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1. Introduction and Preliminaries

We consider the following open problem (see [1, Open Problem 2]).
Foreach of the following four distinct systems

(14, 21), (15, 21), (21, 21), (21, 38), (1.1)

determine the following:

(i) the boundedness character of its solutions,

(ii) the local stability of its equilibrium points,

(iii) the existence of prime period-two solutions,

(iv) the global character of the systems.

mailto:kulenm@math.uri.edu
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Equation (3.4) is of the form

xn+1 =
β1xn

A1 + yn
, n = 0, 1, . . . ; (1.2)

equation (3.5) is of the form

xn+1 =
β1xn

B1xn + yn
, n = 0, 1, . . . ; (1.3)

equation (3.16) is either of the form

xn+1 =
α1 + γ1xn

yn
, n = 0, 1, . . . (1.4)

or the form

yn+1 =
α2 + γ2yn

xn
, n = 0, 1, . . . (1.5)

depending on whether it appears as first or second equation in the system; equation (38) is
of the form

yn+1 =
γ2yn

A2 + B2xn + yn
, n = 0, 1, . . . . (1.6)

The typical results are the following theorems. The first theorem is a combination of
Theorems 2.3 and 2.5 and the second theorem is Theorem 3.3.

Theorem 1.1. Consider system (14, 21) and assume that γ2A1 /=α2. If β1 > A1, then there exists a set
C ⊂ R which is invariant and a subset of the basin of attraction of E. The set C is a graph of a strictly
increasing continuous function of the first variable on an interval (and so is a manifold) and separates
R into two connected and invariant components, namely,

W− :=
{
x ∈ R \ C : ∃y ∈ C with x�sey

}
,

W+ :=
{
x ∈ R \ C : ∃y ∈ C with y�sex

}
,

(1.7)

which satisfy

lim
n→∞
(
xn, yn

)
= (0,∞) for every

(
x0, y0

) ∈ W−,

lim
n→∞
(
xn, yn

)
= (∞, 0) for every

(
x0, y0

) ∈ W+.
(1.8)
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Assume that β1 ≤ A1. Every solution {(xn, yn)} of system (14, 21), with x0 > 0, y0 ≥ 0,
satisfies

lim
n→∞

xn = 0, lim
n→∞

yn = ∞. (1.9)

Theorem 1.2. Consider system (21, 21). There exists a set C ⊂ R which is invariant and a subset
of the basin of attraction of the unique equilibrium E. The set C is a graph of a strictly increasing
continuous function of the first variable on an interval (and so is a manifold) and separates R into two
connected and invariant components, namely,

W− :=
{
x ∈ R \ C : ∃y ∈ C with x�sey

}
,

W+ :=
{
x ∈ R \ C : ∃y ∈ C with y�sex

}
.

(1.10)

which satisfy

lim
n→∞
(
xn, yn

)
= (0,∞) for every

(
x0, y0

) ∈ W−,

lim
n→∞
(
xn, yn

)
= (∞, 0) for every

(
x0, y0

) ∈ W+.

(1.11)

All considered systems are competitive systems, which we discuss next.
A first-order system of difference equations

xn+1 = f
(
xn, yn

)

yn+1 = g
(
xn, yn

) n = 0, 1, 2, . . . , (x−1, x0) ∈ R, (1.12)

where R ⊂ R
2, (f, g) : R → R, f , g are continuous functions, is competitive if f(x, y)

is nondecreasing in x and nonincreasing in y, and g(x, y) is nonincreasing in x and
nondecreasing in y. If both f and g are nondecreasing in x and y, the system (1.12)
is cooperative. A map T that corresponds to the system (1.12) is defined as T(x, y) =
(f(x, y), g(x, y)). Competitive and cooperative maps, which are called monotone maps, are
defined similarly. Strongly competitive systems of difference equations or maps are those for
which the functions f and g are coordinatewise strictly monotone.

If v = (u, v) ∈ R
2, we denote with Q�(v), � ∈ {1, 2, 3, 4}, the four quadrants in R

2

relative to v, that is, Q1(v) = {(x, y) ∈ R
2 : x ≥ u, y ≥ v}, Q2(v) = {(x, y) ∈ R

2 : x ≤ u, y ≥ v},
and so on. Define the South-East partial order �se on R

2 by (x, y)�se(s, t) if and only if x ≤ s
and y ≥ t. Similarly, we define the North-East partial order �ne on R

2 by (x, y)�ne(s, t) if
and only if x ≤ s and y ≤ t. For A ⊂ R

2 and x ∈ R
2, define the distance from x to A as

dist(x,A) := inf {‖x − y‖ : y ∈ A}. By intA we denote the interior a set A.
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It is easy to show that a map F is competitive if it is nondecreasing with respect to the
South-East partial order, that is, if the following holds:

(
x1

y1

)

�se

(
x2

y2

)

=⇒ F

(
x1

y1

)

�seF

(
x2

y2

)

. (1.13)

Competitive systemswere studied bymany authors; see [2–17], and others. All known
results, with the exception of [2, 3, 18], deal with hyperbolic dynamics. The results presented
here are results that hold in both the hyperbolic and the nonhyperbolic case.

We now state three results for competitive maps in the plane. The following definition
is from [17].

Definition 1.3. Let S be a nonempty subset of R
2. A competitive map T : S → S is said

to satisfy condition (O+) if for every x, y in S, T(x)�neT(y) implies x�ney, and T is said to
satisfy condition (O−) if for every x, y in S, T(x)�neT(y) implies y�nex.

The following theorem was proved by DeMottoni-Schiaffino for the Poincaré map of
a periodic competitive Lotka-Volterra system of differential equations. Smith generalized the
proof to competitive and cooperative maps [14, 15].

Theorem 1.4. Let S be a nonempty subset of R
2. If T is a competitive map for which (O+) holds then

for all x ∈ S, {Tn(x)} is eventually componentwise monotone. If the orbit of x has compact closure,
then it converges to a fixed point of T . If instead (O−) holds, then for all x ∈ S, {T2n} is eventually
componentwise monotone. If the orbit of x has compact closure in S, then its omega limit set is either
a period-two orbit or a fixed point.

The following result is from [17], with the domain of the map specialized to be the
cartesian product of intervals of real numbers. It gives a sufficient condition for conditions
(O+) and (O−).

Theorem 1.5. Let R ⊂ R
2 be the cartesian product of two intervals in R. Let T : R → R be a C1

(continuously differentiable) competitive map. If T is injective and det JT (x) > 0 for all x ∈ R, then T
satisfies (O+). If T is injective and det JT (x) < 0 for all x ∈ R, then T satisfies (O−).

The next results are the modifications of [8, Theorem 4]. See [18].

Theorem 1.6. Let T be a monotone map on a closed and bounded rectangular regionR ⊂ R
2. Suppose

that T has a unique fixed point e in R. Then e is a global attractor T on R.

The following four results were proved by Kulenović and Merino [18] for competitive
systems in the plane, when one of the eigenvalues of the linearized system at an equilibrium
(hyperbolic or nonhyperbolic) is by absolute value smaller than 1 while the other has an
arbitrary value. These results are useful for determining basins of attraction of fixed points of
competitive maps.

Our first result gives conditions for the existence of a global invariant curve through a
fixed point (hyperbolic or not) of a competitive map that is differentiable in a neighborhood
of the fixed point, when at least one of two nonzero eigenvalues of the Jacobian matrix of the
map at the fixed point has absolute value less than one. A region R ⊂ R

2 is rectangular if it is
the cartesian product of two intervals in R.
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Theorem 1.7. Let T be a competitive map on a rectangular region R ⊂ R
2. Let x ∈ R be a fixed point

of T such that Δ := R ∩ int(Q1(x) ∪ Q3(x)) is nonempty (i.e., x is not the NW or SE vertex of R),
and T is strongly competitive on Δ. Suppose that the following statements are true.

(a) The map T has a C1 extension to a neighborhood of x.

(b) The Jacobian matrix of T at x has real eigenvalues λ, μ such that 0 < |λ| < μ, where |λ| < 1,
and the eigenspace Eλ associated with λ is not a coordinate axis.

Then there exists a curve C ⊂ R through x that is invariant and a subset of the basin of attraction
of x, such that C is tangential to the eigenspace Eλ at x, and C is the graph of a strictly increasing
continuous function of the first coordinate on an interval. Any endpoints of C in the interior of R
are either fixed points or minimal period-two points. In the latter case, the set of endpoints of C is a
minimal period-two orbit of T .

Corollary 1.8. If T has no fixed point nor periodic points of minimal period-two in Δ, then the
endpoints of C belong to ∂R.

