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1. Introduction

Sadek [1] has considered the following fourth-order delay differential equation:

x(4)(t) + α1
...
x(t) + α2ẍ(t) + φ

(
ẋ(t − τ)

)
+ f(x(t)) = 0. (1.1)

By constructing Lyapunov functionals, it was given a group of conditions to ensure that the
zero solution of (1.1) is globally asymptotically stable when the delay τ is suitable small,
but if the sufficient conditions are not satisfied, what are the behaviors of the solutions? This
is a interesting question in mathematics. The purpose of the present paper is to study the
dynamics of (1.1) from bifurcation. We will give a detailed analysis on the above mentioned
question. By regarding the delay τ as a bifurcation parameter, we analyze the distribution of
the roots of the characteristic equation of (1.1) and obtain the existence of stability switches
and Hopf bifurcation when the delay varies. Then by using the center manifold theory and
normal form method, we derive an explicit algorithm for determining the direction of the
Hopf bifurcation and the stability of the bifurcating periodic solutions.
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We would like to mention that there are several articles on the stability of fourth-order
delay differential equations, we refer the readers to [1–8] and the references cited therein.

The rest of this paper is organized as follows. In Section 2, we firstly focus
mainly on the local stability of the zero solution. This analysis is performed through the
study of a characteristic equation, which takes the form of a fourth-degree exponential
polynomial. Using the approach of Ruan and Wei [9], we show that the stability of the
zero solution can be destroyed through a Hopf bifurcation. In Section 3, we investigate
the stability and direction of bifurcating periodic solutions by using the normal form
theory and center manifold theorem presented in Hassard et al. [10]. In Section 4, we
illustrate our results by numerical simulations. Section 5 with conclusion completes the
paper.

2. Stability and Hopf Bifurcation

In this section, we will study the stability of the zero solution and the existence of Hopf
bifurcation by analyzing the distribution of the eigenvalues. For convenience, we give the
following assumptions:

τ > 0, α1 > 0, α2 > 0, φ(0) = 0, f(0) = 0, (H1)

with φ and f are both continuous functions and those three-order differential quotients at
origin are existent. We rewrite (1.1) as the following form:

ẋ = y,

ẏ = u,

u̇ = v,

v̇ = −α2u − α1v − f(x) − φ(y(t − τ)).

(2.1)

It is easy to see that (0, 0, 0, 0) is the only trivial solution to the system (2.1) and the
linearization around (0, 0, 0, 0) is given by

ẋ = y,

ẏ = u,

u̇ = v,

v̇ = −f ′(0)x − α2u − α1v − φ′(0)y(t − τ).

(2.2)

Its characteristic equation is

λ4 + α1λ
3 + α2λ

2 + φ′(0)λe−λτ + f ′(0) = 0. (2.3)
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Lemma 2.1. Suppose (H1) and

α1α2 − φ′(0) > 0, f ′(0) > 0, φ′(0)
(
α1α2 − φ′(0)

)
− α2

1f
′(0) > 0 (H2)

are satisfied. Then the trivial solution (0, 0, 0, 0) is asymptotically stable when τ = 0.

Proof. When τ = 0, (2.3) becomes

λ4 + α1λ
3 + α2λ

2 + φ′(0)λ + f ′(0) = 0. (2.4)

By Routh-Hurwitz criterion, all roots of (2.4) have negative real parts if and only if

α1 > 0, α1α2 − φ′(0) > 0, f ′(0) > 0, φ′(0)
(
α1α2 − φ′(0)

)
− α2

1f
′(0) > 0. (2.5)

The conclusion follows from (H1) and (H2).
Let iω (ω > 0) be a root of (2.3), then we have

ω4 − iα1ω
3 − α2ω

2 + φ′(0)(iω)e−iωτ + f ′(0) = 0. (2.6)

Separating the real and imaginary parts gives

−ω4 + α2ω
2 − f ′(0) = φ′(0)ω sinωτ,

α1ω
3 = φ′(0)ω cosωτ.

(2.7)

Adding up the squares of both equations yields

ω8 +
(
α2

1 − 2α2
)
ω6 +

(
α2

2 + 2f ′(0)
)
ω4 −

(
φ′2(0) + 2α2f

′(0)
)
ω2 + f ′2(0) = 0. (2.8)

Let V = ω2, and denote

P = α2
1 − 2α2, Q = α2

2 + 2f ′(0), K = −φ′2(0) − 2α2f
′(0). (2.9)

Then (2.8) becomes

V 4 + PV 3 +QV 2 +KV + f ′2(0) = 0. (2.10)

Set

h(V ) = V 4 + PV 3 +QV 2 +KV + f ′2(0). (2.11)

Then we have

h′(V ) = 4V 3 + 3PV 2 + 2QV +K. (2.12)
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Consider

