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1. Introduction

Consider the following set of difference equations:

y(n + 1) = α +
(
1 − β)y(n) −

m∑

i=1

ψi
(
y(n + 1)

)
xi(n + 1), n ≥ 0,

x1(n + 1) = (1 − a1)x1(n) + φ1
(
y(n)

)
xL(n), 1 ≤ L ≤ m,

xi(n + 1) = (1 − ai)xi(n) + φi
(
y(n)

)
xi−1(n), i = 2, 3, . . . , m,

(1.1)

where ψi(x), φi(x) ∈ C0(R), 1 ≤ i ≤ m. Moreover φi, 1 ≤ i ≤ m, and at least one of the
ψj (1 ≤ j ≤ L) is strictly monotone increasing functions and

yψi
(
y
) ≥ 0, ∀y ∈ R, i = 1, . . . , m. (1.2)
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This difference system contains a very large class of population dynamics models in the
presence of an infection involving typically at least two populations: susceptible individuals
and infective ones. The former is represented in (1.1) by the sequence y, while the latter is
represented by one of the sequences xi; we name it xI where I is an integer between 1 and L.

The paper is organized as follows. In the next section we report various examples
of continuous models which can be discretized by (1.1). The correspondence among the
sequences appearing in (1.1) and the dependent variables of the continuous problem is
indicated for each example. In Section 3 we prove some basic properties of the solution of
the proposed scheme such as positivity and boundedness, which makes it meaningful in the
applications. Our main result is proved in Section 4 where the question of the asymptotic
behavior of the solution is investigated. We prove a necessary and sufficient condition for
the vanishing of the sequences {xi(n)} and we derive the expression of the basic reproduction
number, a threshold parameter which allows to predict whether the infection develops or
not. Such a parameter permit to check that, in all the examples quoted in Section 2, the
asymptotic behavior of the discrete and continuous problem coincides; therefore, our discrete
system incorporates the dynamical characteristics (such as positivity and steady states) of the
continuous-time models.

2. Continuous Models

In this section we report different classes of continuous models which can be discretized by
means of (1.1). In order to avoid the introduction of many different symbols and for the sake
of brevity we do not always use the symbolism found in the literature and we indicate the
specific references for the explanation of their meaning.

Example 2.1 (see [1]). This continuous model represents the spread of HIV-1 infection inside
the human organism. Here S(t) represents the number of susceptible cells which are present
at time t in a unit of plasma. The process of infection of a cell is divided into several sequential
stages; therefore, Tj(t) is the number of infected cells at time t at stage j. The variable V (t) is
the number of viruses at time t. The meaning of the rest of symbols can be found in [1]

S′(t) = a − bS(t) − cS(t)V (t),

I ′1(t) = cS(t)V (t) − kI1(t),
I ′j(t) = k

(
Ij−1(t) − Ij(t)

)
, j = 2, . . . , 5,

V ′(t) = pI5(t) − qV (t).

(2.1)

Rewrite (1.1) at a general time step t the length of which is h and put

m = 6; I = L = 6; ψi
(
y
)
= 0, i = 1, . . . , 5;

ψ6
(
y
)
= φ1

(
y
)
= γy; φi

(
y
)
= kh, i = 2, . . . , 5; φ6

(
y
)
= ph;

ai = kh, i = 1, . . . , 5; a6 = qh; α = ah; β = bh; γ = ch.

(2.2)
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We obtain

y(t + h) − y(t) = ah − bhy(t) − chy(t + h)x6(t + h),
x1(t + h) − x(t) = −khx1(t) + chy(t)x6(t),

xi(t + h) − x(t) = −khxi(t) + khxi−1(t), i = 2, . . . , 5,

x6(t + h) − x(t) = −qhx6(t) + phx5(t).

(2.3)

This can be easily seen (see, e.g., [2]) to be the discrete analogue of (2.1) by dividing each
equation by h.