For maps that are strongly competitive near the fixed point, hypothesis (b) of
Theorem 1.7 reduces just to |λ| < 1. This follows from a change of variables [17] that allows
the Perron-Frobenius Theorem to be applied to give that at any point, the Jacobian matrix of
a strongly competitive map has two real and distinct eigenvalues, the larger one in absolute
value being positive, and that corresponding eigenvectors may be chosen to point in the
direction of the second and first quadrant, respectively. Also, one can show that in such case
no associated eigenvector is aligned with a coordinate axis.

The following result gives a description of the global stable and unstable manifolds of
a saddle point of a competitive map. The result is a modification of [8, Theorem 5].

Theorem 1.9. In addition to the hypotheses of Theorem 1.7, suppose that μ > 1 and that the
eigenspace Eμ associated with μ is not a coordinate axis. If the curve C of Theorem 1.7 has endpoints
in ∂R, then C is the global stable manifold Ws(x) of x, and the global unstable manifold Wu(x) is a
curve in R that is tangential to Eμ at x and such that it is the graph of a strictly decreasing function
of the first coordinate on an interval. Any endpoints of Wu(x) in R are fixed points of T .

The next result is useful for determining basins of attraction of fixed points of
competitive maps.

Theorem 1.10. Assume the hypotheses of Theorem 1.7, and let C be the curve whose existence is
guaranteed by Theorem 1.7. If the endpoints of C belong to ∂R, then C separates R into two connected
components, namely,

W− :=
{
x ∈ R? \ C : ∃y ∈ C with x�sey

}
,

W+ :=
{
x ∈ R? \ C : ∃y ∈ C with y�sex

}
,

(1.14)

such that the following statements are true.

(i) W− is invariant, and dist(Tn(x),Q2(x)) → 0 as n → ∞ for every x ∈ W−.

(ii) W+ is invariant, and dist(Tn(x),Q4(x)) → 0 as n → ∞ for every x ∈ W+.
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If, in addition, x is an interior point of R and T is C2 and strongly competitive in a neighborhood of
x, then T has no periodic points in the boundary of Q1(x) ∪ Q3(x) except for x, and the following
statements are true.

(i) For every x ∈ W− there exists n0 ∈ N such that Tn(x) ∈ intQ2(x) for n ≥ n0.
(ii) For every x ∈ W+ there exists n0 ∈ N such that Tn(x) ∈ intQ4(x) for n ≥ n0.

In this paper we study the global dynamics of four rational systems of difference
equationsmentioned earlier, where all parameters are positive numbers and initial conditions
x0 and y0 are arbitrary nonnegative numbers. Two of these systems have a nonhyperbolic
semistable equilibrium point. In general all four systems share the common feature that the
global stable manifolds of either saddle points or nonhyperbolic equilibrium points serve
as boundaries of basins of attraction of different local attractors or points at infinities. The
techniques used here can be applied to treat number of competitive systems which appear in
applications, such as Leslie-Gower competition model, see [19], or Leslie-Gower competition
model with stocking, see [20], or genetic model, see [13]. An important new feature of our
techniques is that they are applicable to nonhyperbolic case as well, which was shown for
the first time in [18] where we have completed analysis of basic Leslie-Gower competition
model from [19]. Furthermore, system (21, 38) can be considered as a variant of Leslie-Gower
competition model, where the first equation has been replaced by another equation, which
does not allow extinction of both species. In fact, all four considered competitive systems
share common feature that they do not allow the extinction of both species.

2. System (14,21)

Now we consider the following system of difference equations:

xn+1 =
β1xn

A1 + yn
, yn+1 =

α2 + γ2yn
xn

, n = 0, 1, . . . , (2.1)

where the parameters A1, β1, α2, and γ2 are positive numbers and initial conditions x0 >
0, y0 ≥ 0.

System (2.1)was considered in [1, Example 1], where it was shown that the associated
map T(x, y) = (β1x/(A1 + y), (α2 + γ2y)/x) is injective and

det JT
(
x, y
)
=

β1
(
A1 + y

)2
x
· (γ2A1 − α2

)
. (2.2)

When γ2A1 > α2, det JT (x, y) > 0. Therefore, in view of Theorems 1.4 and 1.5 every solution
of system (2.1) is eventually componentwise monotonic. If γ2A1 < α2, then det JT (x, y) < 0,
and four subsequences

{x2n}, {x2n+1},
{
y2n
}
,
{
y2n+1

}
(2.3)

of every solution {(xn, yn)} of system (2.1) are eventually monotonic.
Thus, if γ2A1 /=α2, the Jacobian matrix of T in (x, y) is invertible.
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The Jacobian matrix of the corresponding map T(x, y) is of the form

JT
(
x, y
)
=

⎡

⎢
⎢
⎢
⎣

β1
A1 + y

− β1x
(
A1 + y

)2

−α2 + γ2y
x2

γ2
x

⎤

⎥
⎥
⎥
⎦
. (2.4)

2.1. Linearized Stability Analysis

The equilibrium points (x, y) of system (2.1) are solutions of the system of equations

x =
β1x

A1 + y
, y =

α2 + γ2y
x

, (2.5)

from which we obtain

y = β1 −A1, x =
α2

β1 −A1
+ γ2. (2.6)

Lemma 2.1. (i) If β1 > A1, then system (2.1) has a unique equilibrium point:

E =
(

α2
β1 −A1

+ γ2, β1 −A1

)
, (2.7)

which is a saddle point.
(ii) If β1 ≤ A1, then system (2.1) has no equilibrium points.

Proof. By (2.6) and (2.4) the Jacobian matrix evaluated at the equilibrium point E has the form

JT (E) =

⎡

⎢⎢
⎣

1 − x
β1

−y
x

γ2
x

⎤

⎥⎥
⎦. (2.8)

The corresponding characteristic equation evaluated at the equilibrium point E is

λ2 − pλ + q = 0, (2.9)

where

p = TrJT
(
x, y
)
= 1 +

γ2
x
> 0,

q = DetJT
(
x, y
)
=
γ2
x

− y

β1
.

(2.10)
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Notice that in view of (2.6) y/β1 = 1 −A1/β1 and so

1 + q = 1 +
γ2
x

− y

β1
= 1 +

γ2
x

− 1 +
A1

β1
> 0. (2.11)

Since p > 0 and 1 + q > 0, we need to show

(I) p > 1 + q,

(II) p2 − 4q > 0.

Indeed,

(I) p > 1 + q ⇔ 1 + γ2/x > 1 + γ2/x − y/β1 ⇔ 0 > −y/β1,

which is satisfied (because β1 > 0 and y > 0). Furthermore

(II) p2 − 4q > 0 ⇔ (1 + γ2/x)
2 − 4(γ2/x) + 4(y/β1) > 0 ⇔ (1 − γ2/x)2 + 4(y/β1) > 0,

which is satisfied.

2.2. Global Results

2.2.1. Case β1 > A1

Theorem 2.2. System (2.1) has no prime period-two solutions.

Proof. System (2.1) can be reduced to the following second-order difference equation:

yn+2 =
yn+1
(
A1 + yn

)(
α2 + γ2yn+1

)

β1
(
α2 + γ2yn

) , (2.12)

or to the following second-order difference equation:

xn+2 =
β1xnx

2
n+1(

A1xn + α2 − γ2A1
)
xn+1 + γ2β1xn

. (2.13)

Now it is sufficient to prove that both of the difference equations (2.12) and (2.13) have no
prime period-two solutions. Assume that this is not true for (2.12), that is, that

φ, ψ, φ, ψ, . . . ,
(
φ/=ψ

)
(2.14)

is a prime period-two solution of (2.12). Then we have

φ =
ψ
(
A1 + φ

)(
α2 + γ2ψ

)

β1
(
α2 + γ2φ

) , ψ =
φ
(
A1 + ψ

)(
α2 + γ2φ

)

β1
(
α2 + γ2ψ

) . (2.15)
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This implies

β1φ
(
α2 + γ2φ

)
= ψ
(
A1 + φ

)(
α2 + γ2ψ

)
,

β1ψ
(
α2 + γ2ψ

)
= φ
(
A1 + ψ

)(
α2 + γ2φ

)
.