4V 3 + 3PV 2 + 2QV +K = 0. (2.13)

Let U = V + (3/4)P . Then (2.13) becomes

U3 + P1U +Q1 = 0, (2.14)

where

P1 =
Q

2
− 3

16
P 2, Q1 =

1
32
P 3 − 1

8
PQ +K. (2.15)

Define

M =
(
Q1

2

)2

+
(
P1

3

)3

,

σ =
−1 +

√
3i

2
,

U1 =
3
√

−Q1

2
+
√
M +

3
√

−Q1

2
−
√
M,

U2 =
3
√

−Q1

2
+
√
Mσ +

3
√

−Q1

2
−
√
Mσ2,

U2 =
3
√

−Q1

2
+
√
Mσ2 +

3
√

−Q1

2
−
√
Mσ,

Vi = Ui −
3
4
P, i = 1, 2, 3.

(2.16)

Then by Lemma 2.2 in Li and Wei [11], we have the following results on the distribution of
the roots of (2.10).

Lemma 2.2. (i) IfM ≥ 0, then (2.10) has positive roots if and only if V1 > 0 and h(V1) < 0.
(ii) If M < 0, then (2.10) has positive roots if and only if there exists at least one V ∗ ∈

{V1, V2, V3}, such that V ∗ > 0 and h(V ∗) ≤ 0.

Without loss of generality, we assume that equation h(V ) = 0 has four positive roots
denoted by V1, V2, V3, and V4, respectively. Then (2.8) also has four positive roots, say ωi =√
Vi, i = 1, 2, 3, 4.
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From (2.7), and conditions (H1) and (H2), we have that

cosωτ =
α1ω

2

φ′(0)
> 0. (2.17)

Hence, we define

τ
j

k
=

1
ωk

[

arccos
α1ω

2
k

φ′(0)
+ 2jπ

]

, k = 1, 2, 3, 4, j = 0, 1, . . . , (2.18)

when

−ω4
k
+ α2ω

2
k
− f ′(0)

φ′(0)ωk
> 0,

τ
j

k
=

1
ωk

[

− arccos
α1ω

2
k

φ′(0)
+ 2(j + 1)π

]

, k = 1, 2, 3, 4, j = 0, 1, . . . ,

(2.19)

when

−ω4
k
+ α2ω

2
k
− f ′(0)

φ′(0)ωk
< 0. (2.20)

Let

λ(τ) = α(τ) + iβ(τ) (2.21)

be the root of (2.3) satisfying α(τjk) = 0, β(τjk) = ωk.

Lemma 2.3. Suppose h′(Vi)/= 0 (i = 1, 2, 3, 4). If τ = τ
j

k
, then ±iωk is a pair of simple purely

imaginary roots of (2.3); and Re(dλ(τj
k
)/dτ) > 0 when k = 2, 4; and Re(dλ(τj

k
)/dτ) < 0 when

k = 1, 3.

Proof. Substituting λ(τ) into (2.3) and differentiating with respet to τ gives

dλ

dτ
=

φ′(0)λ2e−λτ

4λ3 + 3α1λ2 + 2α2λ + φ′(0)e−λτ − τφ′(0)λe−λτ

=
−λ2(λ4 + α1λ

3 + α2λ
2 + f ′(0)

)

τλ5 +
(
3 + τα1

)
λ4 +

(
3α1 + τα2

)
λ3 + α2λ2 + f ′(0)τλ − f ′(0)

.

(2.22)
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Then

Re
dλ
(
τj
)

dτ

=

(
ω6
k−α2ω

4
k+f

′(0)ω2
k

)((
3 + τα1

)
ω4
k−α2ω

2
k−f

′(0)
)
−α1ω

5
k

(
τω5

k−
(
3α1+τα2

)
ω3
k+f

′(0)τωk

)

((
3 + τα1

)
ω4
k
−α2ω

2
k
− f ′(0)

)2+
(
τω5

k
−
(
3α1 + τα2

)
ω3
k
+ f ′(0)τωk

)2

=
ω2
k

Δ
h′
(
Vk
)
,

(2.23)

where

Δ =
((

3 + τα1
)
ω4
k − α2ω

2
k − f

′(0)
)2 +

(
τω5

k −
(
3α1 + τα2

)
ω3
k + f

′(0)τωk

)2
; (2.24)

and for h′(Vk)/= 0 (k = 1, 2, 3, 4), h(0) = f ′2(0) > 0 and limV →±∞ h(V ) = ∞, we can know that
Re(dλ(τj

k
)/dτ) > 0 when k = 2, 4; and Re(dλ(τj

k
)/dτ) < 0 when k = 1, 3. This completes the

proof.

