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A method is proposed to construct closed-form solutions of nonlinear differential-difference
equations. For the variety of nonlinearities, this method only deals with such equations which
are written in polynomials in function and its derivative. Some closed-form solutions of Hybrid
lattice, Discrete mKdV lattice, and modified Volterra lattice are obtained by using the proposed
method. The travelling wave solutions of nonlinear differential-difference equations in polynomial
in function tanh are included in these solutions. This implies that the proposed method is more
powerful than the one introduced by Baldwin et al. The results obtained in this paper show the
validity of the proposal.
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1. Introduction

Wadati [1] introduced the following nonlinear differential-difference equation (NDDE):

dun(t)
dt

=
(
α + βun + γu2

n

)
(un−1 − un+1), (1.1)

where α, β, and γ /= 0 are constants.
However, (1.1) can be thought as a discrete version of a nonlinear partial differential

equation:

ut + 6αuux + 6βu2ux + uxxx = 0, (1.2)

which can be solved by the inverse scattering method [2].
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However, (1.1) obviously includes the following famous NDDEs, namely,

(a) hybrid lattice [3]:

dun(t)
dt

=
(
1 + βun + γu2

n

)
(un−1 − un+1), (1.3)

(b) discrete mKdV lattice [1, 4]:

dun(t)
dt

=
(
1 + u2

n

)
(un+1 − un−1), (1.4)

(c)modified Volterra lattice [5]:

dun(t)
dt

= u2
n(un+1 − un−1). (1.5)

The travelling wave solutions of (1.3) in polynomial in function tanh are reported in
[3]. Ü. Göktas and W. Hereman [4] investigated the conservations laws of (1.4). However,
(1.5) is a very well studied integrable model. It is a bi-Hamiltonian, possesses a Lax pair,
recursion operator, local master-symmetry, infinite hierarchy of higher symmetries, and
conservation laws [5]. In this study, searching for the closed-form solutions, especially
solitary wave solutions and periodic solutions of (1.4) and (1.5), is considered.

In the theory of lattice-soliton, there existed several classical methods to seek for
solutions of NDDEs, such as the inverse scattering method [6, 7], bilinear form [8, 9],
symmetries [10], and numerical methods [11]. As far as we know, little work is being done
to find closed-form solutions of NDDEs by using of symbolic computation. Baldwin et al.
[3] recently presented an adaptation of the tanh-method to solve NDDEs. Some analytical
(closed-form) solutions of several lattices in polynomial in function tanh have been obtained
[3]. Their work may be thought as a breakthrough in solving NDDEs symbolically.

In this study, the method proposed in [3] where tanh-solutions are only considered
is firstly generalized, and then is applied to solve (1.1). As a result, a variety of closed-form
solutions of (1.1) have been found in terms of trigonometric and Jacobi elliptic functions. The
proposed approach allows us to exactly solve NDDEs with the aid of symbolic computation.
The solutions presented here not only cover the known one presented by Baldwin et al.[3] ,
but also introduce new solutions for some NDDEs.

The rest of the paper is organized as follows: in the following section, an improved
method is proposed and how to obtain the solitary wave solutions and periodic solutions
to NDDEs is depicted. Section 3 is devoted to illustrating the application of the proposal in
exactly solving (1.1). As a result, some new solitary wave solutions and periodic solutions of
Hybrid lattice, discrete mKdV lattice, and modified Volterra lattice have been obtained. The
final is conclusions.
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2. The Improved Method

To solve NDDEs directly, in this section, one would like to describe the improved method
and its algorithm. Suppose the NDDE we study in this work is in the following form

P
(
un+p1(t), un+p2(t), . . . , un+ps(t), u

′
n+p1(t), u

′
n+p2(t), . . . , u

′
n+ps(t), . . . ,

u
(k)
n+p1(t), u

(k)
n+p2(t), . . . , u

(k)
n+ps(t)

)
= 0,

(2.1)

where P is a polynomial; un(t) is a dependent variable; t is a continuous variable; the
superscript denotes the order of derivative; n, pi ∈ Z.