(2.16)

By subtraction, we obtain

β1
(
φ − ψ)[α2 + γ2

(
φ + ψ

)]
= A1

[
α2
(
ψ − φ) + γ2

(
ψ2 − φ2

)]
+ φψγ2

(
ψ − φ), (2.17)

that is,

(
φ − ψ)[β1

(
α2 + γ2

(
φ + ψ

))
+A1
(
α2 + γ2

(
ψ + φ

))
+ φψγ2

]
= 0, (2.18)

and this implies that φ = ψ, which is a contradiction.
Now assume that

χ, ϕ, χ, ϕ, . . . ,
(
χ/=ϕ

)
(2.19)

is a prime period-two solution of (2.13). Then we have

χ =
β1χϕ

2

(
A1χ + α2 − γ2A1

)
ϕ + γ2β1χ

, ϕ =
β1ϕχ

2

(
A1ϕ + α2 − γ2A1

)
χ + γ2β1ϕ

, (2.20)

from which

(
χ − ϕ)[A1χϕ + γ2β1

(
χ + ϕ

)
+ β1χϕ

]
= 0, (2.21)

and this implies that χ = ϕ, which is a contradiction.

Theorem 2.3. Consider system (2.1) and assume that β1 > A1 and γ2A1 /=α2. Then there exists a set
C ⊂ R which is invariant and a subset of the basin of attraction of E. The set C is a graph of a strictly
increasing continuous function of the first variable on an interval (and so is a manifold) and separates
R into two connected and invariant components, namely,

W− :=
{
x ∈ R \ C : ∃y ∈ C with x�sey

}
,

W+ :=
{
x ∈ R \ C : ∃y ∈ C with y�sex

}
,

(2.22)

which satisfy

lim
n→∞
(
xn, yn

)
= (0,∞) for every

(
x0, y0

) ∈ W−,

lim
n→∞
(
xn, yn

)
= (∞, 0) for every

(
x0, y0

) ∈ W+.
(2.23)
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Proof. Clearly, system (2.1) is strongly competitive on (0,∞) × [0,∞). In view of Theorem 2.2
we see that all conditions of Theorems 1.7, 1.9, and 1.10 and Corollary 1.8 are satisfied with
R = (0,∞) × [0,∞) and so the conclusion follows.

Remark 2.4 (see [1]). If γ2A1 = α2, then system (2.1) can be decoupled as follows:

xn+1 =
β1x

2
n

A1xn + β1γ2
, yn+1 =

1
β1
yn
(
A1 + yn

)
, n = 0, 1, . . . (2.24)

and every solution of this system (depending of the choice of the initial condition (x0, y0)) is
either bounded and converges to an equilibrium point or increases monotonically to infinity.

2.2.2. Case β1 ≤ A1

In this case system (2.1) has no equilibrium points. Now we have the following.

Theorem 2.5. Assume that β1 ≤ A1 and γ2A1 /=α2. Every solution {(xn, yn)} of system (2.1), with
x0 > 0, y0 ≥ 0, satisfies

lim
n→∞

xn = 0, lim
n→∞

yn = ∞. (2.25)

Proof. If β1 < A1, then

xn+1 <
β1
A1

xn =⇒ xn <

(
β1
A1

)n
x0 −→ 0 (n −→ ∞), (2.26)

which implies limn→∞xn = 0.
On the other hand, if β1 = A1, then xn+1 = A1xn/(A1 + yn) < xn, and we obtain that

the sequence {xn}∞n=0 is strictly decreasing. Because xn > 0 for all n, we see that {xn}∞n=0 is
convergent and limn→∞xn = 0, since otherwise, that is, limn→∞xn = a > 0, the first equation
of system (2.1) implies limn→∞yn = β1−A1 = 0 or the second equation of system (2.1) implies
limn→∞yn = α2/(a−γ2)/= 0, which is a contradiction, since otherwise system (2.1)would have
an equilibrium point in the first quadrant.

We see that if β1 ≤ A1, then every solution {(xn, yn)} of system (2.1) satisfies
limn→∞xn = 0.

But then the denominator in

yn+1 =
α2 + γ2yn

xn
(2.27)

is, for all large n, strictly less than a constant η < γ2, which in turn implies

yn+1 >
α2
η

+
γ2
η
yn, n ≥N. (2.28)
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Iterating this inequality we obtain

yn >
α2
η

+
γ2
η

(
α2
η

)n−N
+
(
γ2
η

)n−1−N
yN, n ≥N, (2.29)

and this forces yn to infinity.

The obtained results lead to the following characterization of the boundedness of
solutions of system (2.1).

Corollary 2.6. Consider system (2.1) subject to the condition α2 /=A1γ2. If β1 > A1, then all bounded
solutions converge to the unique equilibrium with the corresponding initial conditions belonging to
the graph of a continuous increasing function C in the plane of initial conditions. All solutions that
start in the complement of C are asymptotic to either (∞, 0) or (0,∞). If β1 ≤ A1, then all solutions
are unbounded in the sense that {xn} is bounded and {yn} approaches ∞.

3. System (21,21)

Now we consider the following system of difference equations:

xn+1 =
β1xn + α1

yn
, yn+1 =

α2 + γ2yn
xn

, n = 0, 1, . . . , (3.1)

where the parameters α1, β1, α2, and γ2 are positive numbers and initial conditions x0 >
0, y0 > 0.

System (3.1)was considered in [1, Example 3], where it was shown that the associated
map T is injective and

det JT
(
x, y
)
=

−α1
(
α2 + γ2y

) − β1α2x
x2y2

< 0, (3.2)

that is, the Jacobian matrix of T in (x, y) is invertible. Therefore, in view of Theorems 1.4 and
1.5, four subsequences

{x2n}, {x2n+1},
{
y2n
}
,
{
y2n+1

}
(3.3)

of every solution {(xn, yn)} of system (3.1) are eventually monotonic.

3.1. Linearized Stability Analysis

Equilibrium points of system (3.1) are solutions of the system

x =
β1x + α1

y
, y =

α2 + γ2y
x

. (3.4)
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Since x /= 0 and y /= 0, we have

y± =
1
2γ2

[
−(α2 − α1 − β1γ2

) ±
√
D1

]
, (3.5)

where

D1 =
(
α2 − α1 − β1γ2

)2 + 4β1γ2α2. (3.6)

Since y− < 0 and y+ > 0, system (3.1) has a unique positive equilibrium E = (x+, y+), where

x+ =
1
2β1

(
α2 − α1 + β1γ2 +

√
D2

)
, (3.7)

where D2 = (α2 − α1 + β1γ2)2 + 4β1γ2α1.

Lemma 3.1. System (3.1) has a unique positive equilibrium point:

E =
(

1
2β1

(
α2 − α1 + β1γ2 +

√
D2

)
,
1
2γ2

(
−(α2 − α1 − β1γ2

)
+
√
D1

))
, (3.8)

which is a saddle point.

Proof. The Jacobian matrix of the corresponding map T(x, y) = ((β1x + α1)/y, (α2 + γ2y)/x) is
of the form

JT
(
x, y
)
=

⎡

⎢⎢⎢
⎣

β1
y

−β1x + α1
y2

−α2 + γ2y
x2

γ2
x

⎤

⎥⎥⎥
⎦
. (3.9)

By using (3.4) we obtain

JT (E) =

⎡

⎢⎢⎢
⎣

β1
y

−x
y

−y
x

γ2
x

⎤

⎥⎥⎥
⎦
. (3.10)

The corresponding characteristic equation evaluated at the equilibrium point E of system
(3.1) is

λ2 − pλ + q = 0, (3.11)
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where

p = TrJT
(
x, y
)
=
β1
y

+
γ2
x
> 0,

q = DetJT
(
x, y
)
=
β1γ2
xy

− 1.

(3.12)

Notice that

1 + q = 1 +
β1γ2
xy

− 1 =
β1γ2
xy

> 0. (3.13)

Since p > 0 and 1 + q > 0, we need to show

(I) p > 1 + q,

(II) p2 − 4q > 0.

Now, we get

(I) p > 1 + q ⇔ β1/y + γ2/x > β1γ2/xy ⇔ xy − α1 + xy − α2 > β1γ2.

By using (3.4), (3.5), and (3.7)we obtain

β1x + γ2y = 2xy − α1 − α2 = β1γ2 + 1
2

√
D1 +

1
2

√
D2 > β1γ2. (3.14)

Furthermore

(II) p2 − 4q > 0 ⇔ (β1/y + γ2/x)
2 − 4(β1γ2/xy − 1) > 0 ⇔ (β1/y − γ2/x)2 + 4 > 0,

which is satisfied.

3.2. Global Results

Theorem 3.2. System (3.1) has no prime period-two solutions.