In conclusion, by assuming h = 1, we have that (1.1) is the discrete counterpart of (2.1)
provided that

m = 6; I = L = 6; φ1
(
y
)
= cy; φi

(
y
) ≡ k, i = 2, . . . , 5, φ6

(
y
) ≡ p;

ai = k, i = 1, . . . , 5; a6 = q; α = a; β = b.
(2.4)

The role of y, xi, i = 1, . . . , 6 is related to that of the variable of (2.1) according to the following
scheme: y ↔ S, x1 ↔ I1, . . . , x5 ↔ I5, x6 ↔ V.

Observe that y(n) and x6(n) play the role of S(t) and V (t), respectively, and therefore
they correspond to the susceptible and infective populations as we mentioned in the
introduction.

Example 2.2 (see [3]). This represents the spread of HTLV-I infection in a human organism
we refer to [3] for the meaning of the symbols

T ′(t) = a − bT(t) − cTA(t)T(t),
T ′
B(t) = cTA(t)T(t) − dBTL(t),
T ′
A(t) = gTB(t) − dATA(t).

(2.5)

As in Example 2.1 we can see that (1.1) is the discrete counterpart of (2.5) provided that
m = 2; I = L = 2; ψ1(y) = 0; φ1(y) = ψ2(y) = cy; φ2(y) ≡ g; a1 = dB, a2 = dA; α = a; β = b.
The correspondence between the variables of (1.1) and (2.5) is summarized by y ↔ T, x1 ↔
TB; x2 ↔ TA.

Let us note that this model is mathematically equivalent to the classical SIR model [4,
model (2.5)].

Example 2.3 (see [5]). This represents the spread of HIV-I infection in a human organism

T ′(t) = a − bT(t) − cVI(t)T(t),
V ′
I(t) = g1T

∗(t) − d1VI(t),
T ∗′(t) = cVI(t)T(t) − d2T ∗(t),

V ′
NI(t) = g2T

∗(t) − d1VNI(t).

(2.6)
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Here we have m = 3; I = 1; L = 2; φ1(y) ≡ g1; φ2(y) = ψ1(y) = cy; φ3(y) ≡ g2; ψ2(y) =
ψ3(y) = 0; a1 = d1, a2 = d2; a3 = d1; α = a; β = b. y ↔ T, x1 ↔ VI ; x2 ↔ T ∗; x3 ↔ VNI.

It is worth to note that all the continuous models just proposed can be discretized
by means of the discrete model proposed in [6]. The following example shows instead a
continuous model that has not this property but can be discretized by means of (1.1).

Example 2.4 (see [5]). This represents the spread of HIV-I infection in a human organism, too

T ′(t) = λ − dT(t) − (1 − ε)kV (t)T(t) − qT ∗(t)T(t),

T ∗′(t) = (1 − ε)kV (t)T(t) − δT ∗(t),

V ′(t) =NTδT
∗(t) − cV (t).

(2.7)

This continuous model cannot be discretized by means of the discrete model proposed in
[6] because of the presence of the two nonlinear terms (kV (t)T(t) and qT ∗(t)T(t)) in the first
equation. Instead, that can be done by means of (1.1) and we have m = 2; I = 1; L = 2; α =
λ; a1 = δ; a2 = c; β = d; ψ1(y) = qy; ψ2(y) = φ1(y) = (1 − ε)ky; φ2(y) = NTa1; T ↔ y; T ∗ ↔
x1; V ↔ x2.

3. Basic Properties

Since functions y and xi (i = 1, 2, . . . , m) represent populations, at first, we can prove in the
following two theorems their positivity and boundedness by using very natural hypotheses.

Theorem 3.1. Assume that

(i) α > 0;

(ii) β < 1;

(iii) ai < 1, i = 1, . . . , m;

(iv) φi(y) is not decreasing and φi(0) ≥ 0, i = 1, . . . , m;

(v) yψi(y) ≥ 0, ∀y ∈ R, i = 1, . . . , m;

(vi) ∃ s.t. 1 ≤ ı̂ ≤ L and ψı̂ is strictly increasing.

Then y(n) > 0, xi(n) > 0, n ≥ 0, i = 1, . . . , m.

