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We study the one-dimensional p-Laplacian m-point boundary value problem (ϕp(uΔ(t)))Δ +
a(t)f(t, u(t)) = 0, t ∈ [0, 1]T , u(0) = 0, u(1) =

∑m−2
i=1 aiu(ξi), where T is a time scale, ϕp(s) = |s|p−2s,

p > 1, some new results are obtained for the existence of at least one, two, and three positive
solution/solutions of the above problem by using Krasnosel′skll′s fixed point theorem, new fixed
point theorem due to Avery and Henderson, as well as Leggett-Williams fixed point theorem. This
is probably the first time the existence of positive solutions of one-dimensional p-Laplacian m-
point boundary value problem on time scales has been studied.
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1. Introduction

With the development of p-Laplacian dynamic equations and theory of time scales, a few
authors focused their interest on the study of boundary value problems for p-Laplacian
dynamic equations on time scales. The readers are referred to the paper [1–7].

In 2005, He [1] considered the following boundary value problems:

(
ϕp

(
uΔ(t)

))∇ + a(t)f(u(t)) = 0, t ∈ [0, T]T ,

u(0) − B0u
Δ(η) = 0, uΔ(T) = 0 or

uΔ(0) = 0, u(T) + B1u
Δ(η) = 0,

(1.1)

where T is a time scales, ϕp(s) = |s|p−2s, p > 1, η ∈ (0, ρ(t))T . The author showed the existence
of at least two positive solutions by way of a new double fixed point theorem.
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In 2004, Anderson et al. [2] used the virtue of the fixed point theorem of cone and
obtained the existence of at least one solution of the boundary value problem:

(
g
(
uΔ(t)

))∇ + c(t)f(u) = 0, a < t < b,

u(a) − B0u
Δ(γ) = 0, uΔ(b) = 0.

(1.2)

In 2007, Geng and Zhu [3] used the Avery-Peterson and another fixed theorem of cone
and obtained the existence of three positive solutions of the boundary value problem:

(
ϕp

(
uΔ(t)

))∇ + a(t)f(u(t)) = 0, t ∈ [0, T]T ,

u(0) − B0u
Δ(η) = 0, uΔ(T) = 0.

(1.3)

Also, in 2007, Sun and Li [4] discussed the existence of at least one, two or three positive
solutions of the following boundary value problem:

(
ϕp

(
uΔ(t)

))Δ + h(t)f(uσ(t)) = 0, t ∈ [a, b]T ,

u(a) − B0u
Δ(a) = 0, uΔ(σ(b)) = 0.

(1.4)

In this paper, we are concerned with the existence of multiple positive solutions to the
m-point boundary value problem for the one dimension p-Laplcaian dynamic equation on
time scale T

(
ϕp

(
uΔ(t)

))Δ + a(t)f(t, u(t)) = 0, t ∈ [0, 1]T ,

u(0) = 0, u(1) =
m−2∑

i=1

aiu(ξi),
(1.5)

where T is a time scale, ϕp(s) = |s|p−2s, p > 1, 0 < ξ1 < ξ2 < · · · < ξm−2 < 1, 0 ≤ ai, i =
1, 2, . . . , m − 3, am−2 > 0, and

(H1)
∑m−2

i=1 aiξi < 1;

(H2) f ∈ Crd([0, 1]T × [0,∞), [0,∞));

(H3) a ∈ Crd([0, 1]T , [0,∞)) and there exists t0 ∈ (ξm−2, 1) such that a(t0) > 0.

In this paper, we have organized the paper as follows. In Section 2, we give some
lemmas which are needed later. In Section 3, we apply the Krassnoselskiifs [8] fixed point
theorem to prove the existence of at least one positive solution to the MBVP(1.5). In Section 4,
conditions for the existence of at least two positive solutions to the MBVP (1.5) are discussed
by using Avery and Henderson [9] fixed point theorem. In Section 5, to prove the existence
of at least three positive solutions to the MBVP (1.5) are discussed by using Leggett and
Williams [10] fixed point theorem.