Proof. System (3.1) can be reduced to the following second-order difference equation:

yn+2 =
ynyn+1

(
α2 + γ2yn+1

)

α1yn+1 + β1
(
α2 + γ2yn

) , (3.15)

or to the following second-order difference equation:

xn+2 =

(
β1xn+1 + α1

)
xnxn+1

α2xn+1 + γ2
(
β1xn + α1

) . (3.16)
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Now it is sufficient to prove that both of the difference equations (3.15) and (3.16) have no
prime period-two solutions. Assume that this is not true for (3.15), that is, that

φ, ψ, φ, ψ, . . . ,
(
φ/=ψ

)
(3.17)

is a prime period-two solution of (3.15). Then we have

φ =
φψ
(
α2 + γ2ψ

)

α1ψ + β1
(
α2 + γ2φ

) , ψ =
φψ
(
α2 + γ2φ

)

α1φ + β1
(
α2 + γ2ψ

) , (3.18)

that is,

ψ
(
α2 + γ2ψ

)

α1ψ + β1
(
α2 + γ2φ

) =
φ
(
α2 + γ2φ

)

α1φ + β1
(
α2 + γ2ψ

) , (3.19)

from which

(
ψ − φ)

{
α1φψγ2 + β1

[
α22 + 2α2γ2

(
φ + ψ

)
+ γ22
(
φ2 + φψ + ψ2

)]}
= 0, (3.20)

and this implies that φ = ψ, which is a contradiction.
Now assume that

χ, ϕ, χ, ϕ, . . . ,
(
χ/=ϕ

)
(3.21)

is a prime period-two solution of (3.16). Then we have

χ =

(
β1ϕ + α1

)
χϕ

α2ϕ + γ2
(
β1χ + α1

) , ϕ =

(
β1χ + α1

)
χϕ

α2χ + γ2
(
β1ϕ + α1

) , (3.22)

from which

(
χ − ϕ)[γ2β1

(
χ + ϕ

)
+ γ2α1 + β1χϕ

]
= 0, (3.23)

and this implies that χ = ϕ, which is a contradiction.

The global behavior system (3.1) is described by the following result.

Theorem 3.3. Consider system (3.1). There exists a set C ⊂ R which is invariant and a subset of
the basin of attraction of E. The set C is a graph of a strictly increasing continuous function of the
first variable on an interval (and so is a manifold) and separates R into two connected and invariant
components, namely,

W− :=
{
x ∈ R \ C : ∃y ∈ C with x�sey

}
,

W+ :=
{
x ∈ R \ C : ∃y ∈ C with y�sex

}
,

(3.24)
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which satisfy

lim
n→∞
(
xn, yn

)
= (0,∞) for every

(
x0, y0

) ∈ W−,

lim
n→∞
(
xn, yn

)
= (∞, 0) for every

(
x0, y0

) ∈ W+.
(3.25)

Proof. In view of Theorem 3.2 and the injectivity of the map T we see that all conditions of
Theorems 1.7, 1.9, and 1.10 and Corollary 1.8 are satisfied with R = (0,∞) × [0,∞) and so the
conclusion follows.

The obtained result leads to the following characterization of the boundedness of
solutions of system (3.1).

Corollary 3.4. All bounded solutions of system (3.1) converge to the unique equilibrium with the
corresponding initial conditions which belong to the graph of a continuous increasing function C in
the plane of initial conditions. All solutions that start in the complement of C are asymptotic to either
(∞, 0) or (0,∞).

4. System (15,21)

Now we consider the following system of difference equations:

xn+1 =
β1xn

B1xn + yn
, yn+1 =

α2 + γ2yn
xn

, n = 0, 1, . . . , (4.1)

where the parameters β1, B1, α2, and γ2 are positive numbers and initial conditions x0 >
0, y0 ≥ 0. The Jacobian matrix of the corresponding map T(x, y) = (β1x/(B1x + y), (α2 +
γ2y)/x) is of the form

JT
(
x, y
)
=

⎡

⎢⎢⎢⎢
⎣

β1y
(
B1x + y

)2 − β1x
(
B1x + y

)2

−α2 + γ2y
x2

γ2
x

⎤

⎥⎥⎥⎥
⎦
. (4.2)

System (4.1) was considered in [1, Example 2], where it was shown that the
corresponding map T is injective and

det JT
(
x, y
)
= − β1α2

x
(
B1x + y

)2 < 0, (4.3)

that is, the Jacobian matrix of T in (x, y) is invertible. Therefore, in view of Theorems 1.4 and
1.5, four subsequences

{x2n}, {x2n+1},
{
y2n
}
,
{
y2n+1

}
(4.4)

of every solution {(xn, yn)} of system (4.1) are eventually monotonic.
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4.1. Linearized Stability Analysis

Equilibrium points of system (4.1) are solutions of the system

x =
β1x

B1x + y
, y =

α2 + γ2y
x

. (4.5)

Since x /= 0, we obtain

x± =
β1 + γ2B1 ±

√
D3

2B1
, (4.6)

where D3 = (β1 − B1γ2)
2 − 4B1α2 ≥ 0.

This implies that we have the following three cases for the equilibrium points.

(i) If β1 − B1γ2 > 2
√
B1α2, then there exist two equilibrium points of system (4.1):

E+ =

(
β1 + γ2B1 +

√
D3

2B1
,
β1 − γ2B1 −

√
D3

2

)

,

E− =

(
β1 + γ2B1 −

√
D3

2B1
,
β1 − γ2B1 +

√
D3

2

)

.

(4.7)

(ii) If β1 − B1γ2 = 2
√
B1α2, then system (4.1) has a unique equilibrium point:

E =
(
B1γ2 + β1

2B1
,
β1 − B1γ2

2

)
. (4.8)

(iii) If β1 − B1γ2 ≤ 0 or 0 < β1 − B1γ2 < 2
√
B1α2, then system (4.1) has no equilibrium

points.

Next, by using (4.5)we have

JT
(
x, y
)
=

⎡

⎢⎢⎢
⎣

1 − B1

β1
x − x

β1

B1 −
β1
x

γ2
x

⎤

⎥⎥⎥
⎦
. (4.9)

The corresponding characteristic equation evaluated at the equilibrium point E = (x, y) is

λ2 − pλ + q = 0, (4.10)
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where

p = TrJT
(
x, y
)
=
y

β1
+
γ2
x

= 1 − B1x

β1
+
γ2
x
,

q = DetJT
(
x, y
)
=
γ2
x

− B1γ2
β1

+
B1x

β1
− 1 =

γ2y

β1x
− y

β1
.

(4.11)

Notice that p > 0.

Lemma 4.1. If β1 − B1γ2 > 2
√
B1α2, then the equilibrium point E+ of system (4.1) is locally

asymptotically stable and the equilibrium point E− is a saddle point.
If β1 − B1γ2 = 2

√
B1α2, then the equilibrium point E of system (4.1) is nonhyperbolic.

Proof. First, assume β1 − B1γ2 > 2
√
B1α2. For the equilibrium point E+ we need to prove that

∣∣p
∣∣ < 1 + q < 2, (4.12)

or equivalently (because p > 0):

(I) p < 1 + q,

(II) q < 1.

Indeed,

(I) we have

p < 1 + q ⇐⇒ 1 − B1x

β1
+
γ2
x
< 1 +

γ2
x

− B1γ2
β1

+
B1x

β1
− 1

⇐⇒ 1 +
B1γ2
β1

< 2
B1x

β1
⇐⇒ 1 +

B1γ2
β1

<
β1 + γ2B1 +

√
D3

β1
⇐⇒ 0 <

√
D3,

(4.13)

which is true. Furthermore

(II) we have

q < 1 ⇐⇒ γ2
x

− B1γ2
β1

+
B1x

β1
− 1 < 1 ⇐⇒ γ2

(
1
x
− B1

β1

)
+
B1x − β1

β1
< 1

⇐⇒ γ2

(
β1 − B1x

β1x

)
− β1 − B1x

β1
< 1 ⇐⇒ β1 − B1x

β1

(
γ2
x

− 1
)
< 1

⇐⇒ y

β1

(
1 − α2

xy
− 1
)
< 1 ⇐⇒ − α2

β1x
< 1,

(4.14)

which is true.
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For the equilibrium point E− we need to prove that

∣
∣p
∣
∣ >
∣
∣1 + q

∣
∣, p2 − 4q > 0, (4.15)

that is (because p > 0 and 1 + q > 0)

(I) p > 1 + q,

(II) p2 − 4q > 0.

Indeed,

1 + q > 0 ⇐⇒ 1 +
γ2
x

− B1γ2
β1

+
B1x

β1
− 1 > 0

⇐⇒ γ2
β1 − B1x

xβ1
+
B1x

β1
> 0 ⇐⇒ γ2

y

xβ1
+
B1x

β1
> 0.