From h(0) = f ′2(0) > 0 and limV →±∞ h(V ) =∞, it is easy to know that: if h(V ) satisfies
h′(Vi)/= 0 (i = 1, 2, 3, 4), if the equation h(V ) = 0 has positive roots, then the number of the
roots must be even; and from Lemma 2.3, we have that the sign of α′(τjk) changes as τjk varies,
and then the stability switches may happen.

From Lemmas 2.1–2.3 and the theory in [9], we have the following.

Lemma 2.4. Suppose that (H1), (H2) and h′(Vi)/= 0 (i = 1, 2, 3, 4) are satisfied.

(i) If conditions (i) and (ii) in Lemma 2.2 are not satisfied, then all the roots of (2.3) have
negative real parts for all τ ≥ 0.

(ii) If one of conditions (i) and (ii) in Lemma 2.2 is satisfied, let τ∗ = min(τ0
2 , τ

0
4 ), then all roots

of (2.3) have negative real parts when τ ∈ [0, τ∗); and there may exist an integer m ≥ 0
such that 0 < τ1 < τ2 < · · · < τm−1 < τm < τm+1 < · · · , and all the roots of (2.3) have
negative real parts when τ ∈ [0, τ1) ∪ (τ2, τ3) ∪ · · · ∪ (τm−1, τm), and (2.3) has at least a
pair of roots with positive real parts when τ ∈ (τ1, τ2) ∪ (τ3, τ4) ∪ · · · ∪ (τm,∞), where
τm ∈ {τ

j

k
}.

From Lemma 2.4 and applying the Hopf bifurcation theorem for functional differential
equations [12, Chapter 11, Theorem 1.1], we have the following results.

Theorem 2.5. Suppose (H1), (H2), and h′(Vi)/= 0 (i = 1, 2, 3, 4) are satisfied.

(i) If conditions (i) and (ii) in Lemma 2.2 are not satisfied, then the trivial solution (0, 0, 0, 0)
of system (2.1) is asymptotically stable when τ > 0.

(ii) If one of conditions (i) and (ii) in Lemma 2.2 is satisfied, let τ∗ = min{τ0
2 , τ

0
4},

then the trivial solution (0, 0, 0, 0) of system (2.1) is asymptotically stable when
τ ∈ [0, τ∗); and there may exist an integer m ≥ 0 such that 0 < τ1 < τ2 <
· · · < τm−1 < τm < τm+1 < · · · , and the trivial solution (0, 0, 0, 0) of system (2.1) is
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asymptotically stable when τ ∈ [0, τ1) ∪ (τ2, τ3) ∪ · · · ∪ (τm−1, τm), and is unstable when
τ ∈ (τ1, τ2) ∪ (τ3, τ4) ∪ · · · ∪ (τm,∞), where τm ∈ {τ

j

k}.

(iii) The system (2.1) undergoes a Hopf bifurcation at the origin when τ = τ
j

k
, with k =

1, 2, 3, 4; j = 0, 1, 2, . . . .

3. Direction and Stability of the Hopf Bifurcation

In this section, we will study the direction, stability, and the period of the bifurcating periodic
solution. The method we used is based on the normal form method and the center manifold
theory presented by Hassard et al. [10].

We first rescale the time by t → t/τ to normalize the delay so that system (2.1) can be
written as the form

ẋ = τy,

ẏ = τu,

u̇ = τv,

v̇ = −α2τu − α1τv − τf(x) − τφ(y(t − 1)).

(3.1)

The linearization around (0, 0, 0, 0) is given by

ẋ = τy,

ẏ = τu,

u̇ = τv,

v̇ = −τf ′(0)x − α2τu − α1τv − τφ′(0)y(t − 1);

(3.2)

and the nonlinear term is

F =

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

0

0

0

−f ′′(0)
2

x2 −
f ′′′(0)x3

6
−
τφ′′(0)y2(t − 1)

2
−
τφ′′′(0)y3(t − 1)

6
− · · ·

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

. (3.3)

The characteristic equation associated with (3.2) is

γ4 + α1τγ
3 + α2τ

2γ2 + φ′(0)τ3γe−γ + τ4f ′(0) = 0. (3.4)

Comparing (3.4) with (2.3), one can find out that γ = τλ, and hence, (3.4) has a pair of
imaginary roots ±iτjkωk, when τ = τ

j

k for k = 1, 2, 3, 4, j = 0, 1, 2, . . ., and the transversal
condition holds.
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Let τ = τ0 + μ, μ ∈ R where τ0 ∈ {τ
j

k}, ω0 ∈ {ωk}, k = 1, 2, 3, 4, j = 0, 1, 2, . . . . Then μ = 0
is the Hopf bifurcation value for (3.1). Let iτ0ω0 be the root of (3.4).