For completeness, we introduce the following concepts and properties on time scales.
A time scale T is a nonempty closed subset of R, assume that T has the topology that

it inherits from the standards topology on R.
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Definition 1.1. Let T be a time scale, for t ∈ T , one defines the forward jump operator σ :
T → T by σ(t) = inf{s ∈ T : s > t}, and the backward jump operator ρ : T → T by
ρ(t) = sup{s ∈ T : s < t}, while the graininess function μ : T → [0,∞) is defined by
μ(t) = σ(t) − t. If σ(t) > t, one says that is right-scattered, while if ρ(t) < t, one says that
tis left-scattered. Also, if t < sup T and σ(t) = t, then t is called right-dense, and if t > inf T
and ρ(t) = t, then t is called left-dense. One also needs below the set Tk as follows: if T has
a left-scattered maximum m, then Tk = T −m, otherwise Tk = T. For instance, if sup T = ∞,
then Tk = T.

Definition 1.2. Assume f : T → R is a function and let t ∈ T. Then , one defines fΔ(t) to be the
number (provided it exists) with the property that any given ε > 0, there is a neighborhood
U of t such that

∣
∣
[
f
(
σ(t)

) − f(s)
] − fΔ(t)[σ(t) − s]

∣
∣ ≤ ε

∣
∣σ(t) − s

∣
∣, (1.6)

for all s ∈ U. One says that f is delta differentiable (or in short: differentiable) on T provided
fΔ(t) exist for all t ∈ T.

If T = R, then fΔ(t) = f ′(t), if T = Z, then fΔ(t) = Δf(t).
A function f : T → R.

(i) If f is continuous , then f is rd-continuous.

(ii) The jump operator σ is rd-continuous.

(iii) If f is rd-continuous, then so is fσ.

A function F : T → R is called an antidervative of f : T → R, provided FΔ(t) = f(t)
holds for all t ∈ Tk. One defines the definite integral by

∫b

a

f(t)Δt = F(b) − F(a). (1.7)

For all a, b ∈ T . If fΔ(t) ≥ 0, then f is nondecreasing.

2. The Preliminary Lemmas

Lemma 2.1 (see [5, 6]). Assume that (H1)–(H3) hold. Then u(t) is a solution of the MBVP (1.5) on
[0, 1]T if and only if

u(t) = −
∫ t

0
ϕq

(∫s

0
a(τ)f

(
τ, u(τ)

)
Δτ

)

Δs

− t ·
∑m−2

i=1 ai

∫ ξi
0 ϕq(

∫s
0a(τ)f(τ, u(τ))Δτ)Δs

1 −∑m−2
i=1 aiξi

+ t ·
∫1
0ϕq(

∫s
0a(τ)f(τ, u(τ))Δτ)Δs

1 −∑m−2
i=1 aiξi

,

(2.1)

where ϕq(s) = |s|q−2s, (1/p) + (1/q) = 1, and q > 1.
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Lemma 2.2. Assume that conditions (H1)–(H3) are satisfied, then the solution of the MBVP (1.5) on
[0, 1]T satisfies

u(t) ≥ 0, t ∈ [0, 1]T . (2.2)

Lemma 2.3 (see [5]). If the conditions (H1)–(H3) are satisfied, then

u(t) ≥ γ‖u‖, t ∈ [
ξm−2, 1

]
, (2.3)

where

‖u‖ = sup
t∈[0,1]T

∣
∣u(t)

∣
∣,

γ = min
{
am−2(1 − ξm−2)
1 − am−2ξm−2

, am−2ξm−2, ξ1

}

.

(2.4)

Lemma 2.4 (see [6]). mint∈[ξm−2,1]Au(t) = min{Au(1), Au(ξm−2)}.

Let E denote the Banach space Crd[0, 1]T with the norm ‖u‖ = supt∈[0,1]T |u(t)|.
Define the cone P ⊂ E, by

P =
{
u ∈ E | u(t) ≥ 0, t ∈ [

ξm−2, 1
]
min u(t) ≥ γ‖u‖, u is concave

}
. (2.5)

The solutions of MBVP (1.5) are the points of the operator A defined by

Au(t) = −
∫ t

0
ϕq

(∫s

0
a(τ)f

(
τ, u(τ)

)
Δτ

)

Δs

− t ·
∑m−2

i=1 ai

∫ ξi
0 ϕq(

∫s
0a(τ)f(τ, u(τ))Δτ)Δs

1 −∑m−2
i=1 aiξi

+ t ·
∫1
0ϕq(

∫s
0a(τ)f(τ, u(τ))Δτ)Δs

1 −∑m−2
i=1 aiξi

= u(t).

