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1. Introduction

In 1971, Hassell introduced the concept of mutual interference between the predators and
preys. Hassell [1] established a Volterra model with mutual interference as follows:

ẋ(t) = xg(x) − ϕ(x)ym,
ẏ(t) = y

( − d + kϕ(x)ym−1 − q(y)),
(1.1)

where m denote mutual interference constant and 0 < m ≤ 1.
Motivated by the works of Hassell [1], Wang and Zhu [2] considered the following

Volterra model with mutual interference and Holling II type functional response:

ẋ(t) = x(t)
(
r1(t) − b1(t)x(t)

) − c1(t)x(t)
k + x(t)

ym(t),

ẏ(t) = y(t)
( − r2(t) − b2(t)y(t)

)
+
c2(t)x(t)
k + x(t)

ym(t).

(1.2)
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Sufficient conditions which guarantee the existence, uniqueness, and global attractivity of
positive periodic solution are obtained by employing Mawhin’s continuation theorem and
constructing suitable Lyapunov function.

On the other hand, it has been found that the discrete time models governed by
difference equations are more appropriate than the continuous ones when the populations
have nonoverlapping generations. Discrete time models can also provide efficient computa-
tional models of continuous models for numerical simulations (see [3–15]). However, to the
best of the author’s knowledge, until today, there are still no scholars propose and study a
discrete-time analogue of system (1.2). Therefore, the main purpose of this paper is to study
the following discrete periodic Volterra model with mutual interference and Holling II type
functional response:

x(n + 1) = x(n) exp
{
r1(n) − b1(n)x(n) − c1(n)

k + x(n)
ym(n)

}
,

y(n + 1) = y(n) exp
{
− r2(n) − b2(n)y(n) +

c2(n)x(n)
k + x(n)

ym−1(n)
}
,

(1.3)

where x(n) is the density of prey species at nth generation and y(n) is the density of predator
species at nth generation. Also, r1(n), b1(n) denote the intrinsic growth rate and density-
dependent coefficient of the prey, respectively, r2(n), b2(n) denote the death rate and density-
dependent coefficient of the predator, respectively, c1(n) denote the capturing rate of the
predator and c2(n) represent the transformation from preys to predators. Further,m is mutual
interference constant and k is a positive constant. In this paper, we always assume that
{ri(n)}, {bi(n)}, {ci(n)}, i = 1, 2, are positive T -periodic sequences and 0 < m < 1. Here,
for convenience, we denote f = (1/T)

∑T−1
n=0 f(n), f

M = supn∈IT {f(n)}, and fL = infn∈IT {f(n)},
where IT = {0, 1, 2, . . . , T − 1}.

This paper is organized as follows. In Section 2, we will introduce a definition and
establish several useful lemmas. The permanence of system (1.3) is then studied in Section 3.
In Section 4, we give an example to show the feasibility of our main results.

From the view point of biology, we only need to focus our discussion on the positive
solution of system (1.3). So it is assumed that the initial conditions of (1.3) are of the form

x(0) > 0, y(0) > 0. (1.4)

One can easily show that the solution of (1.3) with the initial condition (1.4) are defined and
remain positive for all n ∈N where N = {0, 1, 2, . . .}.

2. Preliminaries

In this section, we will introduce the definition of permanence and several useful lemmas.

Definition 2.1. System (1.3) is said to be permanent if there exist positive constants
x∗, y∗, x∗, y∗,which are independent of the solution of the system, such that for any positive
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solution (x(n), y(n)) of system (1.3) satisfies

x∗ ≤ lim inf
n→∞

x(n) ≤ lim sup
n→∞

x(n) ≤ x∗,

y∗ ≤ lim inf
n→∞

y(n) ≤ lim sup
n→∞

y(n) ≤ y∗.
(2.1)

Lemma 2.2. Assume that x(n) satisfies

x(n + 1) ≤ x(n) exp{a(n) − b(n)x(n)} ∀n ≥ n0, (2.2)

where {a(n)} and {b(n)} are positive sequences, x(n0) > 0 and n0 ∈N. Then, one has

lim sup
n→∞

x(n) ≤ B, (2.3)

where B = exp(aM − 1)/bL.

