − τ(k)), k) − xT (k)Px(k)
}
,

E{ΔV2(k)} = E

{
xT (k)(Q1 +Q3)x(k) − xT (k − τm)Q1x(k − τm) − xT (k − τM)Q3x(k − τM)

}
,

E{ΔV3(k)} = E

{

xT (k)Q2x(k) − xT (k − τ(k))Q2x(k − τ(k))

+
k−1∑

i=k+1−τm
xT (i)Q2x(i) +

k−τm∑

i=k+1−τ(k+1)
xT (i)Q2x(i) −

k−1∑

i=k+1−τ(k)
xT (i)Q2x(i)

+(τM − τm)xT (k)Q2x(k) −
k−τm∑

i=k+1−τM
xT (i)Q2x(i)

}

≤ E

{
xT (k)Q2x(k) − xT (k − τ(k))Q2x(k − τ(k)) + (τM − τm)xT (k)Q2x(k)

}
,

E{ΔV4(k)} = E

{

τMηT (k)Zη(k) −
k−1∑

i=k−τM
ηT (i)Zη(i)

}

= E

{

τMxT (k)(C − I)TZ(C − I)x(k) + 2τMxT (k)(C − I)TZAG(x(k))

+ 2τMxT (k)(C − I)TZBG(x(k − τ(k))) + 2τMxT (k)(C − I)TZu(k)

+ τMGT (x(k))ATZAG(x(k)) + 2τMGT (x(k))ATZBG(x(k − τ(k)))

+ 2τMGT (x(k))ATZu(k) + τMGT (x(k − τ(k)))BTZBG(x(k − τ(k)))

+ 2τMGT (x(k − τ(k)))BTZu(k) + τMuT (k)Zu(k)

+ τMσT (x(k), x(k − τ(k)), k)Zσ(x(k), x(k − τ(k)), k)

−
k−τ(k)−1∑

i=k−τM
ηT (i)Zη(i) −

k−τm−1∑

i=k−τ(k)
ηT (i)Zη(i) −

k−1∑

i=k−τm
ηT (i)Zη(i)

⎫
⎬

⎭
,
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E{ΔV5(k)} = E

⎧
⎨

⎩
2

k−1∑

i=k+1−τ(k+1)
[G(x(i)) − Γx(i)]TKx(i) + 2[G(x(k)) − Γx(k)]TKx(k)

+ 2
k+1−τm∑

i=k−τM+2

k∑

j=i

[
G
(
x
(
j
)) − Γx

(
j
)]T

Kx
(
j
) − 2

k−1∑

i=k+1−τ(k)
[G(x(i)) − Γx(i)]T

×Kx(i) − 2[G(x(k − τ(k))) − Γx(k − τ(k))]TKx(k − τ(k))

−2
k−τm∑

i=k−τM+1

k−1∑

j=i

[
G
(
x
(
j
)) − Γx

(
j
)]T

Kx
(
j
)
⎫
⎬

⎭

≤ E

{
2(τM − τm + 1)(G(x(k)) − Γx(k))TKx(k) − 2GT (x(k − τ(k)))Kx(k − τ(k))

+2xT (k − τ(k))ΓTKx(k − τ(k))
}
.

(3.9)

Define ξT (k) = [xT (k) GT (x(k)) GT (x(k − τ(k))) uT (k)xT (k − τ(k)) xT (k − τm)xT (k − τM)],
and it is easy to see

2ξT (k)L

[

x(k − τ(k)) − x(k − τM) −
k−τ(k)−1∑

i=k−τM
η(i)

]

≡ 0,

2ξT (k)M

⎡

⎣x(k − τm) − x(k − τ(k)) −
k−τm−1∑

i=k−τ(k)
η(i)

⎤

⎦ ≡ 0,

2ξT (k)N

[

x(k) − x(k − τm) −
k−1∑

i=k−τm
η(i)

]

≡ 0.