To compute the travelling wave solutions of (2.1), we first set un(t) = u(ξn) and

ξn = dn + ct + ξ0, (2.2)

where d and c are constants to be determined later and ξ0 is a constant.

Step 1. We assume that the travelling wave solutions of (2.1) we are looking for are in the
following frame:

un(t) = a0 +
m∑
i=1

gi−1(ξn)
[
aif(ξn) + bjg(ξn)

]
, (2.3)

with

f(ξn) =
sinh(ξn)

cosh (ξn) + r
,

g(ξn) =
1

cosh(ξn) + r
,

(2.4)

where ai, bj are all constants to be determined later and r a constant.

The degree m in (2.3) can be determined by balancing the highest nonlinear term and
the highest-order derivative term in (2.1) as in the continuous case.

The functions f(ξn) and g(ξn) in (2.4) satisfy the following equations:

f ′(ξn) =
(
1 + r2

)
g2(ξn) − rg(ξn), g ′(ξn) = −f(ξn)g(ξn),

f2(ξn) = (1 − rg(ξn))
2 − g2(ξn).

(2.5)

However, (2.5) reveals that fj(ξn) (j ≥ 2) can be expressed by fl(ξn)gh(ξn) (l = 0, 1).

Step 2 (to derive and solve the algebraic system). The following identity is easily obtained in
terms of (2.2):

ξn+pi = d
(
n + pi

)
+ ct + ξ0 = ξn + dpi. (2.6)
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It says the relationship between ξn+pi and ξn. To find the solutions of NDDEs, one also utilizes
the following formulae:

sinh
(
x ± y

)
= sinh(x) cosh

(
y
) ± cosh(x) sinh

(
y
)
,

cosh
(
x ± y

)
= cosh(x) cosh

(
y
) ± sinh(x) sinh

(
y
)
.

(2.7)

If the ξn in (2.3) is replaced by ξn+pi , then expression of un+pi in sinh(ξn) and
cosh(ξn) will be obtained in terms of (2.7).

With the aid of symbolic computation software Maple 8, we substitute un+pi into (2.1)
and apply the rule

sinh2(x) = cosh2(x) − 1, (2.8)

to simplify the expression. Clearing the denominator and collecting the coefficients of
coshk(ξn)sinh

l(ξn) (k = 0, 1, . . . , h; l = 0, 1) and setting them to zero, we can obtain the
nonlinear algebraic equations. The values of unknowns will be found by using the Wu’s
method [12] to solve algebraic system.

Step 3 (construct and test the exact solutions). Substitute the values obtained in Step 2 along
with (2.2) and (2.4) into (2.3), one can find the solutions of (2.1). To assure the correctness of
the solutions, it is necessary to substitute them into the original equation.

Remark 2.1. If we set r = 0 in (2.4), the travelling wave solutions of (2.1) in polynomial in
tanh and sech will be found. If one further requires that bj = 0, then the polynomial travelling
wave solutions in tanh will be obtained. In this sense, we can say that this method covers the
one given in [3].

Remark 2.2. More important, if the hyperbolic functions in (2.4) are replaced by the
trigonometric function, that is,

f(ξn) =
sin(ξn)

cos(ξn) + r
,

g(ξn) =
1

cos(ξn) + r
,

(2.9)

the periodic solutions to (2.1) will be obtained. While doing so, it is necessary to modify the
formulae (2.7) and (2.8) properly.

Remark 2.3. We can obviously write (2.4) into the following solitary wave form which have
physical relevance:

f(ξn) =
tanh(ξn)

1 + rsech(ξn)
=

1
coth(ξn) + rcsch(ξn)

,

g(ξn) =
sech(ξn)

1 + rsech(ξn)
=

csch(ξn)
coth(ξn) + rcsch(ξn)

.