Proof. From (iii), (iv) and the positivity of xi(0) we have xi(1) > 0, i = 1, . . . , m. Now assume

y(1) ≤ 0. (3.1)

From (v), (vi), we get
∑m

i=1ψi(y(1))xi(1) ≤ 0 and from (i), (ii) and the first of (1.1) we obtain
y(1) > 0 which contradicts (3.1). The rest of the theorem can be proved in the same way (by
induction).
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Theorem 3.2. Assume that

(i) α > 0;

(ii) 0 < β < 1;

(iii) 0 < ai < 1, i = 1, . . . , m;

(iv) φi(y) is not decreasing and φi(0) ≥ 0, i = 1, . . . , m;

(v) yψi(y) ≥ 0, ∀y ∈ R, i = 1, . . . , m;

(vi) ∃ ı̂ s.t. 1 ≤ ı̂ ≤ L and ψı̂ is strictly increasing;

(vii) ∃ i s.t. 1 ≤ i ≤ L and

∃ q > 0 :

⎧
⎨

⎩

φ1
(
y
) ≤ qψL

(
y
)
, y ≥ 0 if i = 1,

φi
(
y
) ≤ qψi−1

(
y
)
, y ≥ 0 if 2 ≤ i ≤ L.

(3.2)

Then, the sequences {y(n)}, {xi(n)}, i = 1, . . . , m are bounded.

Proof. In order to prove this theorem it is convenient to represent (1.1) in the form of the
following system of Volterra difference equations (see, e.g., [7, 8]):

y(n + 1) =
α

β

[
1 − (1 − β)n+1

]
+
(
1 − β)n+1y(0) −

n+1∑

l=1

(
1 − β)n+1−l

m∑

i=1

ψi
(
y(l)

)
xi(l),

x1(n + 1) = (1 − a1)n+1x1(0) +
n∑

l=0

(1 − a1)n−lφ1
(
y(l)

)
xL(l), 1 ≤ L ≤ m,

xi(n + 1) = (1 − ai)n+1xi(0) +
n∑

l=0

(1 − ai)n−lφi
(
y(l)

)
xi−1(l), i = 2, . . . , m.

(3.3)

Since the hypotheses of the previous theorem hold, positivity of the sequences {y(n)}, {xi(n)}
is assured. From the first of (3.3) we obtain

y(n + 1) ≤ α

β

[
1 − (1 − β)n+1

]
+
(
1 − β)n+1y(0) ≤ max

{
α

β
, y(0)

}
= yM (3.4)

and so the boundedness of y. From the first of (1.1) and (3.4)we also obtain for all j = 1, . . . , m

ψj
(
y(l)

)
xj(l) ≤

m∑

i=1

ψi
(
y(l)

)
xi(l),

= α +
(
1 − β)y(l − 1) − y(l)

≤ α +
(
1 − β)yM.

(3.5)

Assume that there exists q > 0 such that

φ1
(
y
) ≤ qψL

(
y
)
, y ≥ 0. (3.6)
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From the second of (3.3), (ii), (iii) and (3.5)we have

x1(n + 1) = (1 − a1)n+1x1(0) +
n∑

l=0

(1 − a1)n−lφ1
(
y(l)

)
xL(l)

≤ (1 − a1)n+1x1(0) + q
n∑

l=0

(1 − a1)n−lψL
(
y(l)

)
xL(l)

≤ x1(0) + q
α +

(
1 − β)yM
a1

= x1,M.

(3.7)

Let us consider the third of (3.3) for i = 2. From the boundedness of x1 and (iv) we
have

x2(n + 1) ≤ x2(0) + x1,Mφ2
(
yM
) n∑

l=0

(1 − a2)n−l

≤ x2(0) +
x1,Mφ2

(
yM
)

a2

= x2,M.

(3.8)

The boundedness of the remaining sequences can be proved in the same way.
If (3.6) does not hold then, from (i) and (vii), there exists q > 0 and i such that 2 ≤ i ≤ m

and

φi
(
y
) ≤ qψi−1

(
y
)
, y ≥ 0. (3.9)

Thus, by the third of (3.3), (ii), (iii), and (3.5), the boundedness of xi (and then the xj
sequences, j > i ) can be proved with the same argumentation used before for x1 and x2.
Since by 1 ≤ i ≤ L, xi is bounded, we obtain the boundedness of the remaining sequences
xj , 1 ≤ j ≤ i.