(4.16)

Now

(I) we have

p > 1 + q ⇐⇒ 1 − B1x

β1
+
γ2
x
> 1 +

γ2
x

− B1γ2
β1

+
B1x

β1
− 1

⇐⇒ 1 +
B1γ2
β1

>
2B1x

β1
⇐⇒ 1 +

B1γ2
β1

>
β1 + γ2B1 −

√
D3

β1

⇐⇒ 0 > −
√
D3,

(4.17)

which is true.
Similarly

(II) we have

p2 − 4q > 0 ⇐⇒
(
y

β1
+
γ2
x

)2

− 4
(
γ2y

β1x
− y

β1

)
> 0

⇐⇒ y2

β21
− 2

γ2y

β1x
+
γ22

x2
+ 4

y

β1
> 0 ⇐⇒

(
y

β1
− γ2
x

)2

+ 4
y

β1
> 0,

(4.18)

which is satisfied.
Assume that β1 − B1γ2 = 2

√
B1α2.

We need to prove that

∣∣1 + q
∣∣ =
∣∣p
∣∣, (4.19)
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that is (because p > 0 and, 1 + q > 0),

1 + q = p. (4.20)

We have

1 + q = p ⇐⇒ 1 +
B1γ2
β1

=
2B1x

β1
⇐⇒ 1 +

B1γ2
β1

=
2B1

β1

B1γ2 + β1
2B1

. (4.21)

4.2. Global Results

Theorem 4.2. System (4.1) has no prime period-two solutions.

Proof. The second iterate of map T is

T2(x, y
)
= T
(

β1x

B1x + y
,
α2 + γ2y

x

)

=

(
β1
(
β1x/
(
B1x + y

))

B1
(
β1x/
(
B1x + y

))
+
(
α2 + γ2y

)
/x

,
α2 + γ2

((
α2 + γ2y

)
/x
)

β1x/
(
B1x + y

)

)

=

(
β21x

2

B1β1x2 +
(
α2 + γ2y

)(
B1x + y

) ,

(
B1x + y

)(
α2x + γ2α2 + γ22y

)

β1x2

)

.

(4.22)

Period-two solution satisfies

β21x
2

B1β1x2 +
(
α2 + γ2y

)(
B1x + y

) − x = 0,

(
B1x + y

)(
α2x + γ2α2 + γ22y

)

β1x2
− y = 0,

β21x = B1β1x
2 +
(
α2 + γ2y

)(
B1x + y

)
,

β1yx
2 =
(
B1x + y

)(
α2x + α2γ2 + γ22y

)
.

(4.23)

From this system we have

(i) x = (1/2B1)(β1 + γ2B1 +
√
(β1 − B1γ2)

2 − 4B1α2), y = (1/2B1)(β1 − γ2B1 −
√
(β1 − B1γ2)

2 − 4B1α2),

(ii) x = (1/2B1)(β1 + γ2B1 −
√
(β1 − B1γ2)

2 − 4B1α2), y = (1/2B1)(β1 − γ2B1 +
√
(β1 − B1γ2)

2 − 4B1α2),

(iii) x = −γ2 +(1/2β21)(α2β1 +β21γ2 −B1α2γ2 +B1β1γ
2
2 −
√
Δ1), y = −(1/2β1γ2)(α2β1 +β21γ2 −

B1α2γ2 + B1β1γ
2
2 −
√
Δ1),
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(iv) x = −γ2 +(1/2β21)(α2β1 +β21γ2 −B1α2γ2 +B1β1γ
2
2 +
√
Δ1), y = −(1/2β1γ2)(α2β1 +β21γ2 −

B1α2γ2 + B1β1γ
2
2 +
√
Δ1),

(v) x = 0, y = −α/γ,
where Δ1 = (α − βγ)(αβ2 + 3β3γ + B2αγ2 + 2Bβ2γ2 − B2βγ3 − 2Bαβγ).

In cases (i) and (ii) solutions (x, y) are equilibrium points E+ and E−, and in case (v)
solution (x, y) is not in the first quadrant in the plane. It is sufficient to prove that solutions
(x, y) in cases (iii) and (iv) are not in the first quadrant in the plane. Namely, if Δ1 < 0, x and
y are not real. Supose that Δ1 ≥ 0. If α2β1 + β21γ2 − B1α2γ2 + B1β1γ

2
2 −
√
Δ1 ≥ 0, then y ≤ 0. If

α2β1 + β21γ2 − B1α2γ2 + B1β1γ
2
2 −
√
Δ1 < 0, then x < 0 for solution in case (iii). By analogous

reasoning we have that the same conclusion for case (iv) holds.

Our linearized stability analysis indicates that there are three cases with different
asymptotic behavior, depending on the values of parameters β1, B1, α2, and γ2.

Case 1. β1 − B1γ2 > 2
√
B1α2.

Case 2. β1 − B1γ2 = 2
√
B1α2.

Case 3. β1 − B1γ2 ≤ 0 or 0 < β1 − B1γ2 < 2
√
B1α2.

4.2.1. Global Results—Case 1

Theorem 4.3. Consider system (4.1) and assume that β1 − B1γ2 > 2
√
B1α2. Then there exists a set

C ⊂ R which is invariant and a subset of the basin of attraction of E−. The set C is a graph of a strictly
increasing continuous function of the first variable on an interval (and so is a manifold) and separates
R into two connected and invariant components, namely,

W− :=
{
x ∈ R \ C : ∃y ∈ C with x�sey

}

W+ :=
{
x ∈ R \ C : ∃y ∈ C with y�sex

}
,

(4.24)

which satisfy

lim
n→∞
(
xn, yn

)
= (0,∞) for every

(
x0, y0

) ∈ W−,

lim
n→∞
(
xn, yn

)
=

(
β1 + γ2B1 +

√
D3

2B1
,
β1 − γ2B1 −

√
D3

2

)

for every
(
x0, y0

) ∈ W+

(4.25)

Proof. Clearly, system (4.1) is strongly competitive onR = (0,∞)×[0,∞). In view of injectivity
of T , invertibility of JT , and Theorem 4.2, we see that all conditions of Theorems 1.7, 1.9, and
1.10 and Corollary 1.8 are satisfied and the conclusion of the theorem follows.

4.2.2. Global Results—Case 2

Theorem 4.4. Consider system (4.1) and assume that β1 − B1γ2 = 2
√
B1α2. Then there exists a set

C ⊂ R which is invariant and a subset of the basin of attraction of E. The set C is a graph of a strictly
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increasing continuous function of the first variable on an interval (and so is a manifold) and separates
R into two connected and invariant components, namely,

W− :=
{
x ∈ R \ C : ∃y ∈ C with x�sey

}
,

W+ :=
{
x ∈ R \ C : ∃y ∈ C with y�sex

}
,

(4.26)

which satisfy

lim
n→∞
(
xn, yn

)
= (0,∞) for every

(
x0, y0

) ∈ W−,

lim
n→∞
(
xn, yn

)
= E =

(
B1γ2 + β1

2B1
,
β1 − B1γ2

2

)
for every

(
x0, y0

) ∈ W+.

(4.27)

Proof. In this case system (4.1) has a unique equilibrium point E = ((B1γ2 + β1)/2B1, (β1 −
B1γ2)/2) which is nonhyperbolic. For p = q + 1, the corresponding characteristic equation is
of the form

λ2 − pλ + p − 1 = 0. (4.28)

This implies

λ1 = p − 1, λ2 = 1, (4.29)

and |λ1| < 1 ⇔ |p − 1| < 1 ⇔ 0 < p < 2.
It is obvious that p > 0. We will show that p < 1. Indeed

p < 1 ⇐⇒
√
B1α2
β1

+
γ2B1

B1γ2 +
√
B1α2

< 1

⇐⇒ B1γ2
√
B1α2 + B1α2 + β1γ2B1 < β1γ2B1 + β1

√
B1α2

⇐⇒ B1γ2 +
√
B1α2 < β1 = B1γ2 + 2

√
B1α2

(4.30)

which is satisfied. Thus, λ1 ∈ (−1, 0).
The eigenvector corresponding to λ1 = p − 1 is

⎛

⎜⎜
⎝

1

2B1β1
(
β1 − B1γ2

)

(
B1γ2 + β1

)2

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

1

4B1β1
√
B1α2

(
B1γ2 + β1

)2

⎞

⎟⎟
⎠. (4.31)

It means that all conditions of Theorems 1.7 and 1.10 are satisfied with R = (0,∞) × [0,∞).