For ϕ ∈ C([−1, 0], R4), let

Lμϕ =
(
τ0 + μ

)

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0

0 0 1 0

0 0 0 1

−f ′(0) 0 −α2 −α1

⎞

⎟
⎟
⎟
⎟
⎟
⎠
ϕ(0) −

(
τ0 + μ

)
φ′(0)

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0

0 0 0 0

0 0 0 0

0 1 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠
ϕ(−1),

F(μ, ϕ)

=

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

0

0

0

−
(
τ0+μ

)
f ′′(0)ϕ2

1(0)
2

−
(
τ0+μ

)
f ′′′(0)ϕ3

1(0)
6

−
(
τ0+μ

)
φ′′(0)ϕ2

2(−1)
2

−
(
τ0+μ

)
φ′′′(0)ϕ3

2(−1)
6

− · · ·

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

.

(3.5)

By the Riesz representation theorem, there exists a matrix whose components are bounded
variation functions η(θ, μ) in θ ∈ [−1, 0] such that

Lμϕ =
∫0

−1
dη(θ, μ)ϕ(θ), ϕ ∈ C

(
[−1, 0], R4). (3.6)

In fact, we choose

η(θ, μ) =
(
τ0 + μ

)

⎛

⎜⎜⎜⎜⎜
⎝

0 1 0 0

0 0 1 0

0 0 0 1

−f ′(0) 0 −α2 −α1

⎞

⎟⎟⎟⎟⎟
⎠
δ(θ) +

(
τ0 + μ

)
φ′(0)

⎛

⎜⎜⎜⎜⎜
⎝

0 0 0 0

0 0 0 0

0 0 0 0

0 1 0 0

⎞

⎟⎟⎟⎟⎟
⎠
δ(θ + 1), (3.7)

where

δ(θ) =

⎧
⎨

⎩

1, θ = 0,

0, θ /= 0.
(3.8)
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For ϕ ∈ C1([−1, 0], C4), define

A(μ)ϕ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dϕ(θ)
dθ

, θ ∈ [−1, 0),

∫0

−1
dη(t, μ)ϕ(t), θ = 0,

R(μ)ϕ =

⎧
⎪⎨

⎪⎩

0, θ ∈ [−1, 0),

F(μ, ϕ), θ = 0.

(3.9)

Hence, we can rewrite (3.1) in the following form:

ẇt = A(μ)wt + R(μ)wt, (3.10)

where w = (x, y, u, v)T , wt = w(t + θ) for θ ∈ [−1, 0].
For ψ ∈ C1([0, 1], C4), define

A∗ψ(s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−
dψ(s)
ds

, s ∈ (0, 1],

∫0

−1
ψ(−t)dη(t, 0), s = 0.

(3.11)

For ϕ ∈ C([−1, 0], C4) and ψ ∈ C([0, 1], C4), define the bilinear form

〈ψ, ϕ〉 = ψ(0)ϕ(0) −
∫0

−1

∫θ

ξ=0
ψT (ξ − θ)dη(θ)ϕ(ξ)dξ, (3.12)

where η(θ) = η(θ, 0). Then A∗ and A(0) are adjoint operators, and ±iτ0ω0 are eigenvalues of
A(0). Thus, they are also eigenvalues of A∗.

By direct computation, we obtain that

q(θ) =

⎛

⎜⎜⎜⎜⎜⎜
⎝

1

iω0

−ω2
0

−iω3
0

⎞

⎟⎟⎟⎟⎟⎟
⎠

eiτ0ω0θ (3.13)
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is the eigenvector of A(0) corresponding to iτ0ω0, and

q∗(θ) = D

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−iω3
0 −ω

2
0α1 + iω0α2 + φ′(0)e−iτ0ω0

−ω2
0 + iω0α1 + α2

iω0 + α1

1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

T

eiτ0ω0s (3.14)

is the eigenvector of A∗ corresponding to −iτ0ω0. Moreover,

〈
q∗, q

〉
= 1,

〈
q∗, q

〉
= 0, (3.15)

where

D =
1

−ω2
0α1 + φ′(0)e−iτ0ω0 − iτ0ω0φ′(0)eiτ0ω0

. (3.16)

Using the same notation as in Hassard et al. [10], we first compute the coordinates to
describe the center manifold C0 at μ = 0. Let wt be the solution of (3.1) when μ = 0.

Define

zt =
〈
q∗, wt

〉
, W(t, θ) = wt(θ) − 2 Re{z(t)q(θ)}. (3.17)

On the center manifold C0, we have

W(t, θ) =W
(
z(t), z(t), θ

)
, (3.18)

where

W
(
z, z, θ

)
=W20(θ)

z2

2
+W11(θ)zz +W02(θ)

z2

2
+W30(θ)

z3

6
+ · · · , (3.19)

z and z are local coordinates for center manifold C0 in the direction of q∗ and q∗. Note that W
is real if wt is real. We consider only real solutions.