(2.6)

So, AP ⊂ P. It is easy to check that A : P → P is completely continuous.

3. Existence of at least One Positive Solutions

Theorem 3.1 (see [8]). Let E be a Banach space, and let P ⊂ E be a cone. Assume Ω1 and Ω2 are
open boundary subsets of E with 0 ∈ Ω1, Ω1 ⊂ Ω2, and let A : P ∩ (Ω2 \Ω1) → P be a completely
continuous operator such that either

(i) ‖Au‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ω1, ‖Au‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ω2; or

(ii) ‖Au‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ω1, ‖Au‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ω2 hold.

Then A has a fixed point in P ∩ (Ω2 \Ω1).
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Theorem 3.2. Assume conditions (H1)–(H3) are satisfied. In addition, suppose there exist numbers
0 < r < R < ∞ such that f(t, u) ≤ ϕp(m)ϕp(r), if t ∈ [0, σ(1)], 0 ≤ u ≤ r, and f(t, u) ≥
ϕp(Mγ)ϕp(R), if t ∈ [ξm−2, 1], R ≤ u < ∞, where

M =
1 −∑m−2

i=1 aiξi

γξm−2
∫1
ξm−2

ϕq(
∫s
ξm−2

a(τ)Δτ)Δs
,

m =
1 −∑m−2

i=1 aiξi
∫1
0ϕq(

∫s
0a(τ)Δτ)Δs

.

(3.1)

Then the MBVP (1.5) has at least one positive solution.

Proof. Define the cone P as in (2.5), define a completely continuous integral operatorA : P →
P by

Au(t) = −
∫ t

0
ϕq

(∫s

0
a(τ)f

(
τ, u(τ)

)
Δτ

)

Δs

− t ·
∑m−2

i=1 ai

∫ ξi
0 ϕq(

∫s
0a(τ)f(τ, u(τ))Δτ)Δs

1 −∑m−2
i=1 aiξi

+ t ·
∫1
0ϕq(

∫s
0a(τ)f(τ, u(τ))Δτ)Δs

1 −∑m−2
i=1 aiξi

.

(3.2)

From (H1)–(H3), Lemmas 2.1 and 2.2, AP ⊂ P . If u ∈ P with ‖u‖ = r, then we get

Au(t) = −
∫ t

0
ϕq

(∫s

0
a(τ)f

(
τ, u(τ)

)
Δτ

)

Δs

− t ·
∑m−2

i=1 ai

∫ ξi
0 ϕq(

∫s
0a(τ)f(τ, u(τ))Δτ)Δs

1 −∑m−2
i=1 aiξi

+ t ·
∫1
0ϕq(

∫s
0a(τ)f(τ, u(τ))Δτ)Δs

1 −∑m−2
i=1 aiξi

≤ t ·
∫1
0ϕq(

∫s
0a(τ)f(τ, u(τ))Δτ)Δs

1 −∑m−2
i=1 aiξi

≤ ϕq(ϕp(m)ϕp(r)) ·
∫1
0ϕq(

∫s
0a(τ)Δτ)Δs

1 −∑m−2
i=1 aiξi

≤ rm ·
∫1
0ϕq(

∫s
0a(τ)Δτ)Δs

1 −∑m−2
i=1 aiξi

= r = ‖u‖.

(3.3)

This implies that ‖Au‖ ≤ ‖u‖. So, if we set Ω1 = {u ∈ Crd([0, 1]) | ‖u‖ < r}, then ‖Au‖ ≤ ‖u‖,
for u ∈ P ∩ ∂Ω1.

Let us now set Ω2 = {u ∈ Crd([0, 1]) | ‖u‖ < R}.
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Then for u ∈ P with ‖u‖ < R, by Lemma 2.4 we have u(t) ≥ γ‖u‖, t ∈ [ξm−2, 1].
Therefore, we have

∥
∥Au(t)

∥
∥ ≥ Au

(
ξm−2

)

= −
∫ ξm−2

0
ϕq

(∫s

0
a(τ)f

(
τ, u(τ)

)
Δτ

)