(3.10)

From Assumption 2.1, if follows that for i = 1, 2, . . . , n

(
gi(xi(k)) − σ+

i xi(k)
)(
gi(xi(k)) − σ−

i xi(k)
) ≤ 0,

(
gi(xi(k − τ(k))) − σ+

i xi(k − τ(k))
) × (gi(xi(k − τ(k))) − σ−

i xi(k − τ(k))
) ≤ 0.

(3.11)

For any diagonal matrices U1 ≥ 0, U2 ≥ 0, and Σi (i = 1, 2) in Assumption 2.1, it is easy to get

0 ≤
⎧
⎨

⎩

[
x(k)

G(x(k))

]T[−U1Σ1 U1Σ2

∗ −U1

][
x(k)

G(x(k))

]

+

[
x(k − τ(k))

G(x(k − τ(k)))

]T

×
[−U2Σ1 U2Σ2

∗ −U2

][
x(k − τ(k))

G(x(k − τ(k)))

]}

.

(3.12)
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On the other hand, using (3.2)

E

{
σT (x(k), x(k − τ(k)), k)[P + τMZ]σ(x(k), x(k − τ(k)), k)

}

≤ E

{
ρ1λ

∗xT (k)GT
1x(k) + ρ2λ

∗xT (k − τ(k))x(k − τ(k))
}
.

(3.13)

Since y(k) = G(x(k)), combining (3.9)–(3.13), we get

E

{
ΔV (k) − 2GT (x(k))u(k) − γuT (k)u(k)

}

≤ E

⎧
⎨

⎩
ξT (k)

[
Ψ1 + (τM − τm)LZ−1LT + (τM − τm)MZ−1MT + τMNZ−1NT

]
ξ(k)

−
k−τ(k)−1∑

l=k−τM

[
LTξ(k) + Zη(l)

]T
Z−1
[
LTξ(k) + Zη(l)

]

−
k−τm−1∑

l=k−τ(k)

[
MTξ(k) + Zη(l)

]T
Z−1
[
MTξ(k) + Zη(l)

]

−
k−1∑

l=k−τ(k)

[
NTξ(k) + Zη(l)

]T
Z−1
[
NTξ(k) + Zη(l)

]
⎫
⎬

⎭

≤ E

{
ξT (k)

[
Ψ1 + (τM − τm)LZ−1LT + (τM − τm)MZ−1MT + τMNZ−1NT

]
ξ(k)

}
.

(3.14)

Applying Lemma 2.4 to (3.3) yields

E

{
Ψ1 + (τM − τm)LZ−1LT + (τM − τm)MZ−1MT + τMNZ−1NT

}
< 0. (3.15)

From (3.15), we obtain

2
k∑

j=0

E

{
yT(j

)
u
(
j
)} ≥

k∑

j=0

E{ΔV (k)} − γ
k∑

j=0

E

{
uT(j

)
u
(
j
)}

(3.16)

for all k0 ∈ N. By the definition of V (k), we know that

k∑

j=0

E{ΔV (k)} = E{V (k0 + 1) − V (0)} = E{V (k0 + 1)} ≥ 0 (3.17)

for all k0 ∈ N. Thus,

2
k∑

j=0

E

{
yT(j

)
u
(
j
)} ≥ −γ

k∑

j=0

E

{
uT(j

)
u
(
j
)}

. (3.18)

then by Definition 2.3, it completes the proof of Theorem 3.1.
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Remark 3.2. In Theorem 3.1, the free-weighing matrices L1, L2,M1,M2,N1, and N2 are
introduced so as to reduce the conservatism of the delay-dependent results.

Remark 3.3. Since the activation functions satisfy Assumption 2.1, we know that

σ−
i ≤ gi(x(k))

x(k)
≤ σ+

i , ∀x(k) ∈ R, i = 1, 2, . . . , n. (3.19)

So,

0 ≤ gi(x(k))
x(k)

− σ−
i ≤ σ+

i − σ−
i , (3.20)

then

(
gi(x(k)) − σ−

i x(k)
)
x(k) ≥ 0, ∀x(k) ∈ R. (3.21)

So, V5(k) is nonnegative definite. Including the term V5(k) in the Lyapunov functional is
to reduce the conservatism further, and it is illustrated by the later example. If V5(k) is not
included in (3.6), we can get Corollary 3.4.