22 Discrete Dynamics in Nature and Society

Assume that (x0, y0) ∈ W+. Then (xn, yn) ∈ W+ for all n, and sequences {x2n}, {x2n+1},
{y2n}, and {y2n+1} are monotone and bounded since xn ≤ β1/B1. Thus these sequences
are convergent, which in view of Theorem 4.2 shows that they converge to the equilibrium
point. Since E is the unique equilibrium point in W+ the statement for W+ follows. The same
conclusion is obtained by using Theorem 1.6.

If (x0, y0) is in W−, by Theorem 1.10 the orbit of (x0, y0) eventually enters Q2(E).
Assume (without loss of generality) that (x0, y0) ∈ intQ2(E). An eigenvector associated with
the nonhyperbolic eigenvalue λ2 = 1 is v = (−1, B1). Choose a value of t small enough
so that E + tv ∈ Q2(E) and (x0, y0) � E + tv. Let us show that T(E + tv) � E + tv.
Indeed

T(E + tv) =

(
B1γ2 + β1

2B1
− t, B1

(
2α2 + β1γ2 − B1γ

2
2 + 2B1γ2t

)

B1γ2 + β1 + 2B1t

)

�
(
B1γ2 + β1

2B1
− t, β1 − B1γ2

2
+ B1t

)
(4.32)

because

B1
(
2α2 + β1γ2 − B1γ

2
2 + 2B1γ2t

)

B1γ2 + β1 + 2B1t
≥ β1 − B1γ2

2
+ B1t (4.33)

reduces to

4B2
1t

2 + 4B1α2 + 2B1β1γ2 ≥ β21 + B2
1γ

2
2 = 4B1α2 + 2B1β1γ2, (4.34)

where the last equality follows from the condition β1 − B1γ2 = 2
√
B1α2.

Since T(E + tv) � E + tv, it follows that {Tn(E + tv)} is a monotonically decreasing
sequence in Q2(E) which is bounded above by E. Since {Tn(E + tv)} is coordinatewise
monotone and it does not converge (if it did it would have to converge to E, which
is impossible), we have that Tn(E + tv) has second coordinate which is monotone and
unbounded. But (xn, yn) := Tn(x0, y0) � Tn(E + tv), which implies that yn → ∞. From (4.1)
it follows that xn → 0.

4.2.3. Global Results—Case 3

Theorem 4.5. Consider system (4.1) and assume that β1 − B1γ2 ≤ 0 or 0 < β1 − B1γ2 < 2
√
B1α2.

Then every solution {(xn, yn)} of system (4.1) satisfies

lim
n→∞

xn = 0, lim
n→∞

yn = ∞. (4.35)
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Proof. In this case system (4.1) has no equilibrium points. Consider now the following system
satisfied by subsequences of the solution of system (4.1):

x2k+1 =
β1x2k

B1x2k + y2k
, x2k+2 =

β1x2k+1
B1x2k+1 + y2k+1

,

y2k+1 =
α2 + γ2y2k

x2k
, y2k+2 =

α2 + γ2y2k+1
x2k+1

.

(4.36)

We know that each of the four subsequences

{x2k}, {x2k+1},
{
y2k
}
,
{
y2k+1

}
(4.37)

of every solution {(xn, yn)} of system (4.1) is eventually monotonic. The subsequences {x2k}
and {x2k+1} are bounded (by β1/B1), which implies that they are convergent. Suppose that
(a) limk→∞x2k = xE and (b) limk→∞x2k+1 = xO. For the other two subsequences the following
four cases are possible: (1) limk→∞y2k = yE, (2) limk→∞y2k = ∞, (3) limk→∞y2k+1 = yO, or
(4) limk→∞y2k+1 = ∞.

Case 1 and Case 3 imply

xO =
β1xE

B1xE + yE
, xE =

β1xO
B1xO + yO

,

yO =
α2 + γ2yE

xE
, yE =

α2 + γ2yO
xO

(4.38)

that is, system (4.1) has a period-two solution, which is a contradiction by Theorem 4.2.
Case 1 and Case 4 imply

lim
k→∞

x2k = xE = 0 =⇒ lim
k→∞

x2k+1 = xO = 0 =⇒ lim
k→∞

y2k+2 = ∞, (4.39)

which is a contradiction by Case 1.
Case 2 and Case 3 imply

lim
k→∞

x2k+1 = xO = 0 =⇒ lim
k→∞

x2k+2 = xE = 0 =⇒ lim
k→∞

y2k+1 = ∞, (4.40)

which is a contradiction by Case 3.
Case 2 and Case 4 imply

lim
k→∞

x2k = xE = lim
k→∞

x2k+1 = xO = 0. (4.41)

The obtained results lead to the following characterization of the boundedness of
solutions of system (3.1).
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Corollary 4.6. Consider system (4.1) and assume that β1 − B1γ2 ≥ 2
√
B1α2. All bounded solutions

of system (4.1) converge to the unique equilibrium with the corresponding initial conditions which
belong to region below and on the graph of a continuous increasing function C in the plane of initial
conditions. All solutions that start above C are asymptotic to (0,∞).

Consider system (4.1) and assume that either β1 − B1γ2 ≤ 0 or β1 − B1γ2 < 2
√
B1α2. Then

every solution of (4.1) is asymptotic to (0,∞).

5. System (21,38)

Now we consider the following system of difference equations:

xn+1 =
α1 + β1xn

yn
, yn+1 =

γ2yn
A2 + B2xn + yn

, n = 0, 1, . . . , (5.1)

where the parameters α1, β1, A2, B2, and γ2 are positive numbers and initial conditions x0 ≥
0, y0 > 0.

The Jacobian matrix of the corresponding map T(x, y) = ((α1+β1x)/y, γ2y/(A2+B2x+
y)) is of the form

JT
(
x, y
)
=

⎡

⎢⎢⎢⎢
⎣

β1
y

−α1 + β1x
y2

− γ2B2y
(
A2 + B2x + y

)2
γ2(A2 + B2x)
(
A2 + B2x + y

)2

⎤

⎥⎥⎥⎥
⎦
. (5.2)

System (5.1) was considered in [1, Example 4], where it was shown that the map T is
injective. In addition, when

β1A2 > α1B2, (5.3)

we see that

det JT
(
x, y
)
=

(
β1A2 − α1B2

)

(
A2 + B2x + y

)2
y
> 0. (5.4)

Therefore, when (5.3) holds, the Jacobian matrix of T in (x, y) is invertible and in view of
Theorems 1.4 and 1.5 every solution of system (5.1) is eventually componentwise monotonic.

When

β1A2 < α1B2, (5.5)

we see that

det JT
(
x, y
)
=

(
β1A2 − α1B2

)

(
A2 + B2x + y

)2
y
< 0, (5.6)
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and the Jacobian matrix of T in (x, y) is invertible. Therefore, in view of Theorems 1.4 and 1.5,
four subsequences

{x2n}, {x2n+1},
{
y2n
}
,
{
y2n+1

}
(5.7)

of every solution {(xn, yn)} of system (5.1) are eventually monotonic.

5.1. Linearized Stability Analysis

Equilibrium points of system (5.1) are solutions of the system

x =
α1 + β1x

y
, y =

γ2y

A2 + B2x + y
. (5.8)

Since y /= 0, we have

x± =
1

2B2

(
γ2 −A2 − β1 ±

√
D4

)
, (5.9)

where

D4 =
(
γ2 −A2 − β1

)2 − 4α1B2. (5.10)

It is easy to prove that the following result holds.

Lemma 5.1. (i) If γ2 −A2 − β1 > 2
√
α1B2, then system (5.1) has two equilibrium points:

E+ =

(
γ2 −A2 − β1 +

√
D4

2B2
,
γ2 −A2 + β1 −

√
D4

2

)

,

E− =

(
γ2 −A2 − β1 −

√
D4

2B2
,
γ2 −A2 + β1 +

√
D4

2

)

.

(5.11)

(ii) If γ2 −A2 − β1 = 2
√
α1B2, then system (5.1) has a unique equilibrium point:

E =
(
γ2 −A2 − β1

2B2
,
γ2 −A2 + β1

2

)
. (5.12)

(iii) If γ2 ≤ A2 + β1 or 0 < γ2 − A2 − β1 < 2
√
α1B2, then system (5.1) has no equilibrium

points.

Lemma 5.2. If γ2−A2−β1 > 2
√
α1B2, then the equilibrium point E+ of system (5.1) is a saddle point

and E− is locally asymptotically stable.
If γ2 −A2 − β1 = 2

√
α1B2, then the equilibrium point E of system (5.1) is nonhyperbolic.
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Proof. By using (5.8) we have

JT
(
x, y
)
=

⎡

⎢
⎢
⎢
⎣

β1
y

−x
y

−B2y

γ2
1 − y

γ2

⎤

⎥
⎥
⎥
⎦
. (5.13)

The corresponding characteristic equation evaluated at the equilibrium point E(x, y) is

λ2 − pλ + q = 0, (5.14)

where

p = TrJT
(
x, y
)
=
β1
y

+ 1 − y

γ2
,

q = DetJT
(
x, y
)
=
β1
y

− β1
γ2

− B2x

γ2
.