Δs

− ξm−2

∑m−2
i=1 ai

∫ ξi
0 ϕq(

∫s
0a(τ)f(τ, u(τ))Δτ)Δs

1 −∑m−2
i=1 aiξi

+ ξm−2 ·
∫1
0ϕq(

∫s
0a(τ)f(τ, u(τ))Δτ)Δs

1 −∑m−2
i=1 aiξi

=
ξm−2

∫1
0ϕq(

∫s
0a(τ)f(τ, u(τ))Δτ)Δs − ∫ ξm−2

0 ϕq(
∫s
0a(τ)f(τ, u(τ))Δτ)Δs

1 −∑m−2
i=1 aiξi

+
1

1 −∑m−2
i=1 aiξi

m−2∑

i=1

ai

(

ξi

∫ ξm−2

0
ϕq

(∫ s

0
a(τ)f

(
τ, u(τ)

)
Δτ

)

Δs

− ξm−2

∫ ξi

0
ϕq

(∫s

0
a(τ)f

(
τ, u(τ)

)
Δτ

)

Δs

)

≥ ξm−2
∫1
0ϕq(

∫s
0a(τ)f(τ, u(τ))Δτ)Δs

1 −∑m−2
i=1 aiξi

−
∫ ξm−2
0 ϕq(

∫s
0a(τ)f(τ, u(τ))Δτ)Δs

1 −∑m−2
i=1 aiξi

≥
ξm−2

∫1
ξm−2

ϕq(
∫s
ξm−2

a(τ)f(τ, u(τ))Δτ)Δs

1 −∑m−2
i=1 aiξi

≥ ϕq

(
ϕp(Mγ)ϕp(R)

)ξm−2
∫1
ξm−2

ϕq(
∫s
ξm−2

a(τ)Δτ)Δs

1 −∑m−2
i=1 aiξi

≥ MγR

1 −∑m−2
i=1 aiξi

· ξm−2

∫1

ξm−2
ϕq

(∫ s

ξm−2
a(τ)Δτ

)

Δs = ‖u‖.

(3.4)

Hence, ‖Au‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ω2. Thus by the Theorem 3.1, A has a fixed point u in
P ∩ (Ω2 \Ω1). Therefore, the MBVP (1.5) has at least one positive solution.

4. Existence of at least Two Positive Solutions

In this section, we apply the Avery-Henderson fixed point theorem [9] to prove the existence
of at least two positive solutions to the nonlinear MBVP (1.5) .

Theorem 4.1 (see Avery and Henderson [9]). Let P be a cone in a real Banach space E. Set

P
(
Φ, ρ3

)
=
{
u ∈ P | Φ(u) < ρ3

}
. (4.1)
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If ν and Φ are increasing, nonnegative continuous functionals on P, let θ be a
nonnegative continuous functional on P with θ(0) = 0 such that, for some positive constants
ρ3 and M > 0, Φ(u) ≤ θ(u) ≤ ν(u) and ‖u‖ ≤ MΦ(u), for all u ∈ P(Φ, ρ3). Suppose that there
exist positive numbers ρ1 < ρ2 < ρ3 such that θ(λu) = λθ(u) for all 0 ≤ λ ≤ 1 and u ∈ ∂P(θ, ρ2).

If A : P(Φ, ρ3) → P is a completely continuous operator satisfying

(i) Φ(Au) > ρ3 for all u ∈ ∂P(Φ, ρ3);

(ii) θ(Au) < ρ2 for all u ∈ ∂P(θ, ρ2);

(iii) P(ν, ρ1)/=φ and ν(Au) > ρ1 for all u ∈ ∂P(ν, ρ1), thenA has at least two fixed points
u1 and u2 such that ρ1 < ν(u1)with θ(u1) < ρ2 and ρ3 < (u2) with Φ(u2) < ρ3.

Let l ∈ (0, 1)T and 0 < ξm−2 < l < 1. Define the increasing, nonnegative and continuous
functionals Φ, θ, and ν on P, by Φ(u) = u(ξm−2), θ(u) = u(ξm−2), and ν(u) = u(l).

From Lemma 2.4, for each u ∈ P, Φ(u) = θ(u) ≤ ν(u).
In addition, for each u ∈ P, Lemma 2.3 implies Φ(u) = u(ξm−2) ≥ γ‖u‖.
Thus,

‖u‖ <
1
γ
Φ(u), ∀u ∈ P. (4.2)

We also see that θ(0) = 0 and θ(λu) = λθ(u) for all 0 ≤ λ ≤ 1 and u ∈ ∂P(θ, q).