Lemma 2.3. Assume that x(n) satisfies

x(n + 1) ≥ x(n) exp{a(n) − b(n)x(n)} ∀n ≥ n0, (2.4)

where {a(n)} and {b(n)} are positive sequences, x(n0) > 0 and n0 ∈N. Also, lim supn→∞ x(n) ≤ B
and bMB/aL > 1. Then, one has

lim inf
n→∞

x(n) ≥ A, (2.5)

where A = (aL/bM) exp(aL − bMB).

Proof. The proofs of Lemmas 2.2 and 2.3 are very similar to that of [8, Lemmas 1 and 2],
respectively. So, we omit the detail here.

The following Lemma 2.4 is Lemma 2.2 of Fan and Li [12].

Lemma 2.4. The problem

x(n + 1) = x(n) exp{a(n) − b(n)x(n)}, (2.6)

with x(0) = x0 > 0 has at least one periodic positive solution x∗(n) if both b : Z → R+ and
a : Z → R are T -periodic sequences with a > 0. Moreover, if b(n) = b is a constant and aM < 1,
then bx(n) ≤ 1 for n sufficiently large, where x(n) is any solution of (2.6).

The following comparison theorem for the difference equation is Theorem 2.1 of
L. Wang and M. Q. Wang [15, page 241].
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Lemma 2.5. Suppose that f : Z+ × [0,+∞) and g : Z+ × [0,+∞) with f(n, x) ≤ g(n, x) (f(n, x) ≥
g(n, x)) for n ∈ Z+ and x ∈ [0,+∞). Assume that g(n, x) is nondecreasing with respect to the
argument x. If x(n) and u(n) are solutions of

x(n + 1) = f(n, x(n)), u(n + 1) = g(n, u(n)), (2.7)

respectively, and x(0) ≤ u(0) (x(0) ≥ u(0)), then

x(n) ≤ u(n), (x(n) ≥ u(n)) (2.8)

for all n ≥ 0.

3. Permanence

In this section, we establish a permanent result for system (1.3).

Proposition 3.1. If (H1) : (1−m)rM2 < 1 holds, then for any positive solution (x(n), y(n)) of system
(1.3), there exist positive constants x∗ and y∗, which are independent of the solution of the system,
such that

lim sup
n→∞

x(n) ≤ x∗, lim sup
n→∞

y(n) ≤ y∗. (3.1)

Proof. Let (x(n), y(n)) be any positive solution of system (1.3), from the first equation of (1.3),
it follows that

x(n + 1) ≤ x(n) exp
{
r1(n) − b1(n)x(n)

}
. (3.2)

By applying Lemma 2.2, we obtain

lim sup
n→∞

x(n) ≤ x∗, (3.3)

where

x∗ =
1
bL1

exp
(
rM1 − 1

)
. (3.4)

Denote P(n) = (1/y(n))1−m. Then, from the second equation of (1.3), it follows that

P(n + 1) = P(n) exp

{

(1 −m)r2(n) +
(1 −m)b2(n)

1−m
√
P(n)

− (1 −m)c2(n)x(n)
k + x(n)

P(n)

}

, (3.5)

which leads to

P(n + 1) ≥ P(n) exp
{
(1 −m)r2(n) − (1 −m)cM2 P(n)

}
. (3.6)
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Consider the following auxiliary equation:

Z(n + 1) = Z(n) exp
{
(1 −m)r2(n) − (1 −m)cM2 Z(n)

}
. (3.7)

By Lemma 2.4, (3.7) has at least one positive T -periodic solution and we denote one of them
as Z∗(n). Now (H1) and Lemma 2.4 imply (1 −m)cM2 Z(n) ≤ 1 for n sufficiently large, where
Z(n) is any solution of (3.7). Consider the following function:

g(n,Z) = Z exp
{
(1 −m)r2(n) − (1 −m)cM2 Z

}
. (3.8)

It is not difficult to see that g(n,Z) is nondecreasing with respect to the argument Z.
Then, applying Lemma 2.5 to (3.6) and (3.7), we easily obtain that P(n) ≥ Z∗(n). So
lim infn→∞ P(n) ≥ (Z∗(n))L, which together with that transformation P(n) = (1/y(n))1−m,
produces

lim sup
n→∞

y(n) ≤ 1
1−m
√(

Z∗(n)
)L

� y∗. (3.9)

Thus, we complete the proof of Proposition 3.1.