In order to simplify the theorems’ proofs of the remaining section, let us set

x0 = xL = lim inf
n→∞

xL(n), x0 = xL lim sup
n→∞

xL(n) (3.10)

and introduce the following basic lemma.
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Lemma 3.3. Let one assume that hypotheses of Theorem 3.2 hold. Then

α −∑m
i=1 ψi

(
y
)
xi

β
≤ y ≤ y ≤

α −∑m
i=1 ψi

(
y
)
xi

β
≤ α

β
,

φi
(
y
)

ai
xi−1 ≤ xi ≤ xi ≤

φi
(
y
)

ai
xi−1, i = 1, 2, . . . , m,

xi ≥

⎛

⎜
⎝

L∏

j=1

φj
(
y
)

aj

⎞

⎟
⎠xi,

xi ≤
⎛

⎝
L∏

j=1

φj
(
y
)

aj

⎞

⎠xi, i = 1, 2, . . . , L.

(3.11)

Proof. From (1.1) and Theorems 3.1 and 3.2, we easily have that

y ≥ α +
(
1 − β)y −

m∑

i=1

ψi
(
y
)
xi (3.12)

and then

y ≥ α −∑m
i=1 ψi

(
y
)
xi

β
. (3.13)

In the same way it can be proved that

y ≤
α −∑m

i=1 ψi
(
y
)
xi

β
≤ α

β
. (3.14)

Also, we easily have that

φi
(
y
)

ai
xi−1 ≤ xi ≤ xi ≤

φi
(
y
)

ai
xi−1, i = 1, 2, . . . , m, (3.15)
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and we have that

xL ≤
⎛

⎝
L∏

j=1

φj
(
y
)

aj

⎞

⎠xL,

xi ≤
φi
(
y
)

ai
xi−1 ≤ · · · ≤

⎛

⎝
i∏

j=2

φj
(
y
)

aj

⎞

⎠x1 ≤
⎛

⎝
i∏

j=1

φj
(
y
)

aj

⎞

⎠xL

≤
⎛

⎝
i∏

j=1

φj
(
y
)

aj

⎞

⎠φL
(
y
)

aL
xL−1 ≤ · · · ≤

⎛

⎝
i∏

j=1

φj
(
y
)

aj

⎞

⎠

⎛

⎝
L∏

j=i+1

φj
(
y
)

aj

⎞

⎠xi

=

⎛

⎝
L∏

j=1

φj
(
y
)

aj

⎞

⎠xi, 1 ≤ i ≤ L,

(3.16)

and then

xi ≤
⎛

⎝
L∏

j=1

φj
(
y
)

aj

⎞

⎠xi, 1 ≤ i ≤ L. (3.17)

Similarly, we have that

xi ≥

⎛

⎜
⎝

L∏

j=1

φj
(
y
)

aj

⎞

⎟
⎠xi, 1 ≤ i ≤ L. (3.18)

The remaining parts are obtained similarly.

Note that if there exists an integer i ∈ {1, 2, . . . , m} such that xi > 0, then by the last
inequalities of (3.11) in Lemma 3.3, we have that

L∏

j=1

φj
(
y
)

aj
≤ 1 ≤

L∏

j=1

φj
(
y
)

aj
. (3.19)

4. Asymptotic Properties

We assume that hypotheses of Theorem 3.2 hold and

(viii) P(λ) ≡ ∏L
j=1(φj(λ)/aj) is a strictly increasing positive continuous function of λ on

(0,+∞) and 0 ≤ P(0) < 1,

and put

R0 = P
(
α

β

)
. (4.1)

We have the following theorems.
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Theorem 4.1. Let one assume that hypotheses of Theorem 3.2 and (viii) hold. Then R0 ≤ 1 if and only
if the desease free equilibrium point E0 = (α/β, 0, . . . , 0) is global asymptotically stable. In this case

lim
n→∞

y(n) =
α

β
, lim

n→∞
xi(n) = 0, i = 1, 2, . . . , m. (4.2)

Proof. Sufficient condition (”⇒”) is proved by Lemmas 4.4 and 4.5. Necessary condition
(”⇐”) is proved by Lemma 4.7.