Theorem 4.2. Assume (H1)–(H3) hold, suppose there exist positive numbers ρ1 < ρ2 < ρ3, such that
the function f satisfies the following conditions:

(B1) f(t, u) > ϕp(mγ)ϕp(ρ1), for t ∈ [ξm−2, l] and u ∈ [γρ1, ρ1];

(B2) f(t, u) < ϕp(m)ϕp(ρ2), for t ∈ [ξm−2, 1] and u ∈ [0, ρ2];

(B3) f(t, u) > ϕp(Mγ)ϕp(ρ3), for t ∈ [ξm−2, l] and u ∈ [ρ3, (1/γ)ρ3].

Then the MBVP (1.5) has at least two positive solutions u1 and u2 such that u1(t) > ρ1
with u1(l) < ρ2 and u2(l) > ρ2 with u2(l) < ρ3.

Proof. We now verify that all of the conditions of Theorem 4.1 are satisfied.
Define the cone P as (2.5), define a completely continuous integral operator A : P →

P by

Au(t) = −
∫ t

0
ϕq

(∫s

0
a(τ)f

(
τ, u(τ)

)
Δτ

)

Δs

− t ·
∑m−2

i=1 ai

∫ ξi
0 ϕq(

∫s
0a(τ)f(τ, u(τ))Δτ)Δs

1 −∑m−2
i=1 aiξi

+ t ·
∫1
0ϕq(

∫s
0a(τ)f(τ, u(τ))Δτ)Δs

1 −∑m−2
i=1 aiξi

.

(4.3)

M and m as in (3.1). To verify that condition (i) of Theorem 4.1 holds, we choose u ∈
∂P(Φ, ρ3), then Φ(u) = ρ3. This implies ρ3 ≤ ‖u‖ ≤ (1/γ)Φ(u). Note that ‖u‖ ≤ (1/γ)Φ(u) =
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(1/γ)ρ3. We have ρ3 ≤ u(t) ≤ (1/γ)ρ3, for t ∈ [ξm−2, 1]T . As a consequence of (B3), f(t, u) >
ϕp(Mγ)ϕp(ρ3), for t ∈ [ξm−2, l]T . Since Au ∈ P, we have from Lemma 2.2,

Φ(Au) = (Au)
(
ξm−2

)

= −
∫ ξm−2

0
ϕq

(∫s

0
a(τ)f

(
τ, u(τ)

)
Δτ

)

Δs

− ξm−2 ·
∑m−2

i=1 ai

∫ ξi
0 ϕq(

∫s
0a(τ)f(τ, u(τ))Δτ)Δs

1 −∑m−2
i=1 aiξi

+ ξm−2 ·
∫1
0ϕq(

∫s
0a(τ)f(τ, u(τ))Δτ)Δs

1 −∑m−2
i=1 aiξi

=
ξm−2

∫1
0ϕq(

∫s
0a(τ)f(τ, u(τ))Δτ)Δs − ∫ ξm−2

0 ϕq(
∫s
0a(τ)f(τ, u(τ))Δτ)Δs

1 −∑m−2
i=1 aiξi

+
1

1 −
m−2∑

i=1
aiξi

m−2∑

i=1

ai

(

ξi

∫ ξm−2

0
ϕq

(∫ s

0
a(τ)f

(
τ, u(τ)

)
Δτ

)

Δs

− ξm−2

∫ ξi

0
ϕq

(∫s

0
a(τ)f

(
τ, u(τ)

)
Δτ

)

Δs

)

≥ ξm−2
∫1
0ϕq(

∫s
0a(τ)f(τ, u(τ))Δτ)Δs − ∫ ξm−2

0 ϕq(
∫s
0a(τ)f(τ, u(τ))Δτ)Δs

1 −∑m−2
i=1 aiξi

≥
ξm−2

∫1
ξm−2

ϕq(
∫s
0a(τ)f(τ, u(τ))Δτ)Δs

1 −∑m−2
i=1 aiξi

≥ ϕq

(
ϕp(Mγ)ϕp

(
ρ3
))ξm−2

∫1
ξm−2

ϕq(
∫s
0a(τ)Δτ)Δs

1 −∑m−2
i=1 aiξi

≥ Mγρ3ξm−2
1 −∑m−2

i=1 aiξi

∫1

ξm−2
ϕq

(∫ s

0
a(τ)Δτ

)

Δs ≥ ρ3.