For solution wt in C0 of (3.1), since μ = 0,

ż(t) = iτ0ω0z +
〈
q∗(θ), F

(
W
(
z, z, θ

)
+ 2 Re{z(t)q(θ)}

)〉

= iτ0ω0z + q
∗(0)F

(
W
(
z, z, 0

)
+ 2Re{z(t)q(0)}

)

def= iτ0ω0z + q
∗(0)F0

(
z, z
)
.

(3.20)

We rewrite this as

ż(t) = iτ0ω0z(t) + g
(
z, z
)
, (3.21)
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where

F0
(
z, z
)
= Fz2

z2

2
+ Fz2

z2

2
+ Fzzzz + Fz2z

z2z

2
+ · · ·, (3.22)

g
(
z, z
)
= q∗(0)F

(
W
(
z, z, 0

)
+ 2 Re{z(t)q(0)}

)

= g20
z2

2
+ g11zz + g02

z2

2
+ g21

z2z

2
+ · · · .

(3.23)

Compare the coefficients of (3.20) and (3.21), noticing (3.23), we have

g20 = q∗(0)Fz2 , g11 = q∗(0)Fzz, g02 = q∗(0)Fz2 , g21 = q∗(0)Fz2z. (3.24)

By (3.10) and (3.21), it follows that

Ẇ = ẇt − żq − ż q

=

⎧
⎪⎨

⎪⎩

AW − 2 Re
{
q∗(0)F0q(θ)

}
−1 ≤ θ < 0

AW − 2 Re
{
q∗(0)F0q(0)

}
+ F0 θ = 0

def= AW +H
(
z, z, θ

)
,

(3.25)

where

H
(
z, z, θ

)
= H20

z2

2
+H11(θ)zz +H02(θ)

z2

2
+ · · · . (3.26)

Expanding the above series and comparing the coefficients, we obtain

(
A − 2iτ0ω0I

)
W20(θ) = −H20(θ),

AW11(θ) = −H11(θ),
(
A − 2iτ0ω0

)
W02(θ) = −H02(θ).

(3.27)

Notice that

wt(θ) =W
(
z, z, θ

)
+ zq(θ) + zq(θ), (3.28)
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that is,

x(t) = z + z +W (1)(z, z, 0
)

= z + z +W (1)
20 (0)

z2

2
+W (1)

11 (0)zz +W (1)
02 (0)

z2

2
+ · · · ,

y(t − 1) = iω0e
−iτ0ω0z − iω0e

iτ0ω0z +W (2)(z, z,−1
)

= iω0e
−iτ0ω0z − iω0e

iτ0ω0z +W (2)
20 (−1)

z2

2
+W (2)

11 (−1)zz +W (2)
02 (−1)

z2

2
+ · · · .

(3.29)

Thus

x2(x) = 2
z2

2
+ 2zz + 2

z2

2
+
(
4W1

11(0) + 2W1
20(0)

)z2z

2
+ · · · ,

x3(x) = 6
z2z

2
+ · · · ,

y2(t − 1) = −2ω2
0e
−2iτ0ω0

z2

2
+ 2ω2

0zz − 2ω2
0e

2iτ0ω0
z2

2

+
(
4iω0W

(2)
11 (−1)e−iτ0ω0 − iω02W (2)

20 (−1)eiτ0ω0
)z2z

2
+ · · · ,

y3(t − 1) = 6iω3
0e
−iτ0ω0

z2z

2
+ · · · ;

(3.30)

and we have

F
(
0, ωt

)
=

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

0

0

0

−
τ0f

′′(0)x2(t)
2

−
τ0f

′′′(0)x3(t)
6

−
τ0φ

′′(0)y2(t − 1)
2

−
τ0φ

′′(0)y3(t − 1)
6

− · · ·

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

,

q∗(0) = D

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−iω3
0 −ω

2
0α1 + iω0α2 + φ′(0)e−iτ0ω0

−ω2
0 + iω0α1 + α2

iω0 + α1

1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

T

,

g
(
z, z
)
= q∗(0)F0

(
z, z
)
.

(3.31)



Discrete Dynamics in Nature and Society 13

Then we have

g20 = −τ0Df
′′(0) + τ0Dφ

′′(0)ω2e−2iτ0ω0 ,

g11 = −τ0Df
′′(0) − τ0Dφ

′′(0)ω2,

g02 = −τ0Df
′′(0) + τ0Dφ

′′(0)ω2e2iτ0ω0 ,

g21 = −τ0Df
′′(0)

[
2W (1)

11 (0) +W (1)
20 (0)

]
− τ0Df

′′′(0)

− τ0Dφ
′′(0)

[
2iω0W

(2)
11 (−1)e−iτ0ω0 − iω0W

(2)
20 (−1)eiτ0ω0

]
− τ0Dφ

′′′(0).