Corollary 3.4. Given two scalars τm > 0 and τM > 0. Then, for any delay τ(k) satisfying (2.2),
system (3.1) is passive in the sense of Definition 2.3 if there exist two scalars γ > 0, λ∗ > 0, five
positive definite matrices P,Q1, Q2, Q3, Z > 0, two diagonal matrices U1 > 0, U2 > 0, and six
matrices L1, L2,M1,M2,N1,N2 with appropriate dimensions, such that (3.2) and the following LMI
hold:

Ψ =

[
Ψ̂1 Ψ2

∗ Ψ3

]

< 0, (3.22)

where

Ψ̂1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Ψ̂11 Ψ̂12 Ψ13 Ψ14 Ψ15 M1 −N1 −L1

∗ Ψ22 Ψ23 Ψ24 0 0 0

∗ ∗ Ψ33 Ψ34 U2Σ2 0 0

∗ ∗ ∗ Ψ44 0 0 0

∗ ∗ ∗ ∗ Ψ̂55 M2 −N2 −L2

∗ ∗ ∗ ∗ ∗ −Q1 0

∗ ∗ ∗ ∗ ∗ ∗ −Q3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, (3.23)

with

Ψ̂11 = −P +Q1 + τQ2 +Q3 +N1 +NT
1 + CTPC −U1Σ1 + ρ1λ

∗ + τM(C − I)TZ(C − I),

Ψ̂12 = τK + Σ2U1 + CTPA + τM(C − I)TZA,

Ψ̂55 = −Q2 −U2Σ1 + L2 + LT
2 −M2 −MT

2 + ρ2λ
∗.

(3.24)
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Next, we provide the delay-dependent robust passivity analysis for uncertain DSNN
(2.1).

Theorem 3.5. Given two scalars τm > 0 and τM > 0. Then, under Assumption 2.1, for any delay
τ(k) satisfying (2.2), system (3.1) is robust passive if there exist two scalars γ > 0, ε > 0, five positive
definite matrices P,Q1, Q2, Q3, Z > 0, three diagonal matrices K > 0, U1 > 0, U2 > 0, and six
matrices L1, L2,M1,M2,N1,N2 with appropriate dimensions, such that (3.3) and the following LMI
hold:

Γ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 0 εΓ7

∗ −Z 0 0 0 0 0 0

∗ ∗ −Z 0 0 0 0 0

∗ ∗ ∗ −Z 0 0 0 0

∗ ∗ ∗ ∗ −P 0 PE 0

∗ ∗ ∗ ∗ ∗ −Z √
τMZE 0

∗ ∗ ∗ ∗ ∗ ∗ −εI 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −εI

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< 0, (3.25)

where

Γ1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Γ11 Γ12 0 0 Γ15 M1 −N1 −L1

∗ −U1 0 −I 0 0 0

∗ ∗ −U2 0 Γ35 0 0

∗ ∗ ∗ −γI 0 0 0

∗ ∗ ∗ ∗ Γ55 M2 −N2 −L2

∗ ∗ ∗ ∗ ∗ −Q1 0

∗ ∗ ∗ ∗ ∗ ∗ −Q3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

Γ2 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

√
τM − τmL1

0

0

0
√
τM − τmL2

0

0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, Γ3 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

√
τM − τmM1

0

0

0
√
τM − τmM2

0

0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, Γ4 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

√
τMN1

0

0

0
√
τMN2

0

0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,
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Γ5 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

CTP

ATP

BTP

P

0

0

0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, Γ6 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

√
τM(C − I)TZ
√
τMATZ

√
τMBTZ
√
τMZ

0

0

0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, Γ7 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

GT
C

GT
A

GT
B

0

0

0

0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

(3.26)

with

Γ11 = −P +Q1 + τQ2 +Q3 − τ
(
ΓTK +KTΓ

)
+N1 +NT

1 −U1Σ1 + ρ1λ
∗,

Γ12 = τK + Σ2U1,

Γ15 = L1 +NT
2 −M1,

Γ35 = −K +U2Σ2,

Γ55 = −Q2 −U2Σ1 + L2 + LT
2 −M2 −MT

2 + ρ2λ
∗ + ΓTK +KTΓ.