Proposition 3.2. Assume that

(
H2

)
:
(
r1(n) − c1(n)

k

(
y∗)m

)L

> 0 (3.10)

holds, then for any positive solution (x(n), y(n)) of system (1.3), there exist positive constants x∗ and
y∗, which are independent of the solution of the system, such that

lim inf
n→∞

x(n) ≥ x∗, lim inf
n→∞

y(n) ≥ y∗, (3.11)

where y∗ can be seen in Proposition 3.1.

Proof. Let (x(n), y(n)) be any positive solution of system (1.3). From (H2), there exists a small
enough positive constant ε such that

(
r1(n) − c1(n)

k

(
y∗ + ε

)m
)L

> 0. (3.12)

Also, according to Proposition 3.1, for above ε, there exists N1 > 0 such that for n ≥N1,

y(n) ≤ y∗ + ε. (3.13)
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Then, from the first equation of (1.3), for n ≥N1, we have

x(n + 1) ≥ x(n) exp
{
r1(n) − c1(n)

k

(
y∗ + ε

)m − b1(n)x(n)
}
. (3.14)

Let a1(n, ε) = r1(n) − (c1(n)/k)(y∗ + ε)m, so the above inequality follows that

x(n + 1) ≥ x(n) exp
{
a1(n, ε) − b1(n)x(n)

}
. (3.15)

Because (a1(n, ε))
L < rL1 and bL1 < b

M
1 , we have

bM1
(
a1(n, ε)

)L x
∗ >

bM1
rL1

exp
(
rM1 − 1

)

bL1
> 1. (3.16)

Here, we use the fact exp(rM1 − 1) > rM1 . From (3.12) and (3.15), by Lemma 2.3, we have

lim inf
n→∞

x(n) ≥
(
a1(n, ε)

)L

bM1
exp

{(
a1(n, ε)

)L − bM1 x∗}. (3.17)

Setting ε → 0 in the above inequality leads to

lim inf
n→∞

x(n) ≥ aL1
bM1

exp
{
aL1 − bM1 x∗} � x∗, (3.18)

where

a1(n) = r1(n) − c1(n)
k

(
y∗)m. (3.19)

For above ε, there exists N2 > N1 such that for n ≥N2, x(n) ≥ x∗ −ε. So from (3.5), we obtain
that

P(n + 1) ≤ P(n) exp
{
(1 −m)

(
r2(n) + b2(n)

(
y∗ + ε

)) − (1 −m)c2(n)
(
x∗ − ε

)

k + x∗ − ε P(n)
}
. (3.20)

Consider the following auxiliary equation:

W(n+1) =W(n) exp
{
(1−m)

(
r2(n) + b2(n)

(
y∗ + ε

)) − (1−m)c2(n)
(
x∗ − ε

)

k + x∗ − ε W(n)
}
. (3.21)

By Lemma 2.4, (3.21) has at least one positive T -periodic solution and we denote one of them
as W∗(n).
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Let

R(n) = ln(P(n)), Y (n) = ln
(
W∗(n)

)
. (3.22)

Then,

R(n + 1)−R(n) ≤ (1−m)
(
r2(n) + b2(n)

(
y∗+ε

))− (1 −m)c2(n)
(
x∗ − ε

)

k + x∗ − ε exp{R(n)},

Y (n + 1)−Y (n) = (1 −m)
(
r2(n) + b2(n)

(
y∗+ε

))− (1 −m)c2(n)
(
x∗ − ε

)

k + x∗ − ε exp{Y (n)}.
(3.23)

Set

U(n) = R(n) − Y (n). (3.24)

Then,

U(n + 1) −U(n) ≤ − (1 −m)c2(n)
(
x∗ − ε

)

k + x∗ − ε exp{Y (n)}[exp{U(n)} − 1]. (3.25)

In the following we distinguish three cases.