(4.4)

Then condition (i) of Theorem 4.1 holds.
Let u ∈ ∂P(θ, ρ2). Then θ(u) = ρ2. This implies 0 ≤ u(t) ≤ ‖u‖ ≤ (1/γ)ρ2, for t ∈

[ξm−2, 1]. From (B2), we have

θ(Au) = (Au)
(
ξm−2

)

≤ ξm−2 ·
∫1
0ϕq(

∫s
0a(τ)f(τ, u(τ))Δτ)Δs

1 −∑m−2
i=1 aiξi

≤ ξm−2 ·
∫1
0ϕq(

∫s
0a(τ)f(τ, u(τ))Δτ)Δs

1 −∑m−2
i=1 aiξi

≤ mρ2 ·
∫1
0ϕq(

∫s
0a(τ)Δτ)Δs

1 −∑m−2
i=1 aiξi

= ρ2 = ‖u‖.

(4.5)

Hence condition (ii) of Theorem 4.1 holds.
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If we first define u(t) = ρ1/2, for t ∈ [0, 1]T , then ν(u) = ρ1/2 < ρ1. So P(ν, ρ1)/=φ.
Now, let u ∈ ∂P(ν, ρ1), then ν(u) = u(l) = ρ1. This mean that ρ1/γ ≤ u(t) ≤ ‖u‖ ≤ ρ1.

From (B1) and Lemma 2.4, we get

ν(Au) = (Au)(l) ≥ (Au)
(
ξm−2

)

= −
∫ ξm−2

0
ϕq

(∫ s

0
a(τ)f

(
τ, u(τ)

)
Δτ

)

Δs

− ξm−2 ·
∑m−2

i=1 ai

∫ ξi
0 ϕq(

∫s
0a(τ)f(τ, u(τ))Δτ)Δs

1 −∑m−2
i=1 aiξi

+ ξm−2 ·
∫1
0ϕq(

∫s
0a(τ)f(τ, u(τ))Δτ)Δs

1 −∑m−2
i=1 aiξi

=
ξm−2

∫1
0ϕq(

∫s
0a(τ)f(τ, u(τ))Δτ)Δs − ∫ ξm−2

0 ϕq(
∫s
0a(τ)f(τ, u(τ))Δτ)Δs

1 −∑m−2
i=1 aiξi

+
1

1 −∑m−2
i=1 aiξi

m−2∑

i=1

ai

(

ξi

∫ ξm−2

0
ϕq

(∫s

0
a(τ)f

(
τ, u(τ)

)
Δτ

)

Δs

− ξm−2

∫ ξi

0
ϕq

(∫s

0
a(τ)f

(
τ, u(τ)

)
Δτ

)

Δs

)

≥ ξm−2
∫1
0ϕq(

∫s
0a(τ)f(τ, u(τ))Δτ)Δs − ∫ ξm−2

0 ϕq(
∫s
0a(τ)f(τ, u(τ))Δτ)Δs

1 −∑m−2
i=1 aiξi

≥
ξm−2

∫1
ξm−2

ϕq(
∫s
ξm−2

a(τ)f(τ, u(τ))Δτ)Δs

1 −∑m−2
i=1 aiξi

≥ ϕq

(
ϕp(mγ)ϕp

(
ρ1
))ξm−2

∫1
ξm−2

ϕq(
∫s
ξm−2

a(τ)Δτ)Δs

1 −∑m−2
i=1 aiξi

=
mγρ1

1 −∑m−2
i=1 aiξi

· ξm−2

∫1

ξm−2
ϕq

(∫s

ξm−2
a(τ)Δτ

)

Δs ≥ ρ1.

(4.6)

Then condition (iii) of Theorem 4.1 holds.
Since all conditions of Theorem 4.1 are satisfied, the MBVP (1.5) has at least two

positive solutions u1 and u2 such that u1(t) > ρ1 with u1(l) < ρ2 and u2(l) > ρ2 with
u2(l) < ρ3.

5. Existence of at least Three Positive Solutions

We will use the Leggett-Williams fixed point theorem [10] to prove the existence of at least
three positive solutions to the nonlinear MBVP (1.5).