(5.15)

For the equilibrium point E+ we need to prove that

∣∣p
∣∣ >
∣∣1 + q

∣∣, p2 − 4q > 0, (5.16)

that is (because p > 0 and 1 + q > 0),

(I) p > 1 + q,

(II) p2 − 4q > 0.

Indeed

p =
β1
y

+ 1 − y

γ2
=

1
γ2

(
β1γ2
y

+ γ2 − y
)

=
1
γ2

(
β1γ2
y

+A2 + B2x

)
> 0, (5.17)

which is always true, and in view of (5.8) γ2 − B2x = y +A2 we obtain

1 + q > 0 ⇐⇒ 1 +
β1
y

− β1
γ2

− B2x

γ2
> 0

⇐⇒ γ2 +
β1γ2
y

− β1 − B2x > 0 ⇐⇒ y +A2 + β1
γ2 − y
y

> 0,

(5.18)

which is true because y < γ2.
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Next, in view of (5.8) γ2 − B2x = y +A2,

(I) we have

p > 1 + q ⇐⇒ β1
y

+ 1 − y

γ2
> 1 +

β1
y

− β1
γ2

− B2x

γ2

⇐⇒ y < β1 + B2x ⇐⇒ γ2 −A2 − B2x < β1 + B2x ⇐⇒ 0 <
√
D4,

(5.19)

which is true.

Similarly,

(II) we have

p2 − 4q > 0 ⇐⇒
(
β1
y

+ 1 − y

γ2

)2

− 4
β1
y

+ 4
β1
γ2

+ 4
B2x

γ2
> 0

⇐⇒
(
β1
y

)2

+ 2
β1
y

+ 1 − 2
y

γ2

β1
y

− 2
y

γ2
+
(
y

γ2

)2

− 4
β1
y

+ 4
β1
γ2

+ 4
B2x

γ2
> 0

⇐⇒
(
β1
y

− 1 +
y

γ2

)2

+ 4
B2x

γ2
> 0,

(5.20)

which is true.

For the equilibrium point E− we need to prove that

p < 1 + q < 2, (5.21)

or equivalently

(I) p < 1 + q,

(II) q < 1.

Indeed,

(I) we have

p < 1 + q ⇐⇒ β1
y

+ 1 − y

γ2
< 1 +

β1
y

− β1
γ2

− B2x

γ2

⇐⇒ y > β1 + B2x ⇐⇒ γ2 −A2 − B2x > β1 + B2x ⇐⇒ 0 > −
√
D4,

(5.22)
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which is true, and in view of (5.8) β1/y = 1 − α1/xy

(II) we obtain

q < 1 ⇐⇒ β1
y

− β1
γ2

− B2x

γ2
< 1 ⇐⇒ 1 − α1

xy
− β1
γ2

− B2x

γ2
< 1

⇐⇒ − α1
xy

− β1
γ2

− B2x

γ2
< 0,

(5.23)

which is true.
Assume that γ2 −A2 − β1 = 2

√
α1B2.

Let us prove that 1 + q = p.We have

1 + q = p ⇐⇒ 1 +
β1
y

− β1
γ2

− B2x

γ2
=
β1
y

+ 1 − y

γ2

⇐⇒ y = β1 + B2x ⇐⇒ 2y = β1 + γ2 −A2,

(5.24)

which is true.

5.2. Global Results

Theorem 5.3. System (5.1) has no prime period-two solutions.

Proof. The second iterate of the map T is

T2(x, y
)
= T
(
α1 + β1x

y
,

γ2y

A2 + B2x + y

)

=

(
α1 + β1

((
α1 + β1x

)
/y
)

γ2y/
(
A2 + B2x + y

) ,
γ2
(
γ2y/
(
A2 + B2x + y

))

A2 + B2
((
α1 + β1x

)
/y
)
+ γ2y/

(
A2 + B2x + y

)

)

,

(5.25)

that is,

T2(x, y
)
=

⎛

⎜⎜⎜⎜⎜
⎝

(
A2 + B2x + y

)(
α1y + α1β1 + β21x

)

γ2y2

γ22y
2

y
[(
A2 + B2x + y

)(
A2y + B2α1 + B2β1x

)
+ γ2y2

]

⎞

⎟⎟⎟⎟⎟
⎠

(5.26)
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Period-two solutions satisfy

(
A2 + B2x + y

)(
α1y + α1β1 + β21x

)

γ2y2
− x = 0,

γ22y
2

y
[(
A2 + B2x + y

)(
A2y + B2α1 + B2β1x

)
+ γ2y2

] − y = 0.

(5.27)

From this system we have

(i) x = (γ2 −A2 − β1 +
√
D4)/2B2, y = (γ2 −A2 + β1 −

√
D4)/2,

(ii) x = (γ2 −A2 − β1 −
√
D4)/2B2, y = (γ2 −A2 + β1 +

√
D4)/2,

(iii) x = −A2/B2, y = 0,

(iv) x = −α1/β1, y = 0,

(v) x = −(1/B2)(A2 + γ2) − (1/2B2β1γ2)(Λ +
√
Δ2), y = (1/2γ2(A2 + γ2))(Λ +

√
Δ2),

(vi) x = −(1/B)(A + γ) − (1/2B2β1γ2)(Λ −
√
Δ2), y = (1/2γ2(A2 + γ2))(Λ −

√
Δ2),

Where

Λ = A2β
2
1 −A2

2β1 − β1γ22 + β21γ2 +A2B2α1 − 2A2β1γ2 − B2α1β1 + B2α1γ2,

Δ2 = −(A2β1 − B2α1 + β1γ2
)(

2A2
2β

2
1 + 2β21γ

2
2 −A2β

3
1 −A3

2β1 + 3β1γ32 − β31γ2

+A2
2B2α1 +A2β1γ

2
2 + 4A2β

2
1γ2 + B2α1β

2
1 − 3A2

2β1γ2

+ B2α1γ
2
2 − 2A2B2α1β1 + 2A2B2α1γ2 − 2B2α1β1γ2

)
.

(5.28)

In cases (i) and (ii) solutions (x, y) are the equilibrium points E+ and E−, and in cases (iii)
and (iv) solution(x, y) is not in the first quadrant in the plane. It is sufficient to prove that
solutions (x, y) in cases (v) and (vi) are not in the first quadrant in the plane. Namely, Δ2 < 0
implies that x and y are not real. Suppose that Δ2 ≥ 0. If

A2β
2
1 −A2

2β1 − β1γ22 + β21γ2 +A2B2α1 − 2A2β1γ2 − B2α1β1 + B2α1γ2 +
√
Δ2 ≥ 0, (5.29)

then y ≥ 0 and x < 0. If

A2β
2
1 −A2

2β1 − β1γ22 + β21γ2 +A2B2α1 − 2A2β1γ2 − B2α1β1 + B2α1γ2 +
√
Δ2 < 0, (5.30)

then y < 0 for solution in the case (v). By analogous reasoning we have that the same
conclusion for case (vi) holds.

Remark 5.4 (see [1]). When

β1A2 = α1B2, (5.31)
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we see that

yn+1 =
β1γ2

B2xn+1 + β1
, n = 0, 1, . . . , (5.32)

and so system (5.1) can be decoupled as follows:

xn+1 =

(
α1 + β1xn

)(
β1 + B2xn

)

β1γ2
, yn+1 =

γ2y
2
n

y2
n +
(
A2 − β1

)
yn + β1γ2

, n = 0, 1, . . . . (5.33)

The solutions of first equation (depending of the choice of the initial condition x0) are either
bounded and converge to a finite limit or increase monotonically to infinity. Using this and
(5.32)we find the behavior of solutions of second equation.

Our linearized stability analysis indicates that there are three cases with different
asymptotic behavior, depending on the values of parameters β1, B1, α2, and γ2:

Case 1. γ2 −A2 − β1 > 2
√
α1B2.

Case 2. γ2 −A2 − β1 = 2
√
α1B2.

Case 3. γ2 ≤ A2 + β1 or 0 < γ2 −A2 − β1 < 2
√
α1B2.

5.2.1. Case γ2 −A2 − β1 > 2
√
α1B2

Theorem 5.5. Consider system (5.1) and assume that γ2 − A2 − β1 > 2
√
α1B2 and β1A2 /=α1B2.