(3.27)

Proof. Assume that inequality (3.25) holds, according to Lemma 2.4, we have

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Γ1 Γ2 Γ3 Γ4 Γ5 Γ6

∗ −Z 0 0 0 0

∗ ∗ −Z 0 0 0

∗ ∗ ∗ −Z 0 0

∗ ∗ ∗ ∗ −P 0

∗ ∗ ∗ ∗ ∗ −Z

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

+ ε−1

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0

0

0

0

PE
√
τMZE

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

[
0 0 0 0 ETP

√
τMETZ

]
+ ε

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Γ7

0

0

0

0

0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

[
ΓT7 0 0 0 0 0

]
< 0.

(3.28)
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Then, from Lemma 2.5, we know that LMI (3.28) is equivalent to the following inequality:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Γ1 Γ2 Γ3 Γ4 Γ5 Γ6

∗ −Z 0 0 0 0

∗ ∗ −Z 0 0 0

∗ ∗ ∗ −Z 0 0

∗ ∗ ∗ ∗ −P 0

∗ ∗ ∗ ∗ ∗ −Z

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

+

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0

0

0

0

PE
√
τMZE

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

F(k)
[
ΓT7 0 0 0 0 0

]
+

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Γ7

0

0

0

0

0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

FT (k)
[
0 0 0 0 ETP

√
τMETZ

]
< 0.

(3.29)

It can be verified that the above inequality is exactly the left-hand side of (3.3) when C, A,
and B are replaced with C+EF(k)GC,A+EF(k)GA, and B+EF(k)GB, respectively. The result
then follows from Theorem 3.1.

We now consider the DSNNs without stochastic term. In this case, the system (2.1)
reduces to

x(k + 1) = C(k)x(k) +A(k)G(x(k)) + B(k)G(x(k − τ(k))) + u(k). (3.30)

From Theorem 3.5, we can easily obtain the following corollary.

Corollary 3.6. Given two scalars τm > 0 and τM > 0. Then, for any delay τ(k) satisfying (2.2),
system (3.30) is robust passive if there exist three scalars γ > 0, λ∗ > 0, ε > 0, five positive definite
matrices P,Q1, Q2, Q3, Z > 0, three diagonal matrices K > 0, U1 > 0, U2 > 0, and six matrices
L1, L2,M1,M2,N1,N2 with appropriate dimensions, such that the following LMI holds:s

Γ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Γ̂1 Γ2 Γ3 Γ4 Γ5 Γ6 0 εΓ7

∗ −Z 0 0 0 0 0 0

∗ ∗ −Z 0 0 0 0 0

∗ ∗ ∗ −Z 0 0 0 0

∗ ∗ ∗ ∗ −P 0 PE 0

∗ ∗ ∗ ∗ ∗ −Z √
τMZE 0

∗ ∗ ∗ ∗ ∗ ∗ −εI 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −εI

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< 0, (3.31)
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where

Γ̂1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Γ̂11 Γ12 0 0 Γ15 M1 −N1 −L1

∗ −U1 0 −I 0 0 0

∗ ∗ −U2 0 Γ35 0 0

∗ ∗ ∗ −γI 0 0 0

∗ ∗ ∗ ∗ Γ̂55 M2 −N2 −L2

∗ ∗ ∗ ∗ ∗ −Q1 0

∗ ∗ ∗ ∗ ∗ ∗ −Q3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, (3.32)

with

Γ̂11 = −P +Q1 + τQ2 +Q3 − τ
(
ΓTK +KTΓ

)
+N1 +NT

1 −U1Σ1,

Γ̂55 = −Q2 −U2Σ1 + L2 + LT
2 −M2 −MT

2 + ΓTK +KTΓ.
(3.33)

4. Numerical Examples

This section presents two numerical examples that demonstrate the validity of the method
described above.