Theorem 5.1 (see Leggett and Williams [10]). Let P be a cone in the real Banach space E. Set

Pr =
{
x ∈ P | ‖x‖ < r

}
,

P(Ψ, a, b) =
{
x ∈ P | a ≤ Ψ(x), ‖x‖ ≤ b

}
.

(5.1)
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Suppose A : Pr → Pr be a completely continuous operator and be a nonnegative
continuous concave functional on P with Ψ(u) ≤ ‖u‖ for all u ∈ Pr. If there exists 0 < ρ1 <
ρ2 < (1/γ)ρ2 ≤ ρ3 such that the following condition hold:

(i) {u ∈ P(Ψ, ρ2, (1/γ)ρ2) | Ψ(u) > ρ2}/=φ andΨ(Au) > ρ2 for all u ∈ P(Ψ, ρ2, (1/γ)ρ2);

(ii) ‖Au‖ < ρ1 for ‖u‖ ≤ ρ1;

(iii) Ψ(Au) > ρ2 for u ∈ P(Ψ, ρ2, (1/γ)ρ2)with ‖Au‖ > (1/γ)ρ2, thenA has at least three
fixed points u1, u2 and u3 in Pr satisfying ‖u1‖ < ρ1,Ψ(u2) > ρ2, ρ1 < ‖u3‖ with
Ψ(u2) < ρ2.

Theorem 5.2. Assume (H1)–(H3) hold . Suppose that there exist constants 0 < ρ1 < ρ2 < (1/γ)ρ2 ≤
ρ3 such that

(C1) f(t, u) ≤ ϕp(m)ϕp(ρ3), for t ∈ [ξm−2, l] and u ∈ [0, ρ3];

(C2) f(t, u) > ϕp(Mγ)ϕp(ρ2), for t ∈ [ξm−2, l] and u ∈ [ρ2, (1/γ)ρ2];

(C3) f(t, u) < ϕp(m)ϕp(ρ1), for t ∈ [ξm−2, 1] and u ∈ [0, ρ1].

Then the MBVP (1.5) has at least three positive solutions u1, u2, and u3 such that
u1(ξ) < ρ1, u2(l) > ρ2, u3(ξ) > ρ1 with u3(l) < ρ2.

Proof. The conditions of Theorem 5.1 will be shown to be satisfied. Define the nonnegative
continuous concave functional Ψ : P → [0,∞) to be Ψ(u) = u(ξm−2), the cone P as in (2.5),
M and m as in (3.1). We have Ψ(u) ≤ ‖u‖ for all u ∈ P. If u ∈ Pρ3 , then ‖u‖ ≤ ρ3, and from
assumption (C1) , then we have

(Au)(t) = −
∫ t

0
ϕq

(∫ s

0
a(τ)f

(
τ, u(τ)

)
Δτ

)

Δs

− t ·
∑m−2

i=1 ai

∫ ξi
0 ϕq(

∫s
0a(τ)f(τ, u(τ))Δτ)Δs

1 −∑m−2
i=1 aiξi

+ t ·
∫1
0ϕq(

∫s
0a(τ)f(τ, u(τ))Δτ)Δs

1 −∑m−2
i=1 aiξi

≤ t ·
∫1
0ϕq(

∫s
0a(τ)f(τ, u(τ))Δτ)Δs

1 −∑m−2
i=1 aiξi

≤ ϕq

(
ϕp(m)ϕp

(
ρ3
)) ·

∫1
0ϕq(

∫s
0a(τ)Δτ)Δs

1 −∑m−2
i=1 aiξi

≤ mρ3 ·
∫1
0ϕq(

∫s
0a(τ)Δτ)Δs

1 −∑m−2
i=1 aiξi

= ρ3.