Theorem 4.2. Let one assume that hypotheses of Theorem 3.2 and (viii) hold. Then R0 > 1 if and
only if

y <
α

β
, xi > 0, 1 ≤ i ≤ m. (4.3)

In this case, it holds that for λ∗ defined in Lemma 4.6,

y ≤ λ∗ ≤ y, xi ≤
α − βλ∗

∑m
l=1 ψl(λ∗)

∏l
j=i+1

(
φj(λ∗)/aj

) ≤ xi, i = 1, 2, . . . , m. (4.4)

Proof. By Theorem 4.1 and (3.11) in Lemma 3.3, we obtain (4.3). Moreover, by Lemma 4.6 and
(3.19), we have y ≤ λ∗ ≤ y and by (3.11), we have (4.4).

Theorem 4.3. Let one assume that hypotheses of Theorem 3.2 and (viii) hold and let one suppose that
there exists a globally asymptotically stable endemic equilibrium point (y∗, x∗

1, . . . , x
∗
m), then R0 > 1

if and only if there exists a unique solution 0 < λ = λ∗ < α/β such that P(λ) = 1, and

y∗ = λ∗ <
α

β
,

x∗
i ≤

α − βλ∗
∑m

l=1 ψl(λ∗)
∏l

j=i+1
(
φj(λ∗)/aj

) , i = 1, 2, . . . , m.
(4.5)

Proof. By Lemmas 4.5 and 3.3, we obtain the thesis.

For the proofs of Theorems 4.1–4.3, we need the following lemmas.

Lemma 4.4. Let one assume that hypotheses of Theorem 3.2 and (viii) hold. Then, if R0 < 1, then

lim
n→∞

y(n) =
α

β
, lim

n→∞
xi(n) = 0, i = 1, 2, . . . , m. (4.6)

If R0 = 1, then

y =
α

β
. (4.7)
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Proof. If P(y) =
∏L

j=1(φj(y)/aj) < 1, then by (3.17) and Lemma 3.3, we have that xi = xi =
0, 1 ≤ i ≤ m and y = y = α/β which implies (4.6). Therefore, if R0 < 1, then P(y) ≤ P(α/β) =
R0 < 1 and hence, (4.6) holds.

If R0 = 1, then y = α/β, because if y < α/β then by the fact that P(λ) is a strictly
increasing positive function of λ on (0,+∞), we have that P(y) < P(α/β) = R0 = 1 and by the
above discussion, we obtain (4.6), which is a contradiction.

Lemma 4.5. Let one assume that hypotheses of Theorem 3.2 and (viii) hold. Then R0 = 1 implies
(4.6).

Proof. First let us assume

y(0) ≤ α

β
. (4.8)

From Lemma 4.4 we have y = α/β, so there exists a sequence {nk}∞k=1 such that
limk→∞y(nk) = y. Let us define the two sets:

Egt =
{
nk : y(nk − 1) ≥ y(nk)

}
,

Elt =
{
nk : y(nk − 1) ≤ y(nk)

}
.

(4.9)

Let us consider two cases with respect to the cardinality of the set Egt.

Case 1 (Egt = ∞). Let us consider the subsequence {nkj}∞j=1 corresponding to indexes
belonging to Egt.

In this case we easily see (from Lemma 3.3 y ≤ α/β) that limj→∞y(nkj − 1) = y. From
the first of (1.1) computed in nkj , j = 1, 2, . . . we have

y
(
nkj

)
= α +

(
1 − β)y

(
nkj − 1

)
−

m∑

i=1

ψi
(
y
(
nkj

))
xi
(
nkj

)
, (4.10)

and as j goes to infinity:

m∑

i=1

ψi
(
y
)
lim
j→∞

xi
(
nkj

)
= 0. (4.11)

We know that there exists ı̂ such that ψı̂ is strictly increasing, so from positivity of ψı̂(y), we
obtain:

lim
j→∞

xı̂
(
nkj

)
= 0. (4.12)