(2.10)
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In what follows, we will apply this method to solve (1.1). As a result, their abundant
exact solutions have been derived.

3. Soliton Wave Solutions and Periodic Solutions of (1.1)

By balancing the highest nonlinear term u2
n and the highest-order derivative term dun(t)/dt

in (1.1), we have m + 1 = 2m, that is, m = 1.
Therefore, the following formal solutions for (1.1) can be assumed:

un(t) = u(ξn) = a0 +
a1 sinh(ξn)
cosh(ξn) + r

+
b1

cosh(ξn) + r
, (3.1)

with ξn as (2.2).
Starting from (2.6), we have

un±1(t) = u(ξn±1) = u(ξn ± d). (3.2)

The expressions of un+1(t) and un−1(t) in sinh(ξn) and cosh(ξn) are obtained by (2.7),
(3.1), and (3.2). Substituting them and (3.1) into (1.1), clearing the denominator, and setting
coefficients of the terms sinhl(ξn)cosh

k(ξn) (k = 0, 1, . . . , 3; l = 0, 1) to zero give

a1

[
2 sinh(d)

(
γra1

2 + βa0r + αr − βb1 − 2γa0b1 + γa0
2r
)
+ cr

]
= 0,

2 sinh(d)
(
2γa0a1

2r − γa1
2b1 − αb1 − βa0b1 − γa0

2b1 + βa1
2r
)
− b1c = 0,

a1

[
c + 2 sinh(d) cosh(d)

(
γa1

2 + γa0
2 + βa0 + α

)
+ 4 sinh(d)

(
γa0

2r2 − γb1
2 + βa0r

2 + αr2
)

+2cr2 cosh(d)
]
= 0,

sinh(d)
(
βa1

2r2 − 2γa0b1
2 − βb1

2 − 2γa0
2rb1 − 2αrb1 + 2γa0r

2a1
2 − 2βa0rb1 + γa1

2b1r
)

+ 2a1
2 sinh(d) cosh(d)

(
2γ a0 + β

) − rb1c cosh(d) = 0,

a1

[
2 sinh(d) cosh(d)

(
2αr + βb1 + 2β a0r + γa0b1 + γa0

2r
)

+ 2 sinh(d)
(
−γa1

2r + 2γa0b1 + γb1
2r + γa0

2r3 + βb1r
2 + αr3 + βa0r

3 + βb1 + 2γa0r
2b1

)

+2cr cosh(d) + cr cosh2(d) + cr3 − cr
]
= 0,

2b1 sinh(d)
(
−γb12 − γa0

2r2 + γa1
2 − αr2 − βa0r

2 − 2γa0rb1 − βb1r
)

+ 2a1
2 sinh(d) cosh(d)

(
2γa0r + 2γb1 + βr

) − b1c cosh2(d) + b1c − b1cr
2 = 0,
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a1

[
2 sinh(d) cosh(d)

(
βa0r

2 − γa1
2 + βb1r + γa0

2r2 + 2γa0rb1 + αr2 + γb1
2
)

+2b1 sinh(d)
(
2γb1 + βr

)
+ 4γa0ra1b1a1ccosh

2(d) + cr2 − c
]
= 0.

(3.3)

It is difficult to solve this system by hand. Thus, we fall back on symbolic computation
software Maple 8 andWu’s method which is a powerful tool to deal with nonlinear algebraic
equations. With the aid of them, we can find the solutions to the above system as follows:

Case 1.

a1 = 0, a0 = − β

2γ
∓
r
√(

β2 − 4αγ
)
(r2 − 1) tanh(d/2)

2γ(r2 − 1)

b1 = ±
[
2r2 − 1 − cosh(d)

]√(
β2 − 4αγ

)
(r2 − 1) tanh(d/2)

2γ(r2 − 1)
,

c =

[
2r2 − 1 − cosh(d)