(5.2)

This implies that ‖Au‖ ≤ ρ3. Thus, we have A : Pρ3 → Pρ3 . Since (1/γ)ρ2 ∈
P(Ψ, ρ2, (1/γ)ρ2) and Ψ((1/γ)ρ2) = (1/γ)ρ2 > ρ2, {u ∈ P(Ψ, ρ2, (1/γ)ρ2)|Ψ(u) > ρ2}/=φ.
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For u ∈ P(Ψ, ρ2, (1/γ)ρ2) we have ρ2 ≤ u(ξm−2) ≤ ‖u‖ ≤ (1/γ)ρ2. Using assumption (C2),
f(t, u) > ϕp(Mγ)ϕp(ρ2), we obtain

Ψ(Au) = (Au)
(
ξm−2

)

= −
∫ ξm−2

0
ϕq

(∫s

0
a(τ)f

(
τ, u(τ)

)
Δτ

)

Δs

− ξm−2 ·
∑m−2

i=1 ai

∫ ξi
0 ϕq(

∫s
0a(τ)f(τ, u(τ))Δτ)Δs

1 −∑m−2
i=1 aiξi

+ ξm−2 ·
∫1
0ϕq(

∫s
0a(τ)f(τ, u(τ))Δτ)Δs

1 −∑m−2
i=1 aiξi

=
ξm−2

∫1
0ϕq(

∫s
0a(τ)f(τ, u(τ))Δτ)Δs − ∫ ξm−2

0 ϕq(
∫s
0a(τ)f(τ, u(τ))Δτ)Δs

1 −∑m−2
i=1 aiξi

+
1

1 −∑m−2
i=1 aiξi

m−2∑

i=1

ai

(

ξi

∫ ξm−2

0
ϕq

(∫s

0
a(τ)f

(
τ, u(τ)

)
Δτ

)

Δs

− ξm−2

∫ ξi

0
ϕq

(∫s

0
a(τ)f

(
τ, u(τ)

)
Δτ

)

Δs

)

≥ ξm−2
∫1
0ϕq(

∫s
0a(τ)f(τ, u(τ))Δτ)Δs − ∫ ξm−2

0 ϕq(
∫s
0a(τ)f(τ, u(τ))Δτ)Δs

1 −∑m−2
i=1 aiξi

≥
ξm−2

∫1
ξm−2

ϕq(
∫s
ξm−2

a(τ)f(τ, u(τ))Δτ)Δs

1 −∑m−2
i=1 aiξi

≥ ϕq

(
ϕp(Mγ)ϕp

(
ρ2
))ξm−2

∫1
ξm−2

ϕq(
∫s
ξm−2

a(τ)Δτ)Δs

1 −∑m−2
i=1 aiξi

≥ Mγρ2

1 −∑m−2
i=1 aiξi

· ξm−2

∫1

ξm−2
ϕq

(∫s

ξm−2
a(τ)Δτ

)

Δs ≥ ρ2.

(5.3)

Hence, condition (i) of Theorem 5.1 holds.
If ‖u‖ ≤ ρ1, from assumption (C3), we obtain

(Au)(t) ≤ ϕq

(
ϕp(m)ϕp

(
ρ1
)) ·

∫1
0ϕq(

∫s
0a(τ)Δτ)Δs

1 −∑m−2
i=1 aiξi

≤ mρ1 ·
∫1
0ϕq(

∫s
0a(τ)Δτ)Δs

1 −∑m−2
i=1 aiξi

= ρ1.

(5.4)

This implies that ‖Au‖ ≤ ρ1.
Consequently, condition (ii) of Theorem 5.1 holds.
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We suppose that u ∈ P(Ψ, ρ2, ρ3),with ‖Au‖ > (1/γ)ρ2. Then we get

Ψ(Au) = (Au)
(
ξm−2

)

≥
ξm−2

∫1
ξm−2

ϕq(
∫s
ξm−2

a(τ)f(τ, u(τ))Δτ)Δs

1 −∑m−2
i=1 aiξi

≥ ϕq

(
ϕp(Mγ)ϕp

(
ρ2
))ξm−2

∫1
ξm−2

ϕq(
∫s
ξm−2

a(τ)Δτ)Δs

1 −∑m−2
i=1 aiξi

≥ Mγρ2

1 −∑m−2
i=1 aiξi

· ξm−2

∫1

ξm−2
ϕq

(∫s

ξm−2
a(τ)Δτ

)

Δs ≥ ρ2.

(5.5)

Hence, condition (iii) of Theorem 5.1 holds.
Because all of the hypotheses of the Leggett-Williams fixed point theorem are satisfied,

the nonlinear MBVP (1.5) has at least three positive solutions u1, u2, and u3 such that u1(ξ) <
ρ1, u2(l) > ρ2, and u3(ξ) > ρ1 with u3(l) < ρ2.
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