Case 1. {U(n)} is eventually positive. Then, from (3.25), we see that U(n + 1) < U(n) for any
sufficiently large n. Hence, limn→∞U(n) = 0, which implies that

lim sup
n→∞

P(n) ≤ (
W∗(n)

)M
. (3.26)

Case 2. {U(n)} is eventually negative. Then, from (3.24), we can also obtain (3.26).

Case 3. {U(n)} oscillates about zero. In this case, we let {U(nst)} (s, t ∈ N) be the positive
semicycle of {U(n)}, where U(ns1) denotes the first element of the sth positive semicycle of
{U(n)}. From (3.25), we know that U(n + 1) < U(n) if U(n) > 0. Hence, lim supn→∞U(n) =
lim sups→∞U(ns1). From (3.25), and U(ns1 − 1) < 0, we can obtain

U(ns1) ≤
(1 −m)c2

(
ns1

)(
x∗ − ε

)

k + x∗ − ε exp
{
Y
(
ns1

)}[
1 − exp

{
U
(
ns1

)}]
,

≤ (1 −m)cM2
(
x∗ − ε

)

k + x∗ − ε
(
W∗(n)

)M
.

(3.27)

From (3.22) and (3.24), we easily obtain

lim sup
n→∞

P(n) ≤ (
W∗(n)

)M exp

{
(1 −m)cM2

(
x∗ − ε

)

k + x∗ − ε
(
W∗(n)

)M
}

. (3.28)
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Figure 1: Dynamics behavior of system (1.3) with initial condition (x(0), y(0)) = (0.6, 0.03).

Setting ε → 0 in the above inequality leads to

lim sup
n→∞

P(n) ≤ (
W∗(n)

)M exp

{
(1 −m)cM2 x∗

k + x∗

(
W∗(n)

)M
}

� P ∗, (3.29)

which together with that transformation P(n) = (1/y(n))1−m, we have

lim inf
n→∞

y(n) ≥ 1
1−m√P ∗ � y∗. (3.30)

Thus, we complete the proof of Proposition 3.2.

Theorem 3.3. Assume that (H1) and (H2) hold, then system (1.3) is permanent.

It should be noticed that, from the proofs of Propositions 3.1 and 3.2, one knows that
under the conditions of Theorem 3.3, the set Ω = {(x, y) | x∗ ≤ x ≤ x∗, y∗ ≤ y ≤ y∗} is an
invariant set of system (1.3).

4. Example

In this section, we give an example to show the feasibility of our main result.

Example 4.1. Consider the following system

x(n + 1) = x(n) exp

{

0.7 + 0.1 sin(n) − 0.7x(n) − 0.4y0.6(n)
2.4 + x(n)

}

,

y(n + 1) = y(n) exp

{

− (0.8 + 0.1 cos(n)) − (1.1 + 0.1 sin(n))x(n) − 0.6y−0.4(n)
2.4 + x(n)

}

,

(4.1)
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where r1(n) = 0.7 + 0.1 sin(n), b1(n) = 0.7, c1(n) = 0.4, r2(n) = 0.8 + 0.1 cos(n), b2(n) =
1.1 + 0.1 sin(n), c2(n) = 0.6, m = 0.6, k = 2.4.

By simple computation, we have y∗ ≈ 1.1405. Thus, one could easily see that

(
r1(n) − c1(n)

k

(
y∗)m

)L

≈ 0.4197 > 0, (1 −m)
(
r2(n)

)M = 0.36 < 1. (4.2)

Clearly, conditions (H1) and (H2) are satisfied, then system (1.3) is permanent.
Figure 1 shows the dynamics behavior of system (1.3).
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