(3.32)

So we only need to find out W (1)
11 (0), W (1)

20 (0), W (2)
11 (−1), and W

(2)
20 (−1) to obtain g21.

When θ ∈ [−1, 0), we have

H
(
z, z, θ

)
= −2 Re

{
q∗(0)F0q(θ)

}

= −q∗(0)F0q(θ) − q∗(0)F0q(θ)

= −gq(θ) − gq(θ).

(3.33)

Comparing the coefficients with (3.26), we get

H20(θ) = −g20q(θ) − g02q(θ),

H11(θ) = −g11q(θ) − g11q(θ).
(3.34)

From (3.27), (3.32), (3.33), and (3.34), we derive

Ẇ20(θ) = 2iτ0ω0W20(θ) + g20q(θ) + g02q(θ),

Ẇ11(θ) = g11q(θ) + g11q(θ).
(3.35)

Then we can get

W20(θ) =
ig20

τ0ω0
q(0)eiτ0ω0θ +

i g02

3τ0ω0
q(0)e−iτ0ω0θ + E1e

2iτ0ω0θ,

W11(θ) =
g11

iτ0ω0
q(0)eiτ0ω0θ −

g11

iτ0ω0
q(0)e−iτ0ω0θ + E2.

(3.36)

Notice that

(
2iτ0ω0I −

∫0

−1
e2iτ0ω0θ dη(θ)

)
E1 = Fz2 ,

(∫0

−1
dη(θ)

)
E2 = −Fzz.

(3.37)
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We obtain

E1 =

⎛

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

E∗

2iω0E
∗

−4ω2
0E
∗

−8iω3
0E
∗

⎞

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, E2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−
f ′′(0) + φ′′(0)

f ′(0)

0

0

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (3.38)

where

E∗ =
−f ′′(0) + φ′′(0)ω2

0e
−2iτ0ω0

f ′(0) + 2iω0e−2iτ0ω0 − 4ω2
0α2 − 8iω3

0

(
2iω0 + α1

) .

Hence

W
(1)
20 (0) =

ig20

τ0ω0
q1(0) +

i g02

3τ0ω0
q1(0) + E

∗e−2iτ0ω0

=
i
(
−Df ′′(0) +Dφ′′(0)ω2

0e
−2iτ0ω0

)

ω0
+
i
(
−Df ′′(0) +Dφ′′(0)ω2

0e
−2iτ0ω0

)

3ω0

+ E∗e−2iτ0ω0 ,

W
(2)
20 (−1) =

ig20

τ0ω0
q2(0)e−iτ0ω0 +

i g02

3τ0ω0
q2(0)e

iτ0ω0 +
(
2iω0

)
E∗e−2iτ0ω0

= −
(
−Df ′′(0) +Dφ′′(0)ω2

0e
−2iτ0ω0

)
e−iτ0ω0 +

−Df ′′(0) +Dφ′′(0)ω2
0e
−2iτ0ω0

3
eiτ0ω0

+
(
2iω0

)
E∗e−2iτ0ω0 ,

W
(1)
11 (0) =

g11

iτ0ω0
q1(0) −

g11

iτ0ω0
q1(0) −

f ′′(0) +ω2
0φ
′(0)

f ′(0)

=
−Df ′′(0) −Dφ′′(0)ω2

0

iω0
+
Df ′′(0) +Dφ′′(0)ω2

0

iω0
−
f ′′(0) +ω2

0φ
′(0)

f ′(0)
,

W
(2)
11 (−1) =

g11

iτ0ω0
q2(0)e−iτ0ω0 −

g11

iτ0ω0
q2(0)e

iτ0ω0

=
(
−Df ′′(0) −Dφ′′(0)ω2

0
)
e−iτ0ω0 +

(
Df ′′(0) +Dφ′′(0)ω2

0
)
eiτ0ω0 .

(3.39)
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Consequently, from (3.32),

g21 = −τ0Df
′′(0)

[
2W (1)

11 (0) +W (1)
20 (0)

]
− τ0Df

′′′(0)

− τ0Dφ
′′(0)

[
2iω0W

(2)
11 (−1)e−iτ0ω0 − iω0W

(2)
20 (−1)eiτ0ω0

]
− τ0Dφ

′′′(0)

=−2τ0Df
′′(0)

[
−Df ′′(0) −Dφ′′(0)ω2

0

iω0
+
Df ′′(0) +Dφ′′(0)ω2

0

iω0
−
f ′′(0) +ω2

0φ
′′(0)

f ′(0)

]

−τ0Df
′′(0)

×
[
i
(
−Df ′′(0)+Dφ′′(0)ω2

0e
−2iτ0ω0

)