Example 4.1. Consider a delayed DSNNs (3.1) with the following parameters:

C =

[
0.04 0

0 0.01

]

, A =

[
0.01 0.08

−0.05 0.02

]

, B =

[−0.05 0.01

0.02 0.07

]

, (4.1)

ρ1 = 0.01, ρ2 = 0.02, and the activation functions satisfy Assumption 2.1 with σ−
1 = −0.1,

σ−
2 = −0.2, σ+

1 = 0.1, and σ+
2 = 0.2.

The activation functions satisfy Assumption 2.1 with σ−
1 = 1, σ−

2 = 2, σ+
1 = 2, and σ+

2 = 4.
From Tables 1 and 2, it is easy to see that the results in this paper are superior to those

in [23].

Example 4.2. Consider a delayed uncertain DSNNs (3.1)with the following parameters:

C =

[
0.2 0

0 0.4

]

, A =

[
0.2 0.6

0.5 0.5

]

, B =

[−0.25 0.1

0.2 0.5

]

,

E =

[
1 0

0 1

]

, GC =

[
1 0

0 1

]

, GA = GB =

[
0.5 0

0 0.5

]

,

(4.2)

ρ1 = ρ2 = 0.01, and the activation functions satisfy Assumption 2.1 with σ−
1 = −0.1, σ−

2 = 0.1,
σ+
1 = 0.1, and σ+

2 = 0.2.
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Table 1: Comparisons of allowable upper bound (τM) for given τm.

Methods τm = 1 τm = 3 τm = 10 τm = 20 Number of variables
By [23] 48 50 57 67 81
By Corollary 3.4 48 50 57 67 45

Table 2: Comparisons of allowable upper bound (τM) for given τm.

Methods τm = 1 τm = 3 τm = 10 τm = 20 Number of variables
By [23] 7 9 16 26 81
By Corollary 3.4 7 9 16 26 45
By Theorem 3.1 8 10 17 27 47

If the time-varying delays satisfy 2 ≤ τ(k) ≤ 15, by the Matlab LMI Toolbox, we can
find a solution to the LMI (3.25) as follows:

P =

[
558.5625 −139.9896
−139.9896 113.5136

]

, Q1 =

[
101.6690 −27.6867
−27.6867 7.8060

]

,

Q2 =

[
12.4051

−2.9092

]

, Q3 =

[
101.7661 −27.7596
−27.7596 7.7780

]

,

Z =

[
9.7355 −2.4709
−2.4709 1.0820

]

, K =

[
0.3724 0

0 0.0937

]

,

U1 =

[
930.7099 0

0 621.0133

]

, U2 =

[
135.3270 0

0 190.4640

]

,

L1 =

[
0.0002 0.0012

0.0002 −0.0004

]

, L2 =

[−0.7398 0.1904

0.1898 −0.0785

]

,

M1 =

[−0.0349 0.0028

0.0030 −0.0140

]

, M2 =

[
0.7406 −0.1891
−0.1888 0.0806

]

,

N1 =

[−4.4873 1.1774

1.1714 −0.4350

]

, N2 =

[
0.0358 −0.0020
−0.0029 0.0135

]

,

(4.3)

and γ = 8845.9, and ε = 11.9457. Therefore, by Theorem 3.5, we know that system (3.1) with
the above given parameters is robust passive.

5. Conclusions

In this paper, we have considered the problem of passivity and robust passivity analysis for a
class of DSNNswith time-varying delay. By choosing a new Lyapunov-Krasovskii functional,
the improved delay-dependent criteria have been proposed. Finally, two numerical examples
have been provided to illustrate the effectiveness of the obtained results.
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