](
β2 − 4αγ

)
tanh(d/2)

2γ(r2 − 1)
;

(3.4)

Case 2.

a0 = − β

2γ
, a1 = ±

√
β2 − 4αγ tanh(d/2)

2γ
,

b1 = ±

√(
β2 − 4αγ

)
(r2 − 1) tanh(d/2)

2γ
, c =

(
β2 − 4αγ

)
tanh(d/2)
γ

;

(3.5)

Case 3.

b1 = 0, r = 0, a0 = − β

2γ
,

a1 = ±

√
β2 − 4αγ tanh(d)

2γ
, c =

(
β2 − 4αγ

)
tanh(d)

2γ
.

(3.6)

Thus the solitary wave solutions of (1.1) are

un(t) =
β

2γ
∓

√(
β2 − 4αγ

)
(r2 − 1) tanh(d/2)

2γ(r2 − 1)

(
r − 2r2 − 1 − cosh(d)

cosh(ξn) + r

)
, (3.7)
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where ξn = nd + ([2r2 − 1 − cosh(d)](β2 − 4αγ)tanh(d/2)/2γ(r2 − 1))t + ξ0;

un(t) = − β

2γ
±

√
β2 − 4αγ tanh(d/2)

2γ
sinh(ξn) +

√
r2 − 1

cosh(ξn) + r
, (3.8)

where ξn = nd + ((β2 − 4αγ)tanh(d/2)/γ)t + ξ0;

un(t) = − β

2γ
±

√
β2 − 4αγ tanh(d)

2γ
tanh

(
nd +

(
β2 − 4αγ

)
tanh(d)

2γ
t + ξ0

)
. (3.9)

Similarly, we can also assume that (1.1) possesses the following form solution:

un(t) = s0 +
s1 sin(ξn)
cos(ξn) + r

+
s2

cos(ξn) + r
, (3.10)

where si (i = 0, 1, 2) is a constant to be determined later.
Repeating the above process and properly modifying the formulae (2.7) and (2.8), we

can derive the periodic solutions for (1.1) as follows. For brevity, the procedure of seeking for
periodic solutions to (1.1) is omitted:

un(t) = − β

2γ
±

√(
β2 − 4αγ

)
(r2 − 1) tan(d/2)

2γ(r2 − 1)

(
r +

1 + cosh(d) − 2r2

cos(ξn) + r

)
, (3.11)

where ξn = nd + ([2r2 − 1 − cos(d)](β2 − 4αγ) tan(d/2)/2γ(r2 − 1))t + ξ0;

un(t) = − β

2γ
±

√
β2 − 4αγ tan(d/2)

2γ
sin(ξn) +

√
r2 − 1

cos(ξn) + r
, (3.12)

where ξn = nd + ((β2 − 4αγ) tan(d/2)/γ)t + ξ0;

un(t) = − β

2γ
±

√
β2 − 4αγ tan(d)

2γ
tan

(
nd +

(
β2 − 4αγ

)
tan(d)

2γ
t + ξ0

)
. (3.13)

If we properly set the parameters α, β, and γ , then it is easily to obtain closed-form
solutions of Hybrid lattice, discrete mKdV lattice, and modified Volterra lattice, respectively.

In fact, the solution given in [3] for (1.3) is nothing but the solution (3.9). As far as we
know, no works have been reported on the closed form solutions of (1.4) and (1.5). Thus, in
this sense, these results are novel.
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4. Conclusions

A method is proposed to find the solitary wave solutions and periodic solutions for NDDEs.
The new closed-form solutions of Hybrid lattice, discretemKdV lattice, andmodified Volterra
lattice have been found by using the proposal and symbolic computation. This study reveals
that computer algebra plays an important role in exactly solving NDDEs. Meanwhile, it is
worthwhile to point out that the proposed method may be applicable to other NDDEs to
seek for their travelling wave solutions.
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