ω0
+
i
(
−Df ′′(0)+Dφ′′(0)ω2

0e
−2iτ0ω0

)

3ω0
+E∗e−2iτ0ω0

]

−τ0Df
′′′(0)

− 2τ0Dφ
′′(0)

(
iω0
)[(
−Df ′′(0) −Dφ′′(0)ω2

0
)
e−iτ0ω0 +

(
Df ′′(0) +Dφ′′(0)ω2

0
)
eiτ0ω0

]
e−iτ0ω0

+ τ0Dφ
′′(0)

(
iω0
)[
−
(
−Df ′′(0) +Dφ′′(0)ω2

0e
−2iτ0ω0

)
e−iτ0ω0

]
eiτ0ω0

+ τ0Dφ
′′(0)

(
iω0
)
[
−Df ′′(0)+Dφ′′(0)ω2

0e
−2iτ0ω0

3
eiτ0ω0+

(
2iω0

)
E∗e−2iτ0ω0

]

eiτ0ω0−τ0Dφ
′′′(0).

(3.40)

Substituting g20, g11, g02, and g21 into

C1(0) =
i

2τ0ω0

(
g20g11 − 2

∣∣g11
∣∣2 − 1

3
∣∣g02

∣∣2
)
+
g21

2
, (3.41)

we can obtain ReC1(0). Then we obtain the sign of

β2 = 2 ReC1(0),

μ2 = −ReC1(0)
α′
(
τ0
) .

(3.42)

By the general theory due to Hassard et al. [10], we know that the quantity of β2

determines the stability of the bifurcating periodic solutions on the center manifold, and μ2

determines the direction of the bifurcation; and we have the following.

Theorem 3.1. (i) If μ2 > 0(< 0), then the Hopf bifurcation at the origin of system (1.1) is supercritical
(subcritical).

(ii) If β2 < 0(> 0), then the bifurcating periodic solutions of system (1.1) are asymptotically
stable (unstable).

4. An Example and Numerical Simulations

In this section, we give an example and present some numerical simulations to illustrate the
analytic results.
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Figure 1: The curve of function h(V ) = V 4 − 27V 3 + 232V 2 − 648V + 324.

Example 4.1. Consider the following equation:

x(4)(t) +
...
x(t) + 14ẍ(t) + 12 sin ẋ(t − τ) + x3(t) + 18x(t) = 0. (4.1)

Clearly,

α1 = 1, α2 = 14, φ
(
ẋ(t − τ)

)
= 12 sin ẋ(t − τ), f(x) = x3 + 18x,

φ(0) = φ′′(0) = 0, φ′(0) = 12, φ′′′(0) = −12,

f(0) = f ′′(0) = 0, f ′(0) = 18, f ′′′(0) = 6.

(4.2)

By direct computation, we know (H1) and (H2) are satisfied. That is, the data satisfy
the conditions of Lemma 2.1. The characteristic equation is

λ4 + λ3 + 14λ2 + 12λe−λτ + 18 = 0; (4.3)

and we can obtain

h(V ) = V 4 − 27V 3 + 232V 2 − 648V + 324. (4.4)

As shown in Figure 1, the equation h(V ) = 0 has four roots as

V1 = 0.633, V2 = 4.166, V3 = 10.464, V4 = 11.737; (4.5)

and

h′
(
V1
)
< 0, h′

(
V2
)
> 0, h′

(
V3
)
< 0, h′

(
V4
)
> 0. (4.6)
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Figure 2: The zero solution of system (4.1) is asymptotically stable when τ = 0.4.

10−1
−0.5

−0.3

−0.1

0.1

0.3

0.5

(a) y-x phase plots

10005000
−1.5

−1

−0.5

0

0.5

1

1.5

(b) y waveform

10005000

−0.5

−0.3

−0.1

0.1

0.3

0.5

(c) x waveform

420−2−4
−2
−1.5
−1
−0.5

0
0.5

1
1.5

2

(d) v-u phase plots

10005000
−4
−3
−2
−1

0
1
2
3
4

(e) v waveform

10005000
−2
−1.5
−1
−0.5

0
0.5

1
1.5

2

(f) u waveform

Figure 3: For (4.1) with τ = 0.64 > τ0
2 and sufficiently near τ0

2 = 0.596, the bifurcating periodic solution
from zero solution occurs and is asymptotically stable.

Hence

ω1 = 0.796, ω2 = 2.041, ω3 = 3.235, ω4 = 3.426,

τ0
1 = 5.988, τ0

2 = 0.596, τ0
3 = 0.158, τ0

4 = 0.061.
(4.7)
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For τ0
4 < τ

0
3 < τ

0
2 < τ

0
1 , we obtain that the zero solution of system (4.1) is asymptotically stable

when τ ∈ [0, 0.061) ∪ (0.158, 0.596).
According to the formula given in Section 3, we can obtain that

D4 = −1.898 + 0.133i, D3 = −0.323 + 0.056i, D2 = −0.061 + 0.027i,

g
(4)
21 = −0.697 + 0.049i, g

(3)
21 = −0.306 + 0.053i, g

(2)
21 = −0.217 + 0.098i,

g02 = g11 = g02 = E∗ = 0.