Case 2 (Egt < ∞). In this case we have |Elt| = ∞. Let us consider the subsequence
corresponding to indexes belonging to Elt, name it {nkj}∞j=1 again, so we have

y
(
nkj

)
− y
(
nkj − 1

)
≥ 0 ∀k ∈ N. (4.13)
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From the first of (1.1) we have

βy
(
nkj

)
= α +

(
1 − β)y

(
nkj − 1

)
− (1 − β)y

(
nkj

)
−

m∑

i=1

ψi
(
y
(
nkj

))
xi
(
nkj

)
(4.14)

and then

y
(
nkj

)
=
α − (1 − β)

[
y
(
nkj

)
− y
(
nkj − 1

)]
−∑m

i=1 ψi
(
y
(
nkj

))
xi
(
nkj

)

β
≤ α

β
. (4.15)

As j goes to infinity, we obtain

lim
j→∞

α − (1 − β)
[
y
(
nkj

)
− y
(
nkj − 1

)]
−∑m

i=1 ψi
(
y
(
nkj

))
xi
(
nkj

)

β
=
α

β
(4.16)

and then

lim
j→∞

(
(
1 − β)

[
y
(
nkj

)
− y
(
nkj − 1

)]
+

m∑

i=1

ψi
(
y
(
nkj

))
xi
(
nkj

))

= 0. (4.17)

This leads (from (4.13) and positivity of
∑m

i=1ψi(y(nkj ))xi(nkj )) to

lim
j→∞

y
(
nkj

)
= lim

j→∞
y
(
nkj − 1

)
= y =

α

β
,

lim
j→∞

m∑

i=1

ψi
(
y
(
nkj

))
xi
(
nkj

)
= 0.

(4.18)

Once again from this last statement, from the strict monotonousness of ψı̂ and Theorem 3.1
we obtain

lim
j→∞

xı̂
(
nkj

)
= 0. (4.19)

So we proved in both cases that exists a sequence {nkj}j such that

lim
j→∞

y
(
nkj

)
= lim

j→∞
y
(
nkj − 1

)
= y =

α

β
,

lim
j→∞

xı̂
(
nkj

)
= 0.

(4.20)
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In the same way, we can prove that there exists a subsequence of {nkj}j , for the sake of
simplicity we name it {nl}l, such that

lim
l→∞

y(nl − L) = lim
l→∞

y(nl − L − 1) = y =
α

β
, (4.21)

lim
l→∞

xj(nl − L) = 0, j = 1, . . . , L. (4.22)

Let us consider the positive and bounded sequence

A(x(n)) = xL(n) +
L−1∑

i=1

L−1∏

j=i

φj+1
(
α/β

)

aj
xi(n). (4.23)

Assume L/= 1 and compute its first difference, there results

A(x(n + 1)) −A(x(n)) = xL(n)

⎡

⎣−aL +
L−1∏

j=1

φj+1
(
α/β

)

aj
φ1
(
y(n)

)
⎤

⎦

+
L−1∑

i=2

L−1∏

j=i

φj+1
(
α/β

)

aj

[−aixi(n) + φi
(
y(n)

)
xi−1(n)

]
+ φL

(
y(n)

)
xL−1(n)

−
L−1∏

j=1

φj+1
(
α/β

)

aj
a1x1(n)

= xL(n)

⎡

⎣−aL +
L−1∏

j=1

φj+1
(
α/β

)

aj
φ1
(
y(n)

)
⎤

⎦

+
L−1∑

i=1

L−1∏

j=i

φj+1
(
α/β

)

aj
[−aixi(n)] +

L∑

i=2

L−1∏

j=i

φj+1
(
α/β

)

aj
φi
(
y(n)

)
xi−1(n),

(4.24)

where
∏i−1

j=i = 1. Hence

A(x(n + 1)) −A(x(n)) = xL(n)

⎡

⎣−aL +
L−1∏

j=1

φj+1
(
α/β

)

aj
φ1
(
y(n)

)
⎤

⎦

−
L−1∑

i=1

L−1∏

j=i+1

φj+1
(
α/β

)

aj
φi+1

(
α

β

)
xi(n)

+
L−1∑

i=1

L−1∏

j=i+1

φj+1
(
α/β

)

aj
φi+1

(
y(n)

)
xi(n).