Then there exists a set C ⊂ R which is invariant and a subset of the basin of attraction of E+. The set
C is a graph of a strictly increasing continuous function of the first variable on an interval (and so is a
manifold) and separates R into two connected and invariant components, namely,

W− :=
{
x ∈ R \ C : ∃y ∈ C with x�sey

}
,

W+ :=
{
x ∈ R \ C : ∃y ∈ C with y�sex

}
.

(5.34)

which satisfy

lim
n→∞
(
xn, yn

)
=

(
γ2 −A2 − β1 −

√
D4

2B2
,
γ2 −A2 + β1 +

√
D4

2

)

for every
(
x0, y0

) ∈ W−,

lim
n→∞
(
xn, yn

)
= (∞, 0) for every

(
x0, y0

) ∈ W+.

(5.35)

Proof. Clearly, system (5.1) is strongly competitive on R = [0,∞) × (0,∞). In view of the
injectivity of T , the invertibility of JT and Theorem 5.3, we see that all conditions of Theorems
1.7, 1.9, and 1.10 and Corollary 1.8 are satisfied and the conclusion of the theorem follows.
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5.2.2. Case γ2 −A2 − β1 = 2
√
α1B2

Theorem 5.6. Consider system (5.1) and assume that γ2 − A2 − β1 = 2
√
α1B2 and β1A2 /=α1B2.

Then there exists a set C ⊂ R which is invariant and a subset of the basin of attraction of E. The set C
is a graph of a strictly increasing continuous function of the first variable on an interval (and so is a
manifold) and separates R into two connected and invariant components, namely

W− :=
{
x ∈ R \ C : ∃y ∈ C with x�sey

}
,

W+ :=
{
x ∈ R \ C : ∃y ∈ C with y�sex

}
,

(5.36)

which satisfy

lim
n→∞
(
xn, yn

)
= E =

(
γ2 −A2 − β1

2B2
,
γ2 −A2 + β1

2

)
for every

(
x0, y0

) ∈ W−,

lim
n→∞
(
xn, yn

)
= (∞, 0) for every

(
x0, y0

) ∈ W+.

(5.37)

Proof. In this case system (5.1) has a unique equilibrium point E = ((γ2 − A2 − β1)/2B2, (γ2 −
A2 + β1)/2) which is nonhyperbolic. By p = q + 1, the corresponding characteristic equation
is of the form

λ2 − pλ + p − 1 = 0. (5.38)

This implies

λ1 = p − 1, λ2 = 1, (5.39)

and |λ1| < 1 ⇔ |p − 1| < 1 ⇔ 0 < p < 2.
It is obvious that p > 0. In view of β1/y = 1 − α1/xy, we have

p < 2 ⇐⇒ β1
y

+ 1 − y

γ2
< 2 ⇐⇒ 1 − α1

xy
+ 1 − y

γ2
< 2, (5.40)

which is satisfied. Thus, |λ1| < 1.
The eigenvector corresponding to λ1 = p − 1 is

⎛

⎜⎜
⎝

1

B2
(
γ2 −A2 + β1

)2

2γ2
(
γ2 −A2 − β1

)

⎞

⎟⎟
⎠ =

⎛

⎜⎜⎜
⎝

1

B2

(√
α1B2 + β1

)2

γ2
√
α1B2

⎞

⎟⎟⎟
⎠
. (5.41)

It means that all conditions of Theorems 1.7 and 1.10 are satisfied with R = [0,∞) ×
(0,∞). In view of the fact that yn ≤ γ2 we obtain the conclusion of the theorem in the case
(x0, y0) ∈ W−. The same conclusion is obtained by using Theorem 1.6.
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Next, assume that (x0, y0) ∈ W+. By Theorem 1.10 the orbit of (x0, y0) eventually
enters Q4(E). Assume (without loss of generality) that (x0, y0) ∈ intQ4(E). An eigenvector
associated with the nonhyperbolic eigenvalue λ2 = 1 is v = (1,−B2). Choose a value of t small
enough so that E+ tv ∈ Q4(E) and E+ tv � (x0, y0). Let us show that E+ tv � T(E+ tv). Indeed

T(E + tv) =

(
2α1B2 + β1

(
γ2 −A2 − β1 + 2B2t

)

B2
(
γ2 −A2 + β1 − 2B2t

) ,
γ2 −A2 + β1

2
− B2t

)

�
(
γ2 −A2 − β1

2B2
+ t,

γ2 −A2 + β1
2

− B2t

)
= E + tv

(5.42)

because

2α1B2 + β1
(
γ2 −A2 − β1 + 2B2t

)

B2
(
γ2 −A2 + β1 − 2B2t

) ≥ γ2 −A2 − β1
2B2

+ t (5.43)

reduces to

(
γ2 −A2 − β1

)2 ≤ 4B2t
2 + 4α1B2 = 4B2t

2 +
(
γ2 −A2 − β1

)2
, (5.44)

where the last equality follows from the condition γ2 −A2 − β1 = 2
√
α1B2.

Since E + tv � T(E + tv), it follows that {Tn(E + tv)} is a monotonically increasing
sequence in Q4(E) which is bounded below by E. Since {Tn(E + tv)} is coordinatewise
monotone and it does not converge (if it did it would have to converge to E, which is
impossible), we have that Tn(E+tv) has a first coordinate which is monotone and unbounded.
But Tn(E + tv) � (xn, yn) := Tn(x0, y0), which implies that xn → ∞. From (5.1) it follows that
yn → 0.

5.2.3. Case γ2 ≤ A2 + β1 or 0 < γ2 −A2 − β1 < 2
√
α1B2

In this case system (5.1) has no equilibrium points.

Theorem 5.7. Consider system (5.1) and assume that γ2 ≤ A2 + β1 or 0 < γ2 −A2 − β1 < 2
√
α1B2

and β1A2 /=α1B2. Then every solution {(xn, yn)} of system (4.1) satisfies

lim
n→∞

xn = ∞, lim
n→∞

yn = 0. (5.45)

Proof. (1) Assume that β1A2 > α1B2. Then every solution of system (5.1) is eventually
componentwise monotonic. The sequence {yn} is bounded (by γ2), which implies that it
converges, that is, limn→∞yn = Y . For the sequence {xn} the following two cases are possible:
(a) limn→∞xn = X, (b) limn→∞xn = ∞.
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If limn→∞xn = X, then we obtain

X =
α1 + β1X

Y
, Y =

γ2Y

A2 + B2X + Y
; (5.46)

that is, (X,Y ) is an equilibrium point of system (5.1), which is a contradiction.
If limn→∞xn = ∞, then limn→∞yn = Y = 0.
(2) Assume that β1A2 < α1B2. Consider now the following system satisfied by

subsequences of the solution of system (5.1):

x2k+1 =
α1 + β1x2k

y2k
, x2k+2 =

α1 + β1x2k+1
y2k+1

,

y2k+1 =
γ2y2k

A2 + B2x2k + y2k
, y2k+2 =

γ2y2k+1
A2 + B2x2k+1 + y2k+1

.

(5.47)

We know that each of the four subsequences

{x2k}, {x2k+1},
{
y2k
}
,
{
y2k+1

}
(5.48)

of every solution {xk, yk} of system (5.1) is eventually monotonic. The subsequences {y2k}
and {y2k+1} are bounded by γ2, which implies that they are convergent. Suppose that (a)
limk→∞y2k = yE and (b) limk→∞y2k+1 = yO. For the other two subsequences the following
four cases are possible: (1) limk→∞x2k = xE, (2) limk→∞x2k = ∞, (3) limk→∞x2k+1 = xO, or
(4) limk→∞x2k+1 = ∞.

By similar reasoning as in the proof of Theorem 4.5, we obtain

lim
k→∞

y2k = yE = lim
k→∞

y2k+1 = yO = 0. (5.49)

The obtained results lead to the following characterization of the boundedness of
solutions of system (5.1).

Corollary 5.8. Consider system (5.1) and assume that β1A2 /=α1B2. If γ2 −A2 − β1 ≥ 2
√
B2α1, then

all bounded solutions of system (5.1) converge to the unique equilibrium with the corresponding initial
conditions which belong to the region above and on the graph of a continuous increasing function C in
the plane of initial conditions. All solutions that start below C are asymptotic to (∞, 0).

Consider system (5.1) and assume that either γ2 ≤ A2 + β1 or 0 < γ2 − β1 −A2γ2 < 2
√
B2α1.

Then every solution of (5.1) is asymptotic to (∞, 0).
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