(4.8)

Then we have

C1(0) =
g21

2
. (4.9)

Hence, when τ ∈ {τ0
1 , τ

0
2 , τ

0
3}, we have

β2 = 2ReC1(0) < 0,

μ2 = −ReC1(0)
α′
(
τ0
) > 0.

(4.10)

Conclusion of (4.1)

The zero solution of system (4.1) is asymptotically stable when τ ∈ [0, 0.061) ∪ (0.158, 0.596).
The Hopf bifurcation at the origin when τ0 = τ0

k is supercritical, and the bifurcating periodic
solutions are asymptotically stable.

The following is the results of numerical simulations to system (4.1).

(i) We choose τ = 0.4 ∈ (0.158, 0.596), then the zero solution of system (4.1) is
asymptotically stable, as shown in Figure 2.

(ii) We choose τ = 0.64 being near to τ0
2 = 0.596, a periodic solution bifurcates from the

origin and is asymptotically stable, as shown in Figure 3.

5. Conclusion

In this paper, we consider a certain fourth-order delay differential equation. The linear
stability is investigated by analyzing the associated characteristic equation. It is found that
there may exist the stability switches when delay varies, and the Hopf bifurcation occurs
when the delay passes through a sequence of critical values. Then the direction and the
stability of the Hopf bifurcation are determined using the normal form method and the center
manifold theorem. Finally, an example is given and numerical simulations are carried out to
illustrate the results. By using Lyapunov’s second method, Sadek [1] investigated the stability
of system (1.1). The main result is as the following.



Discrete Dynamics in Nature and Society 19

Theorem 5.1. Suppose that the following hold.

(i) There are constants α1 > 0, α2 > 0, α3 > 0, α4 > 0, and Δ > 0 such that

(α1α2 − φ′(y))α3 − α2
1α4 ≥ Δ (5.1)

for all y.

(ii) f(0) = 0, xf(x) > 0 (x /= 0), F(x) =
∫x

0f(ξ)dξ → ∞ as |x| → ∞, and

0 ≤ α4 − f ′(x) ≤ εd0α
0
1 (5.2)

for all x, where ε is a positive constant such that

ε = min

(
1
α1
,

Δ
4α1α3d0

,
α3

4α4d0

(
2Δα4

α1α
2
3

− δ1

))

(5.3)

with d0 = α1α2 + α2α3α
−1
4 .

(iii) φ(0) = 0 and φ′(y) ≥ α3 > 0 for all y, and 0 ≤ φ′(y) − φ(y)/y ≤ δ1 < 2Δα4/α1α
2
3 for all

y /= 0.

Then the zero solution of (1.1) is asymptotically stable, provided that

τ < min

{
ε

d2α2
,

Δ
2α1α3

(
α2α3 + 2μ

) ,
α1ε

d1α2α3

}

, (5.4)

with μ = (α2α3/2)(d1 + d2 + 1) > 0.

Comparing Theorem 5.1 with Theorem 2.5 obtained in Section 2, one can find out that
if the sufficient conditions to ensure the globally asymptotical stability of system (1.1) given in
[10] are not satisfied, we can also get the stability of system (1.1), but here the stability means
local stability, and the system undergoes a Hopf bifurcation at the origin. Otherwise, here we
just need to give the condition on the origin of f(x) and φ(x), the condition is relatively weak.
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[8] C. Tunç, “ On the stability of solutions to a certain fourth-order delay differential equation,” Nonlinear
Dynamics, vol. 51, no. 1-2, pp. 71–81, 2008.

[9] S. Ruan and J. Wei, “On the zeros of transcendental functions with applications to stability of delay
differential equations with two delays,” Dynamics of Continuous, Discrete and Impulsive Systems. Series
A, vol. 10, no. 6, pp. 863–874, 2003.

[10] B. D. Hassard, N. D. Kazarinoff, and Y. H. Wan, Theory and Applications of Hopf Bifurcation, vol. 41 of
London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, UK, 1981.

[11] X. Li and J. Wei, “On the zeros of a fourth degree exponential polynomial with applications to a neural
network model with delays,” Chaos, Solitons & Fractals, vol. 26, no. 2, pp. 519–526, 2005.

[12] J. Hale, Theory of Functional Differential Equations, vol. 3 of Applied Mathematical Sciences, Springer, New
York, NY, USA, 2nd edition, 1977.