(4.25)
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As it can be easily seen this equality also holds for L = 1. From the first of (3.3) and (4.8) it is

y(n) ≤ α

β
, (4.26)

then, by taking into account the fact that φi is nondecreasing, we have

A(x(n + 1)) −A(x(n)) ≤ aLxL(n)
⎡

⎣−1 + φ1
(
y(n)

)

φ1
(
α/β

)
L∏

j=1

φj
(
α/β

)

aj

⎤

⎦, 1 ≤ L ≤ m (4.27)

and from definition of R0

A(x(n + 1)) −A(x(n)) ≤ aLxL(n)
[

−1 + φ1
(
y(n)

)

φ1
(
α/β

) R0

]

, 1 ≤ L ≤ m. (4.28)

Once again by recalling that φ1 is nondecreasing and R0 = 1 we have

A(x(n + 1)) −A(x(n)) ≤ 0, 1 ≤ L ≤ m. (4.29)

This implies that the sequenceA(x(n)) is convergent. Since, from (4.22), liml→∞A(x(nl−L)) =
0, we obtain limn→∞A(x(n)) = 0, and considering that xL(n) ≤ A(x(n)), we obtain

lim
n→∞

xL(n) = 0. (4.30)

Equation (4.6) can be easily obtained from this last statement, from Lemma 3.3 and (1.1).

Now let us consider the case

y(i) >
α

β
∀i ∈ N. (4.31)

From the first of (1.1), we obtain

y(n + 1) − y(n) = α − βy(n) −
m∑

i=1

ψi
(
y(n + 1)

)
xi(n + 1) ≤ 0, (4.32)

so the bounded sequence y(n) is monotonic, then it converges. From this and Lemma 3.3 we
obtain:

lim
n→∞

y(n) =
α

β
. (4.33)
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This implies that

lim
n→∞

m∑

i=1

ψi
(
y(n)

)
xi(n) = 0. (4.34)

We know that exists ı̂ such that ψı̂ is strictly increasing, and so we have

lim
n→∞

xı̂(n) = 0. (4.35)

From (1.1) we obtain limn→∞xj(n) = 0 for j < ı̂ and limn→∞xL(n) = 0. Moreover, from
Lemma 3.3 we obtain limn→∞xk(n) = 0 for k > ı̂.

Hence, we have:

lim
n→∞

xi(n) = 0, i = 1, . . . , m. (4.36)

Otherwise, if (4.31) does not hold, there exists r ∈ N such that y(r) ≤ α/β then we can use
y(r) as starting value instead of y(0).

Lemma 4.6. Let one assume that hypotheses of Theorem 3.2 and (viii) hold. Then, if R0 > 1, then
there exist a unique solution 0 < λ = λ∗ < α/β of P(λ) = 1 and positive constant solutions of (1.1)
such that for any n = 0, 1, 2, . . .

y(n) = λ∗ <
α

β
,

x0(n) := xL(n) =
α − βλ∗

∑m
l=1 ψl(λ∗)

∏l
j=1

(
φj(λ∗)
aj

) > 0,

xi(n) =
i∏

j=1

φj(λ∗)
aj

x0(n), i = 1, 2, . . . , m.

(4.37)

Proof. If R0 = P(α/β) > 1, then by the fact that P(λ) is a strictly increasing positive function of
λ on (0,+∞) and 0 ≤ P(0) < 1, we have that P(λ) = 1 has a unique solutions 0 < λ = λ∗ < α/β.
Then, by Lemma 3.3 and (3.19), we can easily see that there are positive constant solutions of
(1.1) defined by (4.37).

From Lemmas 4.4–4.6, we obtain the following.

Lemma 4.7. Let one assume that hypotheses of Theorem 3.2 and (viii) hold. Then (4.6) implies
R0 ≤ 1.

Proof. If R0 = P(α/β) > 1, then by Lemma 4.6, we can see that there are positive constant
solutions of (1.1). Hence the thesis